ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Ricci Solitons on (ε, δ) Trans-Sasakian Manifolds

Research Article

K. Bhavya^{1*}, G. Somashekhara² and G.S. Shivaprasanna³

- 1 Department of Mathematics, Presidency University, Bengaluru, Karnataka, India.
- 2 Department of Mathematics, M.S.Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India.
- 3 Department of Mathematics, Dr.Ambedkar Institute of Technology, Bengaluru, Karnataka, India.

Abstract: The object of this paper is to study the characterisation of Ricci Solitons in generalised ricci recurrent and ϕ recurrent

 (ε, δ) trans-sasakian manifolds based on the 1-form.

MSC: 53C44, 53D10, 53D15.

Keywords: Ricci, ϕ -recurrent, pseudo-projective, (ε, δ) Trans sasakian, Ricci recurrent, shrinking, expanding, steady.

© JS Publication.

1. Introduction

In the year 1982, Hamilton [11] introduced solution to the Ricci flow known as Ricci Soliton. In Contact Riemannian geometry RameshSharma [10] initiated the study of Ricci Solitons. Later many authors [5, 7, 9] extensively studied Ricci Solitons in contact metric manifolds. Ricci Soliton in a Riemannian manifold (M, g) is a natural generalisation of an Einstein metric and is defined as a triple (g, V, λ) with g a Riemannian metric, V a vector field, λ a real scalar such that

$$(L_V g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) = 0, (1)$$

where L_v represents the Lie derivative operator along the vector field V and S is the Ricci tensor of M. Depending on the λ value, whether it is negative, zero, and positive, the Ricci Soliton will be shrinking, steady, and expanding respectively. In 1985, Obulina [7] introduced a new class of contact manifold namely Trans-Sasakian manifold. Many authors [3, 4, 6] have studied this manifold and obtained many interesting results. In this paper, we study the conditions which characterise Ricci Solitons in Trans-sasakian manifolds. Section 2 contains a review of Trans-sasakian manifolds and Ricci solitons. In section 3-6 we proove characterizing conditions for ricci Solitons in generalised Ricci recurrent, generalised ϕ -recurrent, generalised pseudo-projective ϕ -recurrent, generalised concircular ϕ -recurrent (ε , δ) Trans-sasakian Manifolds.

2. Preliminaries

A manifold M of dimension n is an almost contact manifold if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of a vector field ξ , a 1-form η , a tensor field ϕ of type (1,1) and a Riemannian metric g compatible with (ϕ, ξ, η)

^{*} E-mail: bhavya.k6666@gmail.com

satisfying

$$\phi^2 X = -X + \eta(X)\xi,\tag{2}$$

$$\eta(\xi) = 1, \ \phi \xi = 0, \ \eta \circ \phi = 0.$$
(3)

An almost contact metric manifold M is called an (ε) -almost contact metric manifold if

$$g(\xi, \xi) = \varepsilon, \tag{4}$$

$$\eta(X) = \varepsilon g(X, \xi),\tag{5}$$

$$g(\phi X, \phi Y) = g(X, Y) - \varepsilon \eta(X) \eta(Y), \tag{6}$$

for all vector fields X, Y on M, where $\varepsilon = g(\xi, \xi) = \pm 1$. An (ε) -almost contact metric manifold is said to be (ε, δ) -Transsaskian manifold if

$$(\nabla_X \phi)(Y) = \alpha [g(X, Y)\xi - \varepsilon \eta(Y)X] + \beta [g(\phi X, Y)\xi - \delta \eta(Y)\phi X], \tag{7}$$

holds for some smooth functions α and β on M and $\varepsilon = \pm 1$, $\delta = \pm 1$. For $\beta = 0$, $\alpha = 1$ (ε , δ)-trans sasakian manifold reduces to (ε)-sasakian and for $\alpha = 0$, $\beta = 1$ it reduces to a (δ)-kenmotsu manifold. In an (ε)-almost contact metric manifold M is an (ε , δ)-Trans-sasakian manifold if and only if [6]

$$\nabla_X \xi = -\varepsilon \alpha \phi X - \delta \beta \phi^2 X,\tag{8}$$

where ∇ denotes the Riemannian connection of g. In an (ε, δ) -Trans-sasakian manifold M, the following relation holds with (α, β) are constants

$$(\nabla_X \phi)(Y) = \varepsilon g(\phi(\nabla_X \xi), Y)\xi - \eta(Y)\phi(\nabla_X \xi), \tag{9}$$

$$(\nabla_X \eta) Y = \delta \beta [\varepsilon g(X, Y) - \eta(X) \eta(Y)] - \alpha g(\phi X, Y), \tag{10}$$

$$R(X,Y)\xi = (\beta^2 - \alpha^2)[\eta(X)Y - \eta(Y)X],\tag{11}$$

where R is the Riemannian Curvature tensor

$$S(X,\xi) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(X), \tag{12}$$

Let (g, V, λ) be a Ricci Soliton in Trans-sasakian manifold M. Put $V = \xi$ then from (8) and (1) we get

$$S(X,Y) = \beta \delta \varepsilon \eta(X) \eta(Y) - g(X,Y)(\beta \delta + \lambda). \tag{13}$$

The above equation gives

$$QX = \beta \delta \varepsilon \eta(X) \xi - (\beta \delta + \lambda) X, \tag{14}$$

$$S(X,\xi) = -\varepsilon \lambda \eta(X),\tag{15}$$

$$r = -[(n - \varepsilon)\beta\delta + n\lambda],\tag{16}$$

Also by the covariant derivative definition, we have

$$(\nabla_W S)S(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi),\tag{17}$$

The following results will be used later.

Lemma 2.1. In a ϕ -recurrent (ε, δ) -Trans-sasakian manifold (M^n, g) the characteristic vector field ξ and the vector fields ρ_1 , ρ_2 associated with two 1-forms A and B are co-directional and the 1-forms A and B are defined as follows

$$A(W) = \eta(\rho_1)\eta(W), B(W) = \eta(\rho_2)\eta(W), \tag{18}$$

Replacing W by ξ in (18) it follows that

$$A(\xi) = \eta(\rho_1), B(\xi) = \eta(\rho_2), \tag{19}$$

3. Generalised Ricci-Recurrent (ε, δ) -Trans-Sasakian Manifold

A trans-sasakian manifold is said to be generalised Ricci-recurrent manifold if there exist two non-zero 1-forms A and B such that

$$(\nabla_W S)(Y, Z) = A(W)S(Y, Z) + (n-1)B(W)g(Y, Z), \tag{20}$$

Replacing Z by ξ in (20) and using (12), We have

$$(\nabla_W S)(Y,\xi) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)A(W)\eta(Y) + \varepsilon(n-1)B(W)\eta(Y),\tag{21}$$

Using (8) and (12) we get

$$(\nabla_W S)(Y,\xi) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta)g(W,Y) - \alpha(n-1)(\varepsilon \alpha^2 - \beta^2 \delta)g(\phi W,Y) + \varepsilon \alpha S(Y,\phi W) - \beta \delta S(Y,W), \tag{22}$$

On comparing (21) with (22) we have

$$\beta \delta S(Y,W) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y)$$

$$+ \varepsilon \alpha S(Y,\phi W) - (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) A(W) \eta(Y) - \varepsilon (n-1) B(W) \eta(Y),$$
(23)

Substituting $Y = \xi$ in (23) we get,

$$S(\xi, W) = (n-1)(\varepsilon \alpha^2 - \beta^2 \delta)\eta(W) - \frac{(n-1)(\varepsilon \alpha^2 - \beta^2 \delta)}{\beta \delta} A(W) - \frac{\varepsilon}{\beta \delta} B(W)(n-1), \tag{24}$$

Using Lemma (18), (24) reduces to

$$S(\xi, W) = (n-1)\eta(W)[(\varepsilon\alpha^2 - \beta^2\delta) - \frac{(\varepsilon\alpha^2 - \beta^2\delta)}{\beta\delta}\eta(\rho_1) - \frac{\varepsilon}{\beta\delta}\eta(\rho_2)], \tag{25}$$

Substitute (15) and (19) in (25), we obtain

$$\lambda = -\frac{(n-1)(\varepsilon\alpha^2 - \beta^2\delta)}{\varepsilon} \left[1 - \frac{1}{\beta\delta}A(\xi)\right] + \frac{(n-1)}{\beta\delta}B(\xi). \tag{26}$$

Theorem 3.1. Ricci Soliton in Generalised Ricci-Recurrent (ε, δ) -Trans-sasakian manifold (M, g) with two 1-forms A and B is

$$\begin{cases} Expanding, & if \ A(\xi) > 1, B(\xi) > 1. \\ Steady, & if \ (\varepsilon\alpha^2 - \beta^2\delta) = \frac{\varepsilon B(\xi)}{(\beta\delta - A(\xi))}. \\ Shrinking, & if \ A(\xi) < 1, B(\xi) < 1. \end{cases}$$

4. Generalised ϕ -Recurrent (ε, δ) -Trans-Sasakian Manifold

A (ε, δ) -Trans-sasakian Manifold is said to be generalised ϕ -Recurrent manifold [2] if its curvature tensor R satisfies the condition

$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = A(W)R(X,Y)Z + B(W)[g(Y,Z)X - g(X,Z)Y], \tag{27}$$

for arbitrary vector fields X, Y, Z, W. Let us consider a generalised ϕ -Recurrent Trans-sasakian Manifold. By virtue of (2) and (27) we have,

$$-((\nabla_W R)(X,Y)Z) + \eta((\nabla_W R)(X,Y)Z)\xi = A(W)R(X,Y)Z + B(W)[g(Y,Z)X - g(X,Z)Y], \tag{28}$$

Contracting (28) with respect to U, we obtain

$$-g((\nabla_W R)(X,Y)Z,U) + \eta((\nabla_W R)(X,Y)Z)\varepsilon\eta(U) = A(W)g(R(X,Y)Z,U) + B(W)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)], (29)$$

Let $e_i (i=1,2,3,\ldots,n)$, be an orthonormal basis of the tangent space at any point of the manifold. Put $X=U=e_i$ in (29) and take summation over $i, 1 \le i \le n$, we get

$$-(\nabla_W S)(Y, Z) = A(W)S(Y, Z) + B(W)q(Y, Z)(n-1), \tag{30}$$

Replacing Z by ξ in (30) and using (12) we have

$$(\nabla_W S)(Y, \xi) = -(n-1)\eta(Y)[(\varepsilon\alpha^2 - \beta^2\delta)A(W) + \varepsilon B(W)], \tag{31}$$

Substitute (8), (12) in (17), we get

$$(\nabla_W S)(Y,\xi) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y) + \varepsilon \alpha S(Y,\phi W) - \beta \delta S(Y,W), \tag{32}$$

On comparison of (31) with (32), we have

$$\beta \delta S(Y,W) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y)$$
$$+ \varepsilon \alpha S(Y,\phi W) + (n-1)\eta(Y) [(\varepsilon \alpha^2 - \beta^2 \delta) A(W) + \varepsilon B(W)], \tag{33}$$

Put $Y = \xi$ in (33), we get

$$S(\xi, W) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(W) + \frac{(n-1)}{\beta\delta}[(\varepsilon\alpha^2 - \beta^2\delta)A(W) + \varepsilon B(W)], \tag{34}$$

Applying Lemma (18), (34) reduces to

$$S(\xi, W) = (n-1)\eta(w)[(\varepsilon\alpha^2 - \beta^2\delta) + \frac{1}{\beta\delta}(\varepsilon\alpha^2 - \beta^2\delta)\eta(\rho_1) + \varepsilon\eta(\rho_2)], \tag{35}$$

Make use of (15) and (19) in (35), we obtain

$$\lambda = -\frac{(n-1)}{\varepsilon} (\varepsilon \alpha^2 - \beta^2 \delta) [1 + \frac{1}{\beta \delta} A(\xi)] - \frac{(n-1)}{\beta \delta} B(\xi). \tag{36}$$

Theorem 4.1. Ricci Soliton in Generalised ϕ -Recurrent (ε, δ) -Trans-sasakian manifold (M, g) with two 1-forms A and B is

$$\begin{cases} Expanding & if, \ A(\xi) < 1, B(\xi) < 1 \ . \\ Steady & if, \ (\varepsilon\alpha^2 - \beta^2\delta) = \frac{-\varepsilon B(\xi)}{(\beta\delta + A(\xi))}. \\ Shrinking & if, \ A(\xi) > 1, B(\xi) > 1. \end{cases}$$

5. Generalised Pseudo-Projective ϕ -Recurrent (ε, δ) -Trans-Sasakian Manifold

In a (ε, δ) -Trans-sasakian Manifold M, the Pseudo-Projective curvature tensor \overline{P} is given by [1]

$$\overline{P}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y] - \frac{r}{n}\left(\frac{a}{n-1} + b\right)[g(Y,Z)X - g(X,Z)Y], \tag{37}$$

where a and b are constants such that $a, b \neq 0$. A (ε, δ) -Trans-sasakian manifold is said to be Pseudo-Projective ϕ -Recurrent manifold if there exists two non-zero 1-forms A and B such that

$$\phi^2((\nabla_W \overline{P})(X, Y)Z) = A(W)\overline{P}(X, Y)Z + B(W)[g(Y, Z)X - g(X, Z)Y], \tag{38}$$

for arbitrary vector fields X, Y, Z, W. Let us consider a Pseudo-Projective ϕ -Recurrent (ε, δ) -Trans-sasakian Manifold. By virtue of (2) and (38), we have

$$-((\nabla_W \overline{P})(X,Y)Z) + \eta((\nabla_W \overline{P})(X,Y)Z)\xi = A(W)\overline{P}(X,Y)Z + B(W)[g(Y,Z)X - g(X,Z)Y], \tag{39}$$

Contracting (39) with respect to U, we obtain

$$-g((\nabla_W \overline{P})(X,Y)Z,U) + \eta((\nabla_W \overline{P})(X,Y)Z)\varepsilon\eta(U) = A(W)g(\overline{P}(X,Y)Z,U) + B(W)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)], \quad (40)$$

Let $e_i (i=1,2,3,....,n)$, be an orthonormal basis of the tangent space at any point of the manifold. Put $X=U=e_i$ in (40) and take summation over $i, 1 \le i \le n$, we get

$$-(\nabla_W S)(Y,Z) = A(W)[S(Y,Z) - \frac{r}{n}g(Y,Z)] + \frac{(n-1)}{a+b(n-1)}B(W)g(Y,Z), \tag{41}$$

Replacing Z by ξ in (41) and using (2) and (12), we have

$$(\nabla_W S)(Y,\xi) = \left[A(W) \left(\frac{\varepsilon r}{n} - (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) \right) - B(W) \frac{(n-1)\varepsilon}{a + b(n-1)} \right] \eta(Y), \tag{42}$$

Substitute (8), (12) in (17), we get

$$(\nabla_W S)(Y,\xi) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y) + \varepsilon \alpha S(Y,\phi W) - \beta \delta S(Y,W), \tag{43}$$

On comparing (42) with (43) we have

$$\beta \delta S(Y,W) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y)$$

$$+ \varepsilon \alpha S(Y,\phi W) + A(W) \left[\left(-\frac{\varepsilon r}{n} + (n-1) \right) (\varepsilon \alpha^2 - \beta^2 \delta) \right] \eta(Y) + B(W) \left[\frac{(n-1)\varepsilon}{a + b(n-1)} \right] \eta(Y), \tag{44}$$

Put $Y = \xi$ in (44), we get

$$S(\xi, W) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(W) + \frac{A(W)}{\beta\delta} \left[(n-1)(\varepsilon\alpha^2 - \beta^2\delta) - \frac{\varepsilon r}{n} \right] + \frac{B(W)}{\beta\delta} \left[\frac{(n-1)\varepsilon}{a + b(n-1)} \right], \tag{45}$$

Applying Lemma (18), (45) reduces to

$$S(\xi, W) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(W) + \frac{\eta(\rho_1)\eta(w)}{\beta\delta} \left[(n-1)(\varepsilon\alpha^2 - \beta^2\delta) - \frac{\varepsilon r}{n} \right] + \frac{\eta(\rho_2)\eta(w)}{\beta\delta} \left[\frac{(n-1)\varepsilon}{a + b(n-1)} \right], \tag{46}$$

Make use of (15), (16) and (19) in (46), we obtain

$$\lambda = -\frac{(n-1)(\varepsilon\alpha^2 - \beta^2\delta)}{\varepsilon} - \left[\frac{(n-\varepsilon)}{n} \frac{\beta\delta A(\xi)}{(\beta\delta + A(\xi))} + \frac{B(\xi)}{(\beta\delta + A(\xi))} \frac{(n-1)}{(a+b(n-1))} \right]. \tag{47}$$

Theorem 5.1. Ricci Soliton in a Generalised Pseudo-Projective ϕ -Recurrent (ε, δ) -Trans-sasakian manifold (M, g) with two 1-forms A and B is shrinking provided $A(\xi)$ and $B(\xi)$ is non-negative.

6. Generalised Concircular ϕ -Recurrent (ε, δ) -Trans-sasakian Manifold

The concircular curvature tensor of (M, g) is given by [8]

$$\overline{C}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)}[g(Y,Z)X - g(X,Z)Y]. \tag{48}$$

A (ε, δ) -Trans-sasakian manifold is said to be Concircular ϕ -Recurrent manifold if there exists two non-zero 1-forms A and B such that

$$\phi^2((\nabla_W \overline{C})(X, Y)Z) = A(W)\overline{C}(X, Y)Z + B(W)[g(Y, Z)X - g(X, Z)Y], \tag{49}$$

for arbitrary vector fields X, Y, Z, W. Let us consider ϕ -Recurrent (ε, δ) -Trans-sasakian Manifold. By virtue of (2) and (49), we have

$$-(\nabla_W \overline{C})(X,Y)Z + \eta((\nabla_W \overline{C})(X,Y)Z)\xi = A(W)\overline{C}(X,Y)Z + B(W)[g(Y,Z)X - g(X,Z)Y], \tag{50}$$

Contracting (50) with respect to U, we have

$$-g((\nabla_W \overline{C})(X,Y)Z,U) + \eta((\nabla_W \overline{C})(X,Y)Z)\varepsilon\eta(U) = A(W)g(\overline{C}(X,Y)Z,U) + B(W)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)], (51)$$

Let $e_i (i=1,2,3,....,n)$, be an orthonormal basis of the tangent space at any point of the manifold. Then put $X=U=e_i$ in (51) and take summation over $i, 1 \le i \le n$, we get

$$(\nabla_W S)(Y,Z) = \frac{\nabla_W r}{n} g(Y,Z) - A(W)S(Y,Z) + g(Y,Z) \left[\frac{A(W)r}{n} - B(W)(n-1) \right], \tag{52}$$

Replacing Z by ξ in (52) and using (2) and (12), we have

$$(\nabla_W S)(Y,\xi) = \frac{\nabla_W r}{n} \varepsilon \eta(Y) - A(W)(n-1)(\varepsilon \alpha^2 - \beta^2 \delta) \eta(Y) + \varepsilon \eta(Y) \left[\frac{A(W)r}{n} - B(W)(n-1) \right], \tag{53}$$

For a constant r (53) reduces to

$$(\nabla_W S)(Y,\xi) = -A(W)(n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(Y) + \varepsilon\eta(Y) \left[\frac{A(W)r}{n} - B(W)(n-1) \right], \tag{54}$$

Substitute (8) and (12) in (17) we get

$$(\nabla_W S)(Y,\xi) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y) + \varepsilon \alpha S(Y,\phi W) - \beta \delta S(Y,W), \tag{55}$$

On comparison of (54) with (55), we have

$$\beta \delta S(Y,W) = \beta \delta \varepsilon (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(W,Y) - \alpha (n-1)(\varepsilon \alpha^2 - \beta^2 \delta) g(\phi W,Y)$$

$$+ \varepsilon \alpha S(Y,\phi W) + A(W)(n-1)(\varepsilon \alpha^2 - \beta^2 \delta) \eta(Y) - \varepsilon \eta(Y) \left[\frac{A(W)r}{n} - B(W)(n-1) \right], \tag{56}$$

Take $Y = \xi$ in (56) we get

$$\beta \delta S(\xi, W) = \beta \delta(n-1)(\varepsilon \alpha^2 - \beta^2 \delta)\eta(W) + A(W)(n-1)(\varepsilon \alpha^2 - \beta^2 \delta) - \varepsilon \left[\frac{A(W)r}{n} - B(W)(n-1) \right], \tag{57}$$

Applying Lemma (18), (57) reduces to

$$S(\xi, W) = (n-1)(\varepsilon\alpha^2 - \beta^2\delta)\eta(W) + \frac{(n-1)(\varepsilon\alpha^2 - \beta^2\delta)}{\beta\delta}\eta(\rho_1)\eta(W) - \frac{\varepsilon}{\beta\delta}\eta(W) \left[\frac{\eta(\rho_1)r}{n} - \eta(\rho_2)(n-1)\right], \tag{58}$$

Make use of (15), (16) and (19) in (58), we obtain

$$\lambda = -\frac{(n-1)(\varepsilon\alpha^2 - \beta^2\delta)}{\varepsilon} - \left[\frac{(n-\varepsilon)}{n} \frac{\beta\delta A(\xi)}{(\beta\delta + A(\xi))} + \frac{B(\xi)(n-1)}{(\beta\delta + A(\xi))} \right]. \tag{59}$$

Theorem 6.1. Ricci Soliton in a Generalised Concircular ϕ -Recurrent (ε, δ) -Trans-sasakian manifold (M, g) with two 1-forms A and B and a constant scalar curvature r is shrinking for non-negative $A(\xi)$ and $B(\xi)$.

7. Conclusion

Based on the nature of two one forms associated with the curvature conditions, Ricci solitons in generalised Ricci recurrent, ϕ -recurrent, pseudo-projective ϕ -recurrent and concircular ϕ -recurrent curvatures under (ε, δ) - Trans-sasakian manifolds is classified into expanding, shrinking and steady. This study may be extended to η -ricci solitons in real hyper surfaces of complex space forms.

References

- [1] B.Prasad, A Pseudo Projective Curvature tensor on Riemannian Manifold, Bull. Cal. Math. Soc., 94(2002), 163-169.
- [2] C.S.Bagewadi and A.Dakshayani Patil, On Generalised ϕ Recurrent (ε, δ) -Trans-sasakian Manifolds, Chinese Journal of Mathematics, 2014(2014), Article ID736846.
- [3] C.S.Bagewadi and E Girish Kumar, Note on Trans-sasakian manifolds, Tensor N.S., 65(1)(2004), 80-88.
- [4] D.E.Blair, Contact Manifolds in Riemannian geometry, Lecture notes in Mathematics, Springer-Verlag, Berlin-Newyork, 509(1970).
- [5] H.G.Nagaraja and K Venu, *Ricci Solitons in Kenmotsu Manifold*, Journal of Informatics and Mathematical Sciences, 8(1)(2016), 29-36.
- [6] H.G.Nagaraja, R.C.Premalatha and G.Somashekhara, On an (ε, δ) -Trans sasakian structure, Proceedings of the Estonian Academy of Sciences, 61(1)(2012), 20-23.
- [7] J.A.Obulina, New classes of almost contact metric structure, Publications Mathematicae Debrecen, 32(3-4)(1985), 187-193.
- [8] K.Yano, Concircular geometry- I. Concircular transformations, Proceedings of the Japan Academy, 16(1940), 195-200.
- [9] M.M.Tripathi, Ricci Solitons in contact metric manifolds, arxiv:0801, 4222(2008).
- [10] R.Sharma, Certain results on K-contact and (k, \(\mu\))-contact manifolds, J.Geom., 89(2008), 138-147.
- [11] R.S.Hamilton, The Ricci flow on surfaces, Mathematical and General Relativity, American Math Soc. Contemp. Math., 71(1988), 237-262.