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Abstract: In this paper we have studied the effect of the shadow of the earth due to solar radiation pressure and obsoleteness of

earth on the motion and stability of system of two satellites connected by light flexible and extensible cable in the central

gravitational field of the earth in case of circular orbit of the centre of mass. First of all derived the differential equations
of motion of the system for two dimensional case in circular orbit of the centre of mass.
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1. Introduction

This work is direct generalization of the work Sinha and Singh [4] studied effect of solar radiation. Pressure on the motion

and stability of the system of two interconnected satellites when their centre of mass moves in circular orbit. Again Sinha

and Singh [4] could generalize the above problem by considering the centre of mass of the system moving in elliptical orbit.

Kumar and Srivastava [6] studied about Evolution and non-evolution motion of a system of two cable-connected artificial

satellite under the some perturbative forces. Again Kumar and Prasad [8] studied about non-linera planner oscillation of

a cable connected satellites system in non-resonance and many author direct generalization of problem related to measures

that our references.

2. Equation of Motion in Case of Circular Orbit

The equation of motion of the system given takes the form of two dimensional cases:

x′′ − 2y′ −−(3 + 4B)x+Aψ1 cos ε cos(v − α) = ᾱλ

[
1− lo

r

]
x

y′′ + 2x′ +By +Aψ1 cos ε sin(v − α) = ᾱλ

[
1− lo

r

]
y (1)

Where

A =
ρ3

µ

(
B1

m1
− B2

m2

)
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B =
3K2

ρ2

λᾱ =
ρ3

µ
αα

and

r =
√
x2 + y2 (2)

in case of circular orbit, the true anomaly V for the elliptic orbit will be replaced by τ whose values is as follows:

τ = wt (3)

where w is the angular velocity of the centre of mass of the system in case of circular orbit an ‘t’ is the time of the system

respectively the form.

x′′ − 2y′ − (3 + 4B)x+Aψ1 cos ε cos(τ − α) = −λᾱ
[
1− lo

r

]
x

y′′ − 2x′ +By −Aψ1 cos ε cos(τ − α) = −λᾱ
[
1− lo

r

]
y (4)

The condition of constraint takes the form

x2 + y2 ≤ l20 (5)

Now there will be two types of motion

(i). Free motion (λᾱ = 0)

(ii). Constrained motion (λᾱ 6= 0)

In case of free motion the motion takes with tight string. Thus for free motion we must have from (4).

x′′ − 2y′ − (3 + 4B)x+Aψ1 cos ε cos(τ − α) = 0

y′′ − 2x′ +By −Aψ1 cos ε cos(τ − α) = 0 (6)

The system of differential equation (6) can be easily integrated in terms of elementary functions. These integrated clearly

indicate that free motion of the satellites of mass m1 is bound to be converted into constrained motion after some time.

Hence here after it is assumed that the system is moving with tight cable like a dumbbell satellites.

The equation of motion can be averaged with respect to t, which varies from 0 to 2π the averaged equations will describe the

smaller secular perturbations and long periodic effects due to the periodic forces on the motion of the satellites of mass m1.

And the small secular and long periodic effects of the solar pressure with consideration of the effect of the earth’s shadow

on the system may be analysed by averaging the periodic term in (4) with respect to τ from θ to 2π− θ for the period when

the system being under the influence of su rays directly i.e. for ψ1 = 1 and from −θ to θ for the period when the system

passing through the shadow beam i.e. ψ1 = 0. Thus after averaging the periodic term (4) we have

1

2π

[∫ θ

−θ
A cos εcos (τ − α)dτ +

∫ 2π−θ

θ

A cos εcos(τ − α)dτ

]
ψ1 = 1

=
−A cos ε cosα sin θ

π

1

2π

[∫ θ

−θ
A cos εsin (τ − α)dτ +

∫ 2π−θ

θ

A cos εcos(τ − α)dτ

]
ψ1 = 1
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=
−A cos ε cosα sin θ

π
(7)

Thus, the equations of motion (4) of the system are being described by using averaged values (7) in the form.

x′′ − 2y′ − (3 + 4B)x− −A cos ε cosα sin θ

π
= −λᾱ

[
1− lo

r

]
x

y′′ + 2x′ +By − −A cos ε cosα sin θ

π
= −λᾱ

[
1− lo

r

]
y (8)

We see that the equation (8) do not contain time explicitly therefore there must exists a Jocotrian’s integrals of the problem.

Multiply (8) by 2x′, and 2y′ and adding both sides. We get after integrating

x′
2

+ y′
2 − (3 + 4B)x2 +By2 − −A cos ε cosα sin θ

π
− 2Ay

π
cos ε sinα sin θ + λᾱ

[(
x2 + y2)− 2l0

√
x2 + y2

]
= h (9)

Where h is the constraint of integration equation (9) is below as Jcasian’s integrals of the problem. From equation (9)

follows the chance of zero velocity can be obtained in this form

(3 + 4B)x2 −By2 +
2Ax cos ε cosα sin θ

π
+

2Ay cos ε sinα sin θ

π
− λᾱ

[(
x2 + y2)− 2l0

√
x2 + y2

]
= h (10)

3. Equilibrium Solution of the Problem

The Equilibrium positions of the system are given by the constant values of the Co-ordinates in the rating from of reference.

Now Let x = x0 and y = y0, where x0 and y0 are constants give the equilibrium positions then

x′ = x′0 = 0 = x′′0y
′ = y′0 = 0 = y′′0

}
(11)

using (11) in (8) we get

−(3 + 4B)x0 −
A

π
cos ε cosα sin θ = −λᾱ

[
1− lo

r0

]
x0

By0 −
A

π
cos ε sinα sin θ = −λᾱ

[
1− lo

r0

]
y0 (12)

Where r0 =
√
x2

0 + y2
0 . Now we shall discuss the particular solutions of the equation (12) as follows. Thus putting α = 0

the equations of motion given (12) takes the form.

−(3 + 4B)x0 −
A

π
cos ε sin θ = −λᾱ

[
1− lo

r0

]
x0

By0 = −λᾱ
[
1− lo

r0

]
y0 (13)

Hence the equilibrium position in this case are given below:

The system may be wholly extended along x-axis and in this case y = 0. Thus equilibrium pair is taken as (a, 0). So, putting

x0 = a, y0 = 0 in (13), we get,

−(3 + 4B)a− A

π
cos ε sin θ = −λᾱ

[
1− lo

r0

]
a

0 = −λᾱ
[
1− lo

r0

]
0 (14)
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Where r0 =
√
x2

0 + 0 = a. From the first equation of (14), we get,

−(3 + 4B)a =
A

π
cos ε sin θ = −λᾱa+ λᾱl0

(λᾱ − 3− 4b)a =
λᾱl0π +A cos ε sin θ

π

a =
λᾱl0π +A cos ε sin θ

π(αa − 3− 4B)

Here the first equilibrium point is given by

[a, o] =

[
λ−α l0π +A cos ε sin θ

π(αa − 3− 4 B)
, 0

]
(15)

4. Treatment of Problem Equilibrium Position (a, 0)

Now taken the moments of different masses about the satellites m1 in equilibrium position, we get

m2lE = (m1 +m2)
r0V

l0
=

(m1 +m2)

l0
.r0

l0m2

m1 +m2

= m2r0

lE = r0 (16)

Now we proceed to analyze the value of the Hook’s Modulus of elasticity λ at the two equilibrium position separately. In

this case we have:

r0 = a
λᾱπl0 +A cos ε sin θ

π(λᾱ − 3− 4B)
(17)

Comparing (16) and (17) we get,

lE =
λᾱπl0 +A cos ε sin θ

π(λᾱ − 3− 4B)
(18)

But

λᾱ =
ρ3 (m1 +m2)

µm1m2l0
λ

λ =
µl0
ρ3

m1m2

(m1 +m2)
λᾱ (19)

Using (18) in (19) we get

λ =
µ

ρ3

m1m2

(m1 +m2)

[
A cos ε sin θ + π(3 + 4B)lE

π(lE − l0)

]
l0 > 0 (20)

Now we proceed to test the stability of the first equilibrium position (a, 0)

a =
λ−απl0 +A cos εsinθ

π(λᾱ − 3− 4B)
(21)

Let n1 and n2 denote the small variations in the co-ordinates for the equilibrium position then we have.

x = a+ n1, and y = n2

x′ = n′′ and y′ = n′2

x′′ = n′′1 and y′′ = n′′2 (22)
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Using (22) in (8), we get the variational equational of motion for the system in the form after putting α = 0 in (8),

n
′′
1 = 2n′2 − (3 + 4B) (a+ n1)− A cos ε sin θ

π
= −λᾱ

[
1− lo

r0

]
(a+ n1)

n
′′
2 = 2n′1 + (Bn2) = −λᾱ

[
1− lo

r0

]
n2 (23)

where

r2 = (a+ n1) 2 + n22 (24)

If two equations (23) by 2 (a+ n1)1, 2n1
2 respectively and then adding them together and integrating in form

n12
1 + n22

1 − (3 + 4B) (a+ n1)2 +Bn2
2 −

2An1 cos ε sin θ

π
+ λᾱ

[
(a+ n1)2 + n2

2

]
− 2αᾱl0[(a+ n1)2 + n2

2]1/2 = h (25)

where h is the constant of integration. Equation (25) is known as Jacobils integral for variational equations of motion of the

system at the equilibrium position [a, 0] to test the stability at (a, 0) in the sense of liapunov, we take Jacobian integral as

the Liapunov function V
(
n1

1, n
1
2, n1, n2

)
and is obtained by expanding (25).

V
(
n1

1, n
1
2, n1, n2

)
= n12

1 + n12

2 + n2
1[λᾱ − 3− 4B − λᾱl0

a
] + n2

2[λᾱ +B − λᾱl0
a

]

+ n1[−2 (3 + 4B) a− 2A cos ε sin θ

π
+ 2λᾱa− 2λᾱl0] (26)

+ a [− (3 + 4B) a+ λᾱa− 2λᾱl0] + 0 (3) (27)

where 0 (3) stands for 3rd and higher order term in the small gravity n1and n2.

5. Conclusions

Therefore we come to the conclusion that the satellite of mass m1 will move inside the boundary of different curve of zero

velocity. Represented by (10) for different value of Tacobian Constant h and (26) that the sufficient conditions for the

stability of the system at the said equilibrium position (a, 0) in the sense of Liapunov are:

(i). −2 (3 + 4B) a− 2A cos ε sin θ
π

+ 2λᾱa− 2λᾱl0 = 0

(ii). λᾱ − 3− 4B − λᾱl0
a

> 0 and

(iii). λᾱ +B − λᾱl0
a

> 0

Now in order to have the clear the satisfactory of the system at the equilibrium position (a, 0) we have to examine the above

condition one by one separately.
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