ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On Special Types of Numbers

Research Article

C.Sunitha^{1*}

1 Department of Mathematics, RBVRR Women's College, Narayanguda, Hyderabad, Telangana, India.

Abstract: A positive integer n is said to be multiply perfect number if there is a k such that $\sigma(n) = kn$, where $k \ge 1$. In this paper we survey some results of interest on perfect numbers, multiply perfect numbers, k-hyperperfect numbers, superperfect numbers and k-hyper super perfect numbers. To state some results established earlier we have (1). If $n = 3^{k-1} (3^k - 2)$ where $3^k - 2$ is prime, then n is a 2-hyperperfect number. (2). If $n = 3^{p-1}$ where p and $\frac{3^p - 1}{2}$ are primes, then n is a super-hyperperfect number.

Keywords: k-perfect numbers, hyperperfect numbers.

© JS Publication.

1. Introduction

A positive integer n is said to be multiply perfect if there is a k such that $\sigma(n) = kn$, where $k \ge 1$. These are also called k-multiply perfect numbers.

For
$$k=2$$
; $(6,28,496,8128,...)$,
For $k=3$; $(120,672,523776,459818240,...)$,
For $k=4$; $(30240,32760,2178540,...)$,
For $k=5$; $(14182439040,459818240,...)$,
For $k=6$; $(154345556085770649600,...)$.

2. Hyperperfect Number

A positive integer n is called k-hyperperfect number if $n=1+k\left[\sigma\left(n\right)-n-1\right]$ or

$$\sigma\left(n\right) = \frac{k+1}{k} \ n + \frac{k-1}{k}$$

Example 2.1.

- (1). If k is 1 then $\sigma(n) = 2n$. Therefore the numbers are $6, 28, 496, 8128, \ldots$
- (2). If k is 2 then $\sigma(n) = \frac{3}{2}n + \frac{1}{2}$. Therefore the numbers are 21, 2133, 19521, 176661,...

 $^{^*}$ E-mail: csunithareddy1974@gmail.com

\mathbf{k}	k-Hyperperfect number
1	6, 28, 496, 8128,
2	21, 2133, 19521, 176661,
3	325,
4	1950625, 1220640625,
6	301, 16513, 60110701,
10	159841,
12	697, 2041, 1570153, 62722153,

Table 1. k-hyperperfect numbers for different k values

Observations

• If a number is perfect iff it is 1-hyperperfect number.

Theorem 2.2. If $n = 3^{k-1} (3^k - 2)$ where $3^k - 2$ is prime, then n is a 2-hyperperfect number.

Proof. Since the divisor function σ is multiplicative and for a prime p and prime power, we have $\sigma(p)=p+1$ and $\sigma(p^{\alpha})=\frac{p^{\alpha+1}-1}{p-1}$. Then

$$\begin{split} \sigma\left(n\right) &= \sigma(3^{k-1}(3^k - 2)) \\ &= \sigma\left(3^{k-1}\right).\sigma\left(3^k - 2\right) \\ &= \left(\frac{3^{(k-1)+1} - 1}{3 - 1}\right).\left(3^k - 2 + 1\right) \\ &= \frac{3^k - 1}{2}.\left(3^k - 1\right) \\ &= \frac{1}{2}\left(3^k - 1\right).\left(3^k - 1\right) \\ &= \frac{1}{2}\left(3^{2k} - 2.3^k + 1\right) \\ &= \frac{1}{2}\left(3^{2k} - 2.3^k\right) + \frac{1}{2} \\ &= \frac{3^k}{2}\left(3^k - 2\right) + \frac{1}{2} \\ &= \frac{3}{2}3^{k-1}\left(3^k - 2\right) + \frac{1}{2} \end{split}$$

 \therefore A positive integer n is called 2-Hyperperfect number if $n = \frac{3}{2}n + \frac{1}{2}$. Therefore Given n is a 2-Hyperperfect number.

3. Super Perfect Number

A positive integer n is called super-perfect number if $\sigma(\sigma(n)) = 2n$.

Example 3.1. The first few Super-perfect numbers are 2, 4, 16, 64, 4096, 65536, 262144, Since

$$\sigma(2) = 1 + 2 = 3$$

 $\sigma(\sigma(2)) = \sigma(3) = 1 + 3 = 2(2)$

Observations

- If n is an even superperfect number then n must be a power of 2, that is 2^{k-1} , where 2^{k-1} is a prime.
- If any odd superperfect numbers exist, they are square numbers.

Theorem 3.2. If n is an even superperfect number, then $\phi(\phi(n)) = \frac{n}{4}$.

Proof. Here ϕ is Euler's totient function. If n is an even superperfect number, then n is of the form 2^{p-1} . So,

$$\phi(n) = \phi\left(2^{p-1}\right)$$

$$= 2^{p-1}\left(1 - \frac{1}{2}\right)$$

$$= 2^{p-1}\left(\frac{1}{2}\right)$$

$$\phi(\phi(n)) = \phi\left(2^{p-2}\right)$$

$$= 2^{p-2}\left(1 - \frac{1}{2}\right)$$

$$\phi(\phi(n)) = 2^{p-1}\frac{1}{2}\left(\frac{1}{2}\right)$$

$$\phi(\phi(n)) = \frac{n}{4}$$

4. Super-hyper Perfect Number

If $\sigma\left(\sigma\left(n\right)\right) = \frac{1}{2}\left(3n+1\right)$, then n is called Super-hyperperfect number.

Example 4.1. The first few Super-hyperperfect numbers are 9,729,531441,.... Since

$$\sigma(9) = 1 + 3 + 9 = 13$$

$$\sigma(\sigma(9)) = \sigma(13) = 1 + 13 = 14$$

$$\frac{1}{2}(3(9) + 1) = \frac{1}{2}(27 + 1) = 14$$

Therefore 9 is a Super-hyperperfect number.

Theorem 4.2. If $n = 3^{p-1}$ where p and $\frac{3^p-1}{2}$ are primes, then n is a super-hyperperfect number.

Proof. Given that $n = 3^{p-1}$

$$\begin{split} \sigma\left(\sigma\left(n\right)\right) &= \sigma\left(\sigma\left(3^{p-1}\right)\right) \\ &= \sigma\left(\frac{3^{p}-1}{2}\right) \\ &= \frac{3^{p}-1}{2}+1, \; \text{ since } \frac{3^{p}-1}{2} \text{ is prime} \\ &= \frac{3^{p}}{2}-\frac{1}{2}+1 \\ &= \frac{3^{p}}{2}+\frac{1}{2} \\ &= \frac{3}{2}3^{p-1}+\frac{1}{2} \\ &= \frac{3}{2}n+\frac{1}{2} \end{split}$$

Therefore $n = 3^{p-1}$ is a Super-hyperperfect number.

References

- [1] Recep Gir and Nihal Bircan, On Perfect Numbers and their Relations, Int. J. Contemp. Math. Sciences, 5(27)(2010), 1337-134.
- [2] Antal Bege and Kinga Fogarasi, Generalized Perfect Numbers, Acta University Sapientiae, Mathematica, 1(1)(2009),
 73-82.
- $[3] \ \ {\rm David} \ \ {\rm M.Burton}, \ Elementary \ \ Number \ \ Theory, \ {\rm TATA \ McGraw-Hill \ Edition}.$