International Journal of Mathematics And its Applications

A New Construction of Apollonius Circle and a New Proof of Secant-Tangent Theorem

Research Article

Surajit Dutta ${ }^{1 *}$

1 Gouri Apartment, Block B, $2^{\text {nd }}$ Floor, Flat \#301, Dankuni, Hooghly, West-Bengal, India.

$$
\begin{array}{ll}
\text { Abstract: } & \text { Here in this paper we give an easy and elegant construction of Apollonius circle by using a simple property of isosceles } \\
\text { triangles. We also give a simple proof of the Secant-Tangent theorem by using the same property of isosceles triangles. } \\
\text { MSC: } & 51 \mathrm{M} 04 .
\end{array}
$$

Keywords: Apollonius Circle, Secant-Tangent Theorem.
(C) JS Publication.

1. Introduction

Isosceles triangles have the following property: Consider triangle $A B C$ where $A B=B C$, has a line segment drawn from A to a point D on the ray $B C$, and let E be the intersection point of the ray $B C$ and the reflection of $A D$ around $A C$, then $B C$ is the geometric mean of $B D$ and $B E$ i.e. $B C^{2}=B D \cdot B E$, see [1]. Let us name this property as "Property: P ". Let A and B be two different points on the line L. Consider a point P for which $\frac{P A}{P B}=K \neq 1$, then the locus of the point P would be a circle and this circle is known as Apollonius Circle, see [2]. Here in this paper we will give a new construction of Apollonius circle by using "Property: P", other constructions could be found here [4, 5]. If a point is taken outside a circle and from that point a secant and a tangent are drawn, then the product of the secant and its external segment is equal to the square of the tangent, this is known as Secant-Tangent theorem, see [3]. Here in this paper we give an alternative proof of this theorem by using "Property: P".

2. Applications

2.1. Construction of Apollonius Circle

Let A and B be two different points on the line L. Consider a point P for which $\frac{P A}{P B}=K \neq 1$, see Figure 1 . We have to construct the circle for which every point X on the circle satisfies the above equation i.e. $\frac{X A}{X B}=K \neq 1$. Here we will consider the following three steps to construct the circle:

Step 1: Draw the internal angle bisector of $\angle A P B$, let C be the intersection point of L and the internal angle bisector, (see Figure 1).

[^0]Step 2: Select the acute angle between $\angle A C P$ and $\angle B C P$. This selection can easily be done by drawing a perpendicular line on L at point C . At point P draw an angle $\angle R P C$ equals the selected acute angle such that $\angle R P C$ and the drawn acute angle lie in the same side of $P C$. Here we considered $\angle A C P$ is acute angle.

Step 3: Let point $O=P R \cap L$. Draw a circle ε by considering $O C$ as the radius. ε is the Apollonius Circle.

Figure 1.

Proof. Since $\frac{P A}{P B}=K \neq 1$, then it's clear that $P C$ is not the perpendicular bisector of $A B$, So none of the $\angle A C P$ and $\angle P C B$ is right angle. So either of $\angle A C P$ or $\angle P C B$ is acute angle. Here we considered $\angle A C P$ as acute angle. Since $\angle A C P$ is acute angle and $\angle R P C=\angle A C P$, so $\angle R P C+\angle A C P<180^{\circ}$, So According to Euclid's fifth postulate $P R$ and $C A$ will meet at a point O. Now $\angle O P C=\angle O C P>\angle C P B=\angle A P C$. The first equality holds by drawing, the second inequality holds by Exterior Angle Theorem, the third equality holds since $P C$ is the internal bisector of $\angle A P B$. So point A lies between point O and C. Now $O P C$ is an isosceles triangle where $O P=O C$ and $\angle A P C=\angle C P B$, so by applying" "Property: $P "$ we get $O C^{2}=O A . O B$, i.e. A and B are inverse points with respect to the circle ε.

Since A and B are inverse points with respect to the circle ε, so ε is the Apollonius Circle for A, B and some positive number l, see [6]. Since P is on the circle ε, so $\frac{P A}{P B}=K=l$. It's true for all the points which are on the circle ε.

2.2. Proof of the Secant-tangent Theorem

Consider ε be a circle with center O. Consider B is an external point and $B A$ is the tangent at point A. $B C$ is the secant which intersects the circle at point D and C. Now we have to prove that $A B^{2}=B D \cdot B C$ (see Figure 2).

Figure 2.

Connect A with D and C. Now $\angle B D A>\angle A C D=\angle B A D$, the first inequality holds by Exterior Angle Theorem, the second equality holds by Tangent-chord theorem where $A B$ is tangent at point A of the circle. So in triangle $A B D, A B>B D$ since $\angle B D A>\angle B A D$.

In triangle $A B C$ it's clear that $\angle B A C>\angle B A D=\angle A C B$, the second equality holds by Tangent-chord theorem where $A B$ is tangent at point A of the circle. So in triangle $A B C, B C>A B$, since $\angle B A C>\angle A C B$. From the above two results we see that $B C>A B>B D$. So we can take a point E on $D C$ such that $A B=B E$. Connect A and E. Now,

$$
\angle E A C=\angle A E D-\angle A C E=\angle B A E-\angle A C E=\angle B A D+\angle D A E-\angle A C E=\angle D A E
$$

the first equality holds by Exterior Angle Theorem, the second equality holds since triangle ABC is isosceles where $A B=B E$, the third since $\angle B A E=\angle B A D+\angle D A E$ and the fourth since $\angle B A D=\angle A C E$ as $A B$ is tangent at point A of the circle. Now triangle $A B E$ is isosceles triangle where $A B=B E$ and $\angle D A E=\angle E A C$, so by applying the "Property: P" we get, $B E^{2}=B D . B C$ i.e. $A B^{2}=B D . B C$ since $A B=B E$.

Acknowledgement

I want to thank Prof. Rudolf Fritsch (fritsch@rz.mathematik.uni-muenchen.de), Munich, Germany for letting me know the relation between "Property P" and the Apollonius Circle through mail.

References

[1] Surajit Dutta, A simple property of isosceles triangles with applications, Forum Geometricorum, 14(2014), 237-240.
[2] Weisstein and W.Eric, Apollonius Circle, From MathWorld-A Wolfram Web Resource.
[3] T.L.Heath, The Thirteen Books of Euclid's Elements, 3 Volumes, Dover reprint, (1956).
[4] The Circle of Apollonius
[5] http://math.stackexchange.com/questions/328836/apollonius-circle
[6] http://www.math.ualberta.ca/~tlewis/343_10/05sec.pdf

[^0]: * E-mail: surajitdutta53@gmail.com

