International Journal of Mathematics And its Applications

On Special Types of Numbers

C.Sunitha ${ }^{1 *}$

1 Department of Mathematics, RBVRR Women's College, Narayanguda, Hyderabad, Telangana, India

Abstract: A positive integer n is said to be multiply perfect number if there is a k such that $\sigma(n)=k n$, where $k \geq 1$. In this paper we survey some results of interest on perfect numbers, multiply perfect numbers, k-hyperperfect numbers, superperfect numbers and k-hyper super perfect numbers. To state some results established earlier we have (1). If $n=3^{k-1}\left(3^{k}-2\right)$ where $3^{k}-2$ is prime, then n is a 2 -hyperperfect number. (2). If $n=3^{p-1}$ where p and $\frac{3^{p}-1}{2}$ are primes, then n is a super-hyperperfect number.

Keywords: k-perfect numbers, hyperperfect numbers.
(c) JS Publication.

1. Introduction

A positive integer n is said to be multiply perfect if there is a k such that $\sigma(n)=k n$, where $k \geq 1$. These are also called k -multiply perfect numbers.

$$
\begin{aligned}
& \text { For } k=2 ;(6,28,496,8128, \ldots) \\
& \text { For } k=3 ;(120,672,523776,459818240, \ldots) \text {, } \\
& \text { For } k=4 ;(30240,32760,2178540, \ldots) \\
& \text { For } k=5 ;(14182439040,459818240, \ldots) \\
& \text { For } k=6 ;(154345556085770649600, \ldots)
\end{aligned}
$$

2. Hyperperfect Number

A positive integer n is called k -hyperperfect number if $n=1+k[\sigma(n)-n-1]$ or

$$
\sigma(n)=\frac{k+1}{k} n+\frac{k-1}{k}
$$

Example 2.1.

(1). If k is 1 then $\sigma(n)=2 n$. Therefore the numbers are $6,28,496,8128, \ldots$.
(2). If k is 2 then $\sigma(n)=\frac{3}{2} n+\frac{1}{2}$. Therefore the numbers are $21,2133,19521,176661, \ldots$.

[^0]| \mathbf{k} | k-Hyperperfect number |
| :---: | :--- |
| 1 | $6,28,496,8128, \ldots$ |
| 2 | $21,2133,19521,176661, \ldots$ |
| 3 | $325, \ldots$ |
| 4 | $1950625,1220640625, \ldots$ |
| 6 | $301,16513,60110701, \ldots$ |
| 10 | $159841, \ldots$ |
| 12 | $697,2041,1570153,62722153, \ldots$ |

Table 1. k-hyperperfect numbers for different k values

Observations

- If a number is perfect iff it is 1-hyperperfect number.

Theorem 2.2. If $n=3^{k-1}\left(3^{k}-2\right)$ where $3^{k}-2$ is prime, then n is a 2-hyperperfect number.
Proof. Since the divisor function σ is multiplicative and for a prime p and prime power, we have $\sigma(p)=p+1$ and $\sigma\left(p^{\alpha}\right)=\frac{p^{\alpha+1}-1}{p-1}$. Then

$$
\begin{aligned}
\sigma(n) & =\sigma\left(3^{k-1}\left(3^{k}-2\right)\right) \\
& =\sigma\left(3^{k-1}\right) \cdot \sigma\left(3^{k}-2\right) \\
& =\left(\frac{3^{(k-1)+1}-1}{3-1}\right) \cdot\left(3^{k}-2+1\right) \\
& =\frac{3^{k}-1}{2} \cdot\left(3^{k}-1\right) \\
& =\frac{1}{2}\left(3^{k}-1\right) \cdot\left(3^{k}-1\right) \\
& =\frac{1}{2}\left(3^{2 k}-2 \cdot 3^{k}+1\right) \\
& =\frac{1}{2}\left(3^{2 k}-2 \cdot 3^{k}\right)+\frac{1}{2} \\
& =\frac{3^{k}}{2}\left(3^{k}-2\right)+\frac{1}{2} \\
& =\frac{3}{2} 3^{k-1}\left(3^{k}-2\right)+\frac{1}{2}
\end{aligned}
$$

\because A positive integer n is called 2-Hyperperfect number if $n=\frac{3}{2} n+\frac{1}{2}$. Therefore Given n is a 2 -Hyperperfect number.

3. Super Perfect Number

A positive integer n is called super-perfect number if $\sigma(\sigma(n))=2 n$.
Example 3.1. The first few Super-perfect numbers are 2, 4, 16, 64, 4096, 65536, 262144, Since

$$
\begin{aligned}
\sigma(2) & =1+2=3 \\
\sigma(\sigma(2)) & =\sigma(3)=1+3=2(2)
\end{aligned}
$$

Observations

- If n is an even superperfect number then n must be a power of 2 , that is 2^{k-1}, where 2^{k-1} is a prime.
- If any odd superperfect numbers exist, they are square numbers.

Theorem 3.2. If n is an even superperfect number, then $\phi(\phi(n))=\frac{n}{4}$.

Proof. Here ϕ is Euler's totient function. If n is an even superperfect number, then n is of the form 2^{p-1}. So,

$$
\begin{aligned}
\phi(n) & =\phi\left(2^{p-1}\right) \\
& =2^{p-1}\left(1-\frac{1}{2}\right) \\
& =2^{p-1}\left(\frac{1}{2}\right) \\
\phi(\phi(n)) & =\phi\left(2^{p-2}\right) \\
& =2^{p-2}\left(1-\frac{1}{2}\right) \\
\phi(\phi(n)) & =2^{p-1} \frac{1}{2}\left(\frac{1}{2}\right) \\
\phi(\phi(n)) & =\frac{n}{4}
\end{aligned}
$$

4. Super-hyper Perfect Number

If $\sigma(\sigma(n))=\frac{1}{2}(3 n+1)$, then n is called Super-hyperperfect number.
Example 4.1. The first few Super-hyperperfect numbers are 9, 729, 531441, Since

$$
\begin{aligned}
\sigma(9) & =1+3+9=13 \\
\sigma(\sigma(9)) & =\sigma(13)=1+13=14 \\
\frac{1}{2}(3(9)+1) & =\frac{1}{2}(27+1)=14
\end{aligned}
$$

Therefore 9 is a Super-hyperperfect number.

Theorem 4.2. If $n=3^{p-1}$ where p and $\frac{3^{p}-1}{2}$ are primes, then n is a super-hyperperfect number.

Proof. Given that $n=3^{p-1}$

$$
\begin{aligned}
\sigma(\sigma(n)) & =\sigma\left(\sigma\left(3^{p-1}\right)\right) \\
& =\sigma\left(\frac{3^{p}-1}{2}\right) \\
& =\frac{3^{p}-1}{2}+1, \text { since } \frac{3^{p}-1}{2} \text { is prime } \\
& =\frac{3^{p}}{2}-\frac{1}{2}+1 \\
& =\frac{3^{p}}{2}+\frac{1}{2} \\
& =\frac{3}{2} 3^{p-1}+\frac{1}{2} \\
& =\frac{3}{2} n+\frac{1}{2}
\end{aligned}
$$

Therefore $n=3^{p-1}$ is a Super-hyperperfect number.

References

[1] Recep Giir and Nihal Bircan, On Perfect Numbers and their Relations, Int. J. Contemp. Math. Sciences, 5(27)(2010), 1337-134.
[2] Antal Bege and Kinga Fogarasi, Generalized Perfect Numbers, Acta University Sapientiae, Mathematica, 1(1)(2009), 73-82.
[3] David M.Burton, Elementary Number Theory, TATA McGraw-Hill Edition.

[^0]: * E-mail: csunithareddy1974@gmail.com

