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1. Statement of the Problem

It is well-known that the topic of nonlinear differential and integral equations contributed a lot to the subject of nonlinear

analysis and applications. The recent trend ni the theory of nonlinear equations has changed from mere existence theory to

other qualitative aspects such as existence and approximate solution via construction of an algorithm for the solutions. In

this regard, the Dhage iteration method is a powerful tool for proving above mentioned different aspects of the solutions.

This method is successfully applied to variety of nonlinear differential and integral equations in the literature. See Dhage

[5–10] and the references therein. Very recently, the method is applied to hybrid first order functional differential equations

for approximating the solution via algorithm. In this paper we extend the above method to nonlinear first order hybrid

functional differential equations with a linear perturbations of second type. Given the real numbers r > 0 and T > 0,

consider the closed and bounded intervals I0 = [−r, 0] and I = [0, T ] in R and let J = [−r, T ]. By C = C(I0,R) we denote

the space of continuous real-valued functions defined on I0. We equip the space C with he norm ‖ · ‖C defined by

‖x‖C = sup
−r≤θ≤0

|x(θ)|. (1)

Clearly, C is a Banach space with this supremum norm and it is called the history space of the functional differential equation

in question. For any continuous function x : J → R and for any t ∈ I, we denote by xt the element of the space C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0. (2)
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The differential equations involving the history of the dynamic systems are called functional differential equations and it has

been recognized long back the importance of such problems in the theory of differential equations. Since then, several classes

of nonlinear functional differential equations have been discussed in the literature for different qualitative properties of the

solutions. A special class of functional differential equations has been discussed in Bainov and Hristova [1] with usual known

method and in Dhage [9] and Dhage and Dhage [13] via a new Dhage iteration method for the existence and approximation

of solutions. Therefore, it is desirable to extend this new method to other functional differential equations involving delay

in the arguments. The present paper is also an attempt in this direction. In this paper, we consider the following nonlinear

first order hybrid functional differential equations (in short HFDE)

d

dt

[
x(t)− f(t, x(t))

]
= g(t, xt), t ∈ I,

x0 = φ,

 (3)

where φ ∈ C and f : I × R→ R and g : I × C → R are continuous functions.

Definition 1.1. A function x ∈ C(J,R) is said to be a solution of the HFDE (3) if

(1). x0 ∈ C,

(2). xt ∈ C for each t ∈ I, and

(3). the function t 7→ [x(t)− f(t, x(t))] is continuously differentiable on I and satisfies the equations in (3),

where C(J,R) is the space of continuous real-valued functions defined on J .

The HFDE (3) is new and a linear perturbation of second type (see Dhage [3] and the references therein) and can be handled

with the hybrid operator theoretic technique involving the sum of two operators in a Banach space. See Dhage [3] and the

references therein. The special cases of it are well-known and extensively discussed in the literature for different aspects of

the solutions. See Hale [18], Dhage [11], Dhage and Jadhav [16] and the references therein. There is a vast literature on

nonlinear functional differential equations for different aspects of the solutions via different approaches and methods. The

method of upper and lower solution or monotone method is interesting and well-known, however it requires the existence

of both the lower as well as upper solutions as well as certain inequality involving monotonicity of the nonlinearity. In

this paper we prove the existence and approximation theorem for the hybrid functional differential equations via a new

Dhage iteration method which does not require the existence of both upper and lower solution as well the related monotonic

inequality and also obtain the algorithm for the solutions under some natural conditions. The rest of the paper is organized

as follows. Section 2 deals with the preliminary definitions and auxiliary results that will be used in subsequent sections of

the paper. The main result and an illustrative example is given in Sections 3.

2. Auxiliary Results

Throughout this paper, unless otherwise mentioned, let (E,�, ‖ · ‖) denote a partially ordered normed linear space. Two

elements x and y in E are said to be comparable if either the relation x � y or y � x holds. A non-empty subset C of

E is called a chain or totally ordered if all the elements of C are comparable. It is known that E is regular if {xn} is

a nondecreasing (resp. nonincreasing) sequence in E and xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N.

The conditions guaranteeing the regularity of E may be found in Guo and Lakshmikantham [17] and the references therein.

We need the following definitions (see Dhage [5, 6] and the references therein) in what follows.
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A mapping T : E → E is called isotone or nondecreasing if it preserves the order relation �, that is, if x � y implies

T x � T y for all x, y ∈ E. Similarly, T is called nonincreasing if x � y implies T x � T y for all x, y ∈ E. Finally, T is

called monotonic or simply monotone if it is either nondecreasing or nonincreasing on E. A mapping T : E → E is called

partially continuous at a point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever x is comparable

to a and ‖x−a‖ < δ. T called partially continuous on E if it is partially continuous at every point of it. It is clear that if T

is partially continuous on E, then it is continuous on every chain C contained in E and vice versa. A non-empty subset S

of the partially ordered Banach space E is called partially bounded if every chain C in S is bounded. An operator T on

a partially normed linear space E into itself is called partially bounded if T (E) is a partially bounded subset of E. T is

called uniformly partially bounded if all chains C in T (E) are bounded by a unique constant. A non-empty subset S of

the partially ordered Banach space E is called partially compact if every chain C in S is a relatively compact subset of

E. A mapping T : E → E is called partially compact if T (E) is a partially relatively compact subset of E. T is called

uniformly partially compact if T is a uniformly partially bounded and partially compact operator on E. T is called

partially totally bounded if for any bounded subset S of E, T (S) is a partially relatively compact subset of E. If T is

partially continuous and partially totally bounded, then it is called partially completely continuous on E.

Remark 2.1. Suppose that T is a nondecreasing operator on E into itself. Then T is a partially bounded or partially

compact if T (C) is a bounded or relatively compact subset of E for each chain C in E.

Definition 2.2. The order relation � and the metric d on a non-empty set E are said to be D-compatible if {xn} is a

monotone sequence, that is, monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence {xnk}

of {xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly, given a partially ordered normed

linear space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be D-compatible if � and the metric d defined

through the norm ‖ · ‖ are D-compatible. A subset S of E is called Janhavi if the order relation � and the metric d or the

norm ‖ · ‖ are D-compatible in it. In particular, if S = E, then E is called a Janhavi metric or Janhavi Banach space.

Definition 2.3. An upper semi-continuous and monotone nondecreasing function ψ : R+ → R+ is called a D-function

provided ψ(0) = 0. An operator T : E → E is called partially nonlinear D-contraction if there exists a D-function ψ such

that

‖T x− T y‖ ≤ ψ
(
‖x− y‖

)
(4)

for all comparable elements x, y ∈ E, where 0 < ψ(r) < r for r > 0. In particular, if ψ(r) = k r, k > 0, T is called a partial

Lipschitz operator with a Lischitz constant k and moreover, if 0 < k < 1, T is called a partial linear contraction on E with

a contraction constant k.

The Dhage iteration method embodied in the following applicable hybrid fixed point principle of Dhage [6] in a partially

ordered normed linear space is used as a key tool for our work contained in this paper. The details of a Dhage iteration

principle and method are given in Dhage [6–8] and the references therein.

Theorem 2.4. Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear space such that every compact chain

C of E is Janhavi. Let A,B : E → E be two nondecreasing operators such that

(a). A is a partially bounded and partially nonlinear D-contraction,

(b). B is partially continuous and partially compact,

(c). there exists an element α0 ∈ X such that α0 � Aα0 + Bα0 or α0 � Aα0 + Bα0.
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Then the operator equation Ax + Bx = x has a solution x∗ and the sequence {xn} of successive iterations defined by

x0 = α0, xn+1 = Axn + Bxn, n = 0, 1, . . . ; converges monotonically to x∗.

Remark 2.5. The condition that every compact chain of E is Janhavi holds if every partially compact subset of E possesses

the compatibility property with respect to the order relation � and the norm ‖ · ‖ in it. This simple fact is used to prove the

main existence results of this paper.

Remark 2.6. The regularity of E in above Theorem 2.4 may be replaced with a stronger continuity condition of the operator

A and A on E which is a result proved in Dhage [5].

3. Main Results

In this section, we prove an existence and approximation result for the HFDE (1) on a closed and bounded interval J = [a, b]

under mixed partial Lipschitz and partial compactness type conditions on the nonlinearities involved in it. We place the

HFDE (1) in the function space C(J,R) of continuous real-valued functions defined on J . We define a norm ‖ · ‖ and the

order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (5)

and

x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J. (6)

Clearly, C(J,R) is a Banach space with respect to above supremum norm and also partially ordered w.r.t. the above partially

order relation ≤. It is known that the partially ordered Banach space C(J,R) is regular and lattice so that every pair of

elements of E has a lower and an upper bound in it. See Dhage [5–7] and the references therein. The following useful lemma

concerning the Janhavi subsets of C(J,R) follows immediately from the Arzelá-Ascoli theorem for compactness.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and the order relation ≤ defined

by (5) and (6) respectively. Then every partially compact subset of C(J,R) is Janhavi.

Proof. The proof of the lemma is well-known and appears in the papers of Dhage [7], Dhage and Dhage [12] and so we

omit the details. �

We introduce an order relation ≤C in C induced by the order relation ≤ defined in C(J,R). Thus, for any x, y ∈ C, x ≤C y

implies x(θ) ≤ y(θ) for all θ ∈ I0. Moreover, if x, y ∈ C(J,R) and x ≤ y, then xt ≤C yt for all t ∈ I. We need the following

definition in what follows.

Definition 3.2. A differentiable function u ∈ C(J,R) is said to be a lower solution of the equation (3) if

(1). ut ∈ C for each t ∈ I, and

(2). the function t 7→ [u(t)− f(t, u(t))] is continuously differentiable on I and satisfies

d

dt

[
u(t)− f(t, u(t))

]
≤ g(t, ut), t ∈ I,

u0 ≤C φ.

 (∗)

Similarly, a differentiable function v ∈ C(J,R) is called an upper solution of the HFDE (3) if the above inequality is satisfied

with reverse sign.
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We consider the following set of assumptions in what follows:

(H1) There exists a constant Mf > 0 such that |f(t, x)| ≤Mf for all t ∈ I and x ∈ C;

(H2) There exists D-function ϕ : R+ → R+ such that 0 ≤ f(t, x)− f(t, y) ≤ ϕ(x− y) for all t ∈ I and x, y ∈ R, x ≥ y.

(H3) The function g is bounded on I × C with bound Mg.

(H4) The function g(t, x) is nondecreasing in x for each t ∈ I.

(H5) HFDE (3) has a lower solution u ∈ C(J,R).

Lemma 3.3. Suppose that the hypothesis (H1) holds. Then a function x ∈ C(J,R) is a solution of the HFDE (3) if and

only if it is a solution of the nonlinear integral equation

x(t) =


φ(0)− f(0, φ(0)) + f(t, x(t)) +

∫ t

0

g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.
(7)

Theorem 3.4. Suppose that hypotheses (H1)-(H2) and (H4) hold. Then the HFDE (3) has a solution x∗ defined on J and

the sequence {xn} of successive approximations defined by

x0 = u, xn+1(t) =


φ(0)− f(0, φ(0)) + f(t, xn(t)) +

∫ t

0

g(s, xns ) ds, if t ∈ I,

φ(t), if t ∈ I0,
(8)

where xns (θ) = xn(s+ θ), θ ∈ I0, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, in view of Lemma 3.1, every compact chain C in E possesses the compatibility property

with respect to the norm ‖ · ‖ and the order relation ≤ so that every compact chain C is Janhavi in E. Define two operators

A and B on E by

Ax(t) =


−f(0, φ(0)) + f(t, x(t)) if t ∈ I,

0, if t ∈ I0,
(9)

and

Bx(t) =


φ(0) +

∫ t

0

g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.
(10)

From the continuity of the functions f , g and the integral, it follows that A and B define the operators A,B : E → E.

Applying Lemma 3.3, the HFDE (3) is equivalent to the operator equation

Ax(t) + Bx(t) = x(t), t ∈ J. (11)

Now, we show that the operators A and B satisfy all the conditions of Theorem 2.4 in a series of following steps.

Step I: A and B are nondecreasing on E.

Let x, y ∈ E be such that x ≥ y. Then x(t) ≥ y(t) for all t ∈ J and by hypothesis (H2), we get

Ax(t) =


−f(0, φ(0)) + f(t, x(t)), if t ∈ I,

0, if t ∈ I0,
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≥


−f(0, φ(0)) + f(t, y(t)), if t ∈ I,

0, if t ∈ I0,

= Ay(t),

for all t ∈ J . This shows that the operator that the operator A is also nondecreasing on E. Next, let x, y ∈ E be such that

x ≥ y. Then xt ≥ yt for all t ∈ I and by hypothesis (H2), we get

Bx(t) =


φ(0) +

∫ t

0

g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0,

≥


φ(0) +

∫ t

0

g(s, ys) ds, if t ∈ I,

φ(t), if t ∈ I0,

= By(t),

for all t ∈ J . This shows that the operator that the operator B is also nondecreasing on E.

Step II: A is a nonlinear D-contraction on E.

Let x, y ∈ E be any two elements such that x ≥ y. Then, by hypothesis (H4),

|Ax(t)−Ay(t)| ≤ |f(t, x(t))− f(t, y(t))| ≤ ϕ(|x(t)− y(t)|) ≤ ϕ(‖x− y‖) (12)

for all t ∈ J . Taking the supremum over t, we obtain ‖Ax−Ay‖ ≤ ψ(‖x−y‖) for all x, y ∈ E, x ≥ y, where ψ(r) = ϕ(r) < r

for r > 0. As a result A is a partially nonlinear D-contraction on E in view of Remark 2.6.

Step III: B is partially continuous on E.

Let {xn}n∈N be a sequence in a chain C such that xn → x as n→∞. Then xns → xs as n→∞. Since the f is continuous,

we have

lim
n→∞

Bxn(t) =


φ(0) +

∫ t

0

[
lim
n→∞

g
(
s, xns

)]
ds, if t ∈ I,

φ(t), if t ∈ I0,

=


φ(0) +

∫ t

0

g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0,

= Bx(t)

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J . Now we show that {Bxn}n∈N is an equicontinuous

sequence of functions in E. Now there are three cases:

Case I: Let t1, t2 ∈ J with t1 > t2 ≥ 0. Then we have

|Bxn(t2)− Bxn(t1)| ≤
∣∣∣ ∫ t2

0

g
(
s, xns

)
ds−

∫ t1

0

g
(
s, xns

)
ds
∣∣∣

≤
∣∣∣∣∫ t2

t1

∣∣g(s, xns )∣∣ ds∣∣∣∣
610
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≤Mg|t2 − t1|

→ 0 as t2 → t1,

uniformly for all n ∈ N.

Case II: Let t1, t2 ∈ J with t1 < t2 ≤ 0. Then we have

|Bxn(t2)− Bxn(t1)| = |φ(t2)− φ(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N.

Case III: Let t1, t2 ∈ J with t1 < 0 < t2. Then we have

|Bxn(t2)− Bxn(t1)| ≤ |Bxn(t2)− Bxn(0)|+ |Bxn(0)− Bxn(t1)| → 0 as t2 → t1.

Thus in all three cases, we obtain

|Bxn(t2)− Bxn(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform and that B is a partially continuous operator

on E into itself.

Step III: B is partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is uniformly bounded and equicontinuous set in E. First we show

that B(C) is uniformly bounded. Let y ∈ B(C) be any element. Then there is an element x ∈ C such that y = T x. By

hypothesis (H2)

|y(t)| = |Bx(t)|

≤


|φ(0)|+

∫ t

0

|g(s, xs)| ds, if t ∈ I,

|φ(t)|, if t ∈ I0,

≤ ‖φ‖+MfT

= r,

for all t ∈ J . Taking the supremum over t we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all y ∈ B(C). Hence B(C) is a uniformly bounded

subset of E. Next we show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J , with t1 < t2. Then proceeding with the

arguments that given in Step II it can be shown that

∣∣y(t2)− y(t1)
∣∣ = |Bx(t2)− Bx(t1)| → 0 as t1 → t2

uniformly for all y ∈ B(C). This shows that B(C) is an equicontinuous subset of E. Now, B(C) is a uniformly bounded and

equicontinuous subset of functions in E and hence it is compact in view of Arzelá-Ascoli theorem. Consequently B : E → E

is a partially compact operator on E into itself.

Step IV: u satisfies the operator inequality inequality u ≤ Au+ Bu.
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By hypothesis (H4), the HFDE (3) has a lower solution u defined on J . Then we have

d

dt

[
u(t)− f(t, u(t))

]
≤ g(t, ut), t ∈ I,

u0 ≤C φ.


Integrating the above inequality from 0 to t, we get

u(t) ≤


φ(0)− f(0, φ(0)) + f(t, u(t)) +

∫ t

0

g(s, us) ds, if t ∈ I,

φ(t), if t ∈ I0,

= Au(t) + Bu(t)

for all t ∈ J . As a result we have that u ≤ Au+Au. Thus, A and Bu satisfy all the conditions of Theorem 2.4 and so the

operator equation Ax + Bx = x has a solution. Consequently the integral equation and that the differential equation (3)

has a solution x∗ defined on J . Furthermore, the sequence {xn}∞n=0 of successive approximations defined by (9) converges

monotonically to x∗. This completes the proof. �

Remark 3.5. The conclusion of Theorems 3.4 also remains true if we replace the hypothesis (H4) and (H7) with the following

ones:

(H′4) The HFDE (3) has an upper solution v ∈ C(J,R).

The proof of Theorem 3.4 under this new hypothesis is similar and can be obtained by closely observing the same arguments

with appropriate modifications.

Example 3.6. Given the closed and bounded intervals I0 = [−1, 0] and I = [0, 1], consider the HFDE

d

dt

[
x(t)− f1(t, x(t))

]
= g1(t, xt), t ∈ I,

x0 = φ,

 (13)

where φ ∈ C and f1 : I × R→ R and g1 : I × C → R are continuous functions given by

φ(t) = sin t, t ∈ [−1, 0],

f1(t, x) =


|x|

1 + |x| + 1, if x > 0,

1, if x ≤ 0,

and

g1(t, x) =


tanh(‖x‖C) + 1, if x >C 0, x 6= 0,

1, if x ≤C 0,

for all t ∈ I. Clearly, f1 is continuous and bounded on I × R with bound Mf1 = 2. We show that f1 satisfies the hypothesis

(H2). Let x, y ∈ R be such that x ≥ y > 0. Then |x| ≥ |y| > 0 and therefore, we have

0 ≤ f1(t, x)− f1(t, x) =
|x|

1 + |x| −
|y|

1 + |y| ≤ ϕ(|x− y|) = ϕ(x− y)
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for all t ∈ I, where ψ(r) =
r

1 + r
< r, r > 0. Again, if x, y ∈ R be such that x ≤ y ≤ 0, then we obtain

0 ≤ f1(t, x)− f1(t, x) ≤ ϕ(x− y)

for all t ∈ I. This shows that the function f1(t, x) satisfies the hypothesis (H2). Next, g1 is bounded on I ×C with Mf1 = 2.

Again, let x, y ∈ C be such that x ≥C y > 0. Then ‖x‖C ≥ ‖y‖C > 0 and therefore, we have

g1(t, x) = tanh(‖x‖C) + 1 ≥ tanh(‖y‖C) + 1 = g1(t, y)

for all t ∈ I. Again, if x, y ∈ C be such that x ≤C y ≤C 0, then we obtain

g1(t, x) = 1 = g1(t, y)

for all t ∈ I0. This shows that the function g1(t, x) is nondecreasing in x for each t ∈ I. Finally,

u(t) =


1− t, if t ∈ [0, 1],

sin t, if t ∈ [−1, 0],

is a lower solution of the HFDE (13) defined on J . Thus, f1 satisfies the hypotheses (H1), (H2) and (H4). Hence we apply

Theorem 3.4 and conclude that the HFDE (13) has a solution x∗ on J and the sequence {xn} of successive approximation

defined by

x0(t) =


1− t, if t ∈ [0, 1],

sin t, if t ∈ [−1, 0]

xn+1(t) =


−1 + f1(t, xn(t)) +

∫ t

0

g1(s, xns ) ds, if t ∈ [0, 1],

sin t, if t ∈ [−1, 0],

for n = 0, 1, . . . , converges monotonically to x∗.

Remark 3.7. We note that if the HFDEs (3) has a lower solution u as well as an upper solution v such that u ≤ v, then

under the given conditions of Theorem 3.4 it has corresponding solutions x∗ and x∗ and these solutions satisfy x∗ ≤ x∗. Hence

they are the minimal and maximal solutions of the HFDE (3) respectively in the vector segment [u, v] of the Banach space

E = C(J,R), where the vector segment [u, v] is a set in C(J,R) defined by [u, v] = {x ∈ C(J,R) | u ≤ x ≤ v}. This is because

the order relation ≤ defined by (6) is equivalent to the order relation defined by the order cone K = {x ∈ C(J,R) | x ≥ θ}

which is a closed set in C(J,R).
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