International Journal of Mathematics And its Applications

# Group Extension Through c-left Groupoid 

Vishal Vincent Henry ${ }^{1 *}$, Swapnil Srivastava ${ }^{2}$ and Ajit Paul ${ }^{1}$<br>1 Department of Mathematics and Statistics, SHUATS, Allahabad, Uttar Pradesh, India.<br>2 Department of Mathematics, Ewing Christian College, Allahabad, Uttar Pradesh, India.

Abstract: In this paper the structure of c-left groupoid has been defined and on the basis of that group extension of G of a group H has been solved for which $S$ will be a left transversal to $H$ in $G$ such that the corresponding c-left groupoid is the given one.

Keywords: Groupoid, left transversals, group extension.
(C) JS Publication.

## 1. Introduction and Preliminaries

Let H be a group and S its left transversal with identity "e". The group extension G of H has been obtained by S through c-left groupoid.

Definition 1.1. A quadruple $(S, H, \sigma, f)$ where $S$ is a groupoid with binary operation" " and identity $e, H$ is a group which acts on $S$ from left through a given action $\theta, \sigma$ is a map $S$ to $H^{H}$ (the set of all maps from $H$ to $H$ ) and $f$ is a map from $S \times S$ to $H$, is called c-left groupoid if it satisfies the following conditions
(CG1) $[y o x=y] \Rightarrow x=e$.
(CG2) For each $x \in S \exists x^{\prime} \in S$ such that $x o x^{\prime}=e$.
(CG3) $\sigma_{e}=I_{H}$, the identity map on $H$, where $\sigma_{x}$ denotes the image $\sigma(x)$ of $x$ under the map $\sigma$ for each $x \in S$.
(CG4) $f(x, e)=f(e, x)=1$, the identity of $H$.
(CG5) $\sigma_{x}\left(h_{1} h_{2}\right)=\sigma_{h_{2} \theta x}\left(h_{1}\right) \sigma_{x}\left(h_{2}\right)$.
(CG6) $x o(y o z)=(x o y) o(f(x, y) \theta z)$.
$(C G 7) h \theta(x o y)=(h \theta x) o\left(\sigma_{x}(h) \theta y\right)$.
(CG8) $f(x, y o z) f(y, z)=f(x o y, f(x, y) \theta z) \sigma_{z}(f(x, y))$.
(CG9) $\sigma_{x o y}(h) f(x, y)=f\left(h \theta x, \sigma_{x}(h) \theta y\right) \sigma_{y}\left(\sigma_{x}(h)\right)$, where $x, y, z \in S$ and $h_{1}, h_{2}, h_{3} \in H$.

[^0]Example 1.2. Let $G$ be a group and $S$ its left transversal to a subgroup $H$. Let $x, y \in S$ and $h \in H$. Then $x \cdot y=(x o y) f(x, y)$ for some $f(x, y) \in H$ and $(x o y) \in S$. Also $h \cdot x=h \theta x s_{x}(h)$ for some $\sigma_{x}(h) \in H$ and $h \theta x \in S$. This gives a map $f: S \times S \theta H$ and a map $\sigma: S \theta H^{H}$ defined by $f((x, y))=f(x, y)$ and $s(x)(h)=s_{x}(h)$. Then $(S, H, \sigma, f)$ is a $c$-left groupoid.

Solution. It is easy to verify CG1, CG2, CG3, CG4. Let $x \in S$ and $h_{1}, h_{2} \in H$. Then

$$
\begin{aligned}
\left(h_{1} h_{2}\right) \theta x s_{x}\left(h_{1} h_{2}\right) & =\left(h_{1} h_{2}\right) \cdot x \\
& =h_{1}\left(h_{2} \cdot x\right) \\
& =h_{1}\left(h_{2} \theta x\right) \sigma_{x}\left(h_{2}\right) \\
& =h_{1} \theta\left(h_{2} \theta x\right) \sigma_{h_{2} \theta x}\left(h_{1}\right) \sigma_{x}\left(h_{2}\right)
\end{aligned}
$$

This shows that $\left(h_{1} h_{2}\right) \theta x=h_{1} \theta\left(h_{2} \theta x\right)$ i.e. $\theta$ is a left action of $H$ on $S$ and $\sigma_{x}\left(h_{1} h_{2}\right)=\sigma_{h_{2} \theta x}\left(h_{1}\right) \sigma_{x}\left(h_{2}\right)$ which proves CG5. Next, let $x, y, z \in S$. Then

$$
\begin{aligned}
(x o(y o z)) f(x, y o z) f(y, z) & =x \cdot(y o z) f(y, z) \\
& =x \cdot(y \cdot z) \\
& =(x \cdot y) z \\
& =((\text { xoy }) f(x, y)) z \\
& =(\text { xoy })(f(x, y) \theta z) \sigma_{z}(f(x, y)) \\
& =((\text { xoy }) o(f(x, y) \theta z)) f((x o y), f(x, y) \theta z) \sigma_{z}(f(x, y))
\end{aligned}
$$

This shows that $x o(y o z)=(x o y) o(f(x, y) \theta z)$ and $f(x, y o z) f(y, z)=f(x o y, f(x, y) \theta z) s_{z}(f(x, y))$ which proves CG6 and CG8. Finally, let $x, y \in S$ and $h \in H$. Then

$$
\begin{aligned}
h \theta(x o y) \sigma_{x o y}(h) f(x, y) & =h \cdot(x o y) f(x, y) \\
& =h \cdot(x \cdot y) \\
& =(h \cdot x) \cdot y \\
& =(h \theta x) \sigma_{x}(h) y \\
& =(h \theta x)\left(\sigma_{x}(h) \theta y\right) \sigma_{y}\left(\sigma_{x}(h)\right) \\
& =\left((h \theta x) o\left(\sigma_{x}(h) \theta y\right)\right) f\left(h \theta x, \sigma_{x}(h) \theta y\right) \sigma_{y}\left(\sigma_{x}(h)\right)
\end{aligned}
$$

This shows that $h \theta(x o y)=(h \theta x) o\left(\sigma_{x}(h) \theta y\right)$ which is CG7 and $\sigma_{x o y}(h) f(x, y)=f\left(h \theta x, \sigma_{x}(h) \theta y\right) \sigma_{y}\left(\sigma_{x}(h)\right)$ which is CG9. Therefore $(S, H, \sigma, f)$ is a c-left groupoid.

Lemma 1.3. Let $S$ be a groupoid with identity e and $H$ be a group which acts on $S$ from left. Then
(i). $\sigma_{x}(1)=1$ and
(ii). $h \theta e=e$
where 1 is assumed as identity of $H$.

Proof. It is given that $S$ be a groupoid with identity $e$ and $H$ be a group which acts on $S$ from left then
(i). $\quad \sigma_{x}(1)=\sigma_{x}(1 \cdot 1)$

$$
=\sigma_{1 \theta x}(1) \sigma_{x}(1) \quad \text { (using CG5) }
$$

$$
=\sigma_{x}(1) \sigma_{x}(1) \quad(\text { since } 1 \theta x=x)
$$

$$
\Rightarrow \sigma_{x}(1)=1
$$

(ii). $\quad h \theta e \sigma=h \theta(e o e)$

$$
\begin{aligned}
& =(h \theta e) o\left(s_{e}(h) o e\right) \quad \text { (using CG7) } \\
& =(h \theta e) o(h \theta e) \quad \text { (using CG3) }
\end{aligned}
$$

$$
\Rightarrow h \theta e=e
$$

## 2. Main Result

Theorem 2.1. Given a c-left groupoid $(S, H, \sigma, f)$ there is a group extension $G$ to $H$ for which $S$ is a left transversal to $H$ in $G$ such that the corresponding c-left groupoid is $(S, H, \sigma, f)$.

Proof. Let SH denote the Cartesian product of $S$ and $H$. Denote an order pair $(x, a)$ by $x a$. Define a binary operation '.' in $G$ as follows

$$
\begin{equation*}
x a \cdot y b=(x o a \theta y) f(x, a \theta y) \sigma_{y}(a) b \tag{1}
\end{equation*}
$$

By definition it is closed under the operation of multiplication ' $\because$ '. Now let us show the associativity of the binary operation

$$
\begin{aligned}
(x a \cdot y b) \cdot z c & =\left[(x o a \theta y) f(x, a \theta y) \sigma_{y}(a) b\right] \cdot z c \\
& =\left[(x o a \theta y) o\left(f(x, a \theta y) \sigma_{y}(a) b\right) \theta z\right] f\left(x o a \theta y, f(x, a \theta y) \sigma_{y}(a) b \theta z\right) \sigma_{z}\left(f(x, a \theta y) s_{y}(a) b\right) c \\
& =\left[(x o a \theta y) o\left(f(x, a \theta y) \sigma_{y}(a) b\right) \theta z\right] f\left(x o a \theta y, f(x, a \theta y) \sigma_{y}(a) b \theta z\right) s_{b \theta z}\left(f(x, a \theta y) s_{y}(a)\right) s_{z}(b) c \\
& =\left[(x o a \theta y) o\left(f(x, a \theta y) \sigma_{y}(a) b\right) \theta z\right] f\left(x o a \theta y, f(x, a \theta y) \sigma_{y}(a) b \theta z\right) \sigma_{\sigma_{y(a)} \theta b \theta z}(f(x, a \theta y)) \sigma_{b \theta z}\left(\sigma_{y}(a)\right) s_{z}(b) c \\
& =\left(x o(a \theta y) o f(x, a \theta y) \theta \sigma_{y}(a) \theta b \theta z f\left(x o a \theta y, f(x, a \theta y) \theta \sigma_{y}(a) \theta b \theta z\right) \sigma_{\sigma_{y(a)} \theta b \theta z}(f(x, a \theta y)) \sigma_{b \theta z}\left(\sigma_{y}(a)\right) \sigma_{z}(b) c\right. \\
& =x o(a \theta y) o\left(\sigma_{y}(a) \theta b\right) \theta z f\left(x o a \theta y, f(x, a \theta y) \theta \sigma_{y}(a) \theta b \theta z\right) \sigma_{\sigma_{y(a)} \theta b \theta z}(f(x, a \theta y)) \sigma_{b \theta z}\left(\sigma_{y}(a)\right) \sigma_{z}(b) c \\
& =x o(a \theta y) o\left(\sigma_{y}(a) \theta b\right) \theta z f\left(x,(a \theta y) o\left(\sigma_{y}(a) \theta b\right) \theta z\right) f\left(a \theta y, \sigma_{y}(a) \theta(b \theta z)\right) \sigma_{b \theta z}\left(\sigma_{y}(a)\right) \sigma_{z}(b) c \\
& =(x o a \theta(y o b \theta z)) f(x, a \theta(y o b \theta z)) f\left(a \theta y,\left(\sigma_{y}(a) \theta(b \theta z)\right) \sigma_{b \theta z}\left(\sigma_{y}(a)\right) \sigma_{z}(b) c\right. \\
& =(x o a \theta(y o b \theta z)) f(x, a \theta(y o b \theta z)) \sigma_{y o b \theta z}(a) f(y, b \theta z) \sigma_{z}(b) c \\
& =x a \cdot\left[(y o b \theta z) f(y, b \theta z) \sigma_{z}(b) c\right] \\
& =x a \cdot(y b \cdot z c)
\end{aligned}
$$

$e 1$ is the right identity of $G$. For, if $x a \in G$, then

$$
\begin{aligned}
x a \cdot e 1 & =(x o a \theta e) f(x, a \theta e) \sigma_{e}(a) 1 \\
& =(x o e) f(x, e) a \\
& =x \cdot 1 a \\
& =x a
\end{aligned}
$$

Next, since
$x a \cdot a^{-1} \theta x^{\prime} \sigma_{x^{\prime}}\left(a^{-1}\right)\left(f\left(x, x^{\prime}\right)\right)^{-1}=x \operatorname{oa} \theta\left(a^{-1} \theta x^{\prime}\right) f\left(x, a \theta a^{-1} \theta x^{\prime}\right) \sigma_{a^{-1} \theta x^{\prime}}(a) \sigma_{x^{\prime}}\left(a^{-1}\right)\left(f\left(x, x^{\prime}\right)\right)^{-1} \quad\left(x^{\prime}\right.$ is right inverse of $x$ in $\left.S\right)$

$$
\begin{aligned}
& =x o\left(1 \theta x^{\prime}\right) f\left(x, 1 \theta x^{\prime}\right) \sigma_{x^{\prime}}(1)\left(f\left(x, x^{\prime}\right)\right)^{-1} \\
& =\left(x o x^{\prime}\right) f\left(x, x^{\prime}\right) 1\left(f\left(x, x^{\prime}\right)\right)^{-1} \\
& =e 1
\end{aligned}
$$

This shows that $a^{-1} \theta x^{\prime} \sigma_{x^{\prime}}\left(a^{-1}\right)\left(f\left(x, x^{\prime}\right)\right)^{-1}$ is the right inverse of $x a$. The map $i: H \rightarrow G$ defined by $i(h)=e h$ is an injective homomorphism. The map $j: S \rightarrow G$ defined by $j(x)=x 1$ is also an injective map. Identifying $H$ and $S$ with their images in $G$, $G$ becomes a group extension of $H$ for which $S$ is a left transversal to $H$ in $G$ such that the c-left groupoid determined by $S$ is the same as $(S, H, \sigma, f)$.

## References

[1] Alexandru Nica, On a Groupoid Construction for Actions of Certain Inverse Semigroups, International Journal of Mathematics, 5(1994), 349-372.
[2] M.Artin, Algebra, Prentice Hall of India, (2000).
[3] R.Lal, Transversals in Groups, Journal of Algebra, 181(1996), 70-81.
[4] R.Lal, Some Problems on Dedekind type Groups, Journal of Algebra, 181(1996), 223-234.
[5] R.Lal and R.P.Shukla, Perfectly Stable Subgroups of Finite Groups, Com. Alg., 24(2)(1996), 643-657.
[6] R.Lal and R.P.Shukla, Transversals in Non-discrete groups, Proc. Ind. Acad. Sc., 115(4)(2005), 429-435.
[7] D.J.S.Robinson, A course in the theory of groups, Springer-Verlag, New York, (1982).


[^0]:    * E-mail: vincent.henry98@gmail.com

