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1. Introduction

The notation of almost para-contact manifold and para-contact metric manifold was introduced by I. Sato [1]. He and K.
Matsumoto [2] defined and studied special cases of Almost Para Contact-Riemannian manifold (APC- Riemannian manifold)
known as para sasakian manifold and special para sasakian manifold. Later on many others contributed to the study of

several classes of almost para-contact manifold endowed with a Reimannian metric T. Adati et. al. [3] and G. Chuman [4].

Definition 1.1 ([5, 6]). Let an n dimensional Riemannian manifold M,, on which there are defined a tensor field F of type

(1, 1), a vector field T, a 1-form A and metric tensor g satisfying for arbitrary vector field X, Y, Z, ... satisfying,

(a). F?°X = X — A(X)T,

(b). F(T) =0,
(c). A(FX) =0,
(d). A(T) =1,

(e). g(Fz,Fy) = —g(z,y) + A(x)A(y).
then structure (F, T, A, g) is called almost para contact metric structure and manifold My, will be called Almost para

contact metric Riemannian manifold. Let us put

(f). ‘F(z,y) = 9(X,y) where X = Fz, it can be verified that ‘F is skew symmetric, i.e. ‘F(x,y) + ‘F(y,x) = 0, one can
check from Definition 1.1 (e), that
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(9)- 9(T, X) = A(X).

Definition 1.2 ([5]). An almost para contact metric manifold on which the fundamental 2-form ‘F satisfies
2F = dA (1)

is called an almost para sasakian type manifold (APST-Riemannian manifold) or contact Riemannian manifold [7].

2. Some Properties of APST-Riemannian Manifold

From (1)

2F = dA,
or 2°F(X,Y) = dA(X,Y),
= XA(Y) -YAX) - A([X,Y]),

= (DzA)(Y) — (Dy A)(X),

where ‘D’ is Riemannian connexion. Thus

Theorem 2.1. On APST-Riemannian manifold,

FX,Y) = %[(DIA)(Y) — (DyA)(X)]. (2)

From (1)
(dF)=d’A=0 (3)
(d'F)(X,Y,2) = X‘F(Y,Z) - Y‘F(X,Z) + Z'F(X,Y) (4)

—F([X,Y],2) +‘F(X, 2],Y) — ‘F([Y, Z), X) = D' F(Y, Z) + ‘F(D.Y, Z) + ‘F(Y, Do Z) — (D F)(X, Z)
—‘F(DyX,Z) — ‘F(X,DyZ) + (D.F)(X,Y) + ‘F(D.X,Y) + ‘F(X, D.Y)
—F((D.Y — DyX),Z) + ‘F((DsZ — D.X),Y) — ‘F((DyZ — D.Y), X)

— (D+F)(Y, Z) + (D, F)(Z,X) + (D-F)(X,Y). (5)

Theorem 2.2. On APST-Riemannian manifold,

(d°F) =0 (i.e ‘Fis closed ) < (D.'F)(Y,Z) 4 (D,*F)(Z,X) + (D.*F)(X,Y) = 0. (6)

Definition 2.3 ([8, 9]). An almost para contact metric manifold on which ‘F is closed is called Para Quasi-Sasakian type

Manifold (PQST) manifold.

Definition 2.4 ([10, 11]). An APST — Riemannian manifold, on which

(D2 A)(Y) + (Dy A)(X) = 0 (7)

holds, is called para-K-contact type Riemannian manifold (PKCT)-Riemannian manifold.
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3. Theorems on PKCT-Riemannian Manifold

From (2) and (7)

2F(X,Y) +0=[(D2A)(Y) = (Dy A)(X)] + [(D2A)(Y) + (Dy A)(X)]
2F(X,Y) = 2(Ds A)(Y)

F(X,Y) = (D A)(Y) = =(Dy A)(X).

Theorem 3.1. On PKCT-Riemannian manifold,

F(X,Y) = (D A)(Y) = =(Dy A)(X).

From (8)

F(X,Y) = (D A)(Y)
(DF)(X,Y) 4+ ‘F(D.X,Y) + ‘F(X,D.Y) = (D.D, A)(Y) + (D, A)(D.Y)
(DF)(X,Y) 4 (Dp.z A)(Y) + (Ds A)(D.Y) = (D.D, A)(Y) + (Do A)(D.Y)
(D-F)(X,Y) = (D-D A)(Y) = (Dp.o A)(Y)
(Do F)(Y, Z) = (D2 DyA)(Z) — (Db, A)(Z)

(Dy'F)(Z, X) = (DyD-A)(X) — (Dp,- A)(X)

Replace Z by X
(Dy'F)(X, Z) = (DyD2A)(Z) = (Db, A)(Z)

Subtracting (12) from (10), it comes

(D2 F)(Y, Z) = (Dy* F)(X, Z) = (D2 Dy A)(Z) = (Dy Dz A)(Z) = (Dp,y A = Dp,. A)(2)

(D2 F)(Y, 2) + (Dy' F)(Z, X) = (D2 Dy A)(Z) = (Dy D2 A)(Z) = (Dix,v14)(2)

Using (6), it comes

—(D.F)(X,Y) = —A(K(X,Y, Z)),

(DF)(X,Y)=AK(X,Y, Z)).

Theorem 3.2. On PKCT-Riemannian manifold,

(D.*F)(X,Y) = A(K(X,Y, Z)).

From Definition 1.1 (d)

AT) =1

(D, A)T + A(D,T) =0

(10)

(11)

(15)
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Using (8) it comes

‘F(X,T) + A(D.T) =0
Using Definition 1.1 (f) it comes
g(X,T)+ A(D,T)=0

AX) + A(D,T) =0

AX+D,T)=0

D, T =-X.
Theorem 3.3. On PKCT-Riemannian manifold,
D, T =-X. (16)
Alternative definition of PKCT-Riemannian manifold is given by
Definition 3.4. An almost para contact metric type Riemannian manifold, on which DT = —X is called PKCT-
Riemannian manifold.
From Definition 1.1 (f) and (e)
‘FY,T)=g(Y.T,)=AY)=0
‘F(Y,T)=0 (17)
(Do F)(Y,T) + ‘F(D.Y,T) + ‘F(Y,D,T) =0
(DF)(Y, T)+0—‘F(D,T,Y)=0
Using (16), it comes
(Do F)(Y,T) = ‘F(~X,Y)
(DI‘F)(Yv T) = 7‘F(Y7 Y)
(Do F)(Y,T) = ‘F(Y,X) (18)
Using Definition 1.1 (f)
(Do F)(Y,T) = g(Y, X)
(D F)(Y,T) = g(X,Y).
Theorem 3.5. On PKCT-Riemannian manifold,
DF(Y,T) = g(X, ). (19)

From Definition 1.1 (f)

‘F(X,Y)=g(X,Y)
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F(X,Y) = g(X — AX)T,Y)
‘F(X,Y) = g(X,Y) - A(X)g(T,Y)
F(X,Y) = g(X,Y) — A(X)A(Y)
F(X,Y) = g(X,Y)

F(X,Y) = F(Y,X)
F(X,Y)=—F(X,Y)

(D:'F)(X,Y) + ‘F((D-F)(X) + F(D-X),Y)

+‘'F(X,(D:F)(Y)+ F(D.Y)) = —(D.F)(X,Y) — ‘F(D.X,Y) - ‘F(X,D.Y)

(D.'F)(X,Y) +‘F(D.F)(X),Y)+ ‘F(F(D.X),Y) + ‘F(X,(D.F)(Y))

Using (20), it comes

+F(X,F(D.Y)) = —(D.‘F)(X,Y) — ‘F(D.X,Y) — ‘F(X, D.Y)

(D= F)(X,Y) + ‘F((D-F)(X),Y) + ‘F(X,(D-F)(Y)) = =(D:'F)(X,Y)

Using Definition 1.1 (f) it comes

(D= F)(X,Y) + g(D-F) (X)),Y) = g(D-F)(Y))X) = —(D-"F)(X,Y)

Using Definition 1.1 (e), it comes

(D' F)(X,Y) = g(D-F)(X),Y) + A(D-F)(X))A(Y) + g((D-F)(Y), X) — A(D-F)(Y)).A(X)

—(D:'F)(X,Y)

(D= F)(X,Y) + (D F)(Y, X) + A(D-F)(X))A(Y) — A(D-F)(Y))A(X) = 0

(D:F)(X,Y) + (D= F)(Y, X) + g(ZX)A(Y) — g(ZY)A(X) = 0

Using Definition 1.1 (e) it comes

(D-F)(X,Y) = (DF)(X,Y) — g(Z, X)A(Y) + g(Z,Y)A(X) = 0.

Theorem 3.6. On PKCT-Riemannian manifold,

It is known [5]

Barring X and Y

(DZCF)(Ya?) - (DZ‘F)(Xv Y) - g(va)A(Y) +g(Z7 Y)A(X) =0.

(D' F)(X,Y) = A(X)g(Y, Z) — A(Y)g(X, Z)

(D= F)(

>

)

=~

) = A(Y)g(?a Z) - A(?)Q(X7 Z)

(20)

(21)

(22)

(23)

(24)

(28)

(29)

(30)
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(D.F)(X,¥) =0 (31)
Using (15), it comes
(D.'F)(X,Y)=AK(X,Y,Z)) =0 (32)
From (28)
(D:='F)(X,Y) + A(Y)g(Z, X) — A(X)g(Z,Y) = (33)

(D:"F)(X,Y) = A(X)g(2,Y) — A(Y)g(Z, X)
Using Definition 1.1 (c), it comes
(D:F)(X,Y) = -A(X)g(Z,Y) + A(Y)g(Z,X) (34)

Using (19), it comes
(D F)(X,Y)=AY)(D.F)(X,T) - AX)(DF)(Y,T). (35)

Theorem 3.7. On PKCT-Riemannian manifold,
(D;F)(X,Y)=AY)(D.‘'F)(X,T) — A(X)(D.*F)(Y,T).
Definition 3.8. On PKCT-Riemannian manifold structure {F,T, A} is said to be normal if
]O\T(X, Y)=0 (36)

Where ](;T(X7Y) =N(X,Y)+dAX,Y)T =0.
F

zg(x, Y)=[X,Y]+[X,Y] - [X,Y] - [X,Y] + {XAY) - YA(X) - A(X,Y)}T

=DzY — Dy X + [X,Y] = A([X,Y])T — DxY + Dy X — DxY + DX + {XA(Y) - YAX) - A(X,Y])}T

(DzF)(Y) + F(DzY) — (DyF)(X) — F(DyX) 4+ DY — Dy X

— A(DoY)T + A(DyX)T — DY + (DyF)(X) + Dy X — (Do F)(Y) — DY + DgX
+ (D2 A)(Y)T + A(DLY)T — (DyA)(X)T — A(DyX)T — A(DoY)T + A(DyX)T,

— (D=F)(Y) + DsY — (DyF)() — (DyX) + D.Y — D, X — A(D;Y)T

+ A(DyX)T — DzY + (D, F)(X) + Dy X — A(D,X)T — (D.F)(Y) — D,Y + A(D,Y)T

+ Dy X + (D, A)(Y)T + A(D.Y)T — (D, A)(X)T — A(D,X)T — A(D,Y)T + A(D, X)T),

So,

N(X,Y) = (D=F)(Y) = (DgF)(X) + (DyF)(X) = (Do F)(Y) + {(Dx A)(Y) — (Dy A)(X)}1.T (37)

Differentiating covariantly the equation Y = FY and using (1.1) and (16), it comes

(Do F)(Y) = —(D.F)Y — (D, A)(Y)T + A(Y)(X). (38)
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Using (37) and (38), it is seen that

N(X,Y) =0 & (DeF)(Y) = (DyF)(X) = (DyF)(X) = (Dy A)(X)T + AX)(Y) + (Do F)(Y)

+ (DAY (V)T — AY)X + (Do A)(Y)T — (D, A)(X)T =0,

& (D2F)(Y) = (DgF)(X) + (D, F)(V) — (D, F)(X) — A(Y)(X) + A(X)(TV)
+2((DaA)(Y) — (DyA)(X)T = 0.
From (2), it comes ]OV(X, Y) = 0 if and only if

(DzF)(Y) = (DgF)(X) + (Do F)(Y) = (Dy F)(X) = A(Y)(X) + A(X)(Y) + 4F(X,Y)T = 0, (39)
which is equivalent to

9((DF)Y, Z) — g(DgF)X, Z) + g((D: F)Y.2) — g((D, F)X, 2)
- AV)g((X,2) + A(X)g(Y,2) + 4 F(X,Y)g(T, Z) = 0,
or (DLF)(Y, Z) + (DyF)(Z, X) + (DLF)(Y.X) — (D, F)(X, Z)

—AW)g(Z, X))+ A(X)g9(Z,Y) + 4 F(X,Y)A(Z) = 0. (40)
Using (6), (40) becomes

(d'F)(X,Y,2) = (DyF)(Z,X) — (D.F)(X.Y) + (d'F)(X,Y, Z) — (D, F)(Y, Z) — (D.F)(X,Y) + (D, F)(Y, Z)
—(DyF)(X,Z) — A(Y)'F(X,Z)+ A(X)'F(Y, Z) + 4F(X,Y)A(Z) = 0
or (d'F)((X,Y,2) + (d'F)(X,Y,Z) — (D.F)(X,Y) — (D.F)(X,Y))

—AY)F(X,Z)+ AX)F(Y,Z2)+4F(X,Y)A(Z) = 0. (41)
Since on a APST-Riemannian manifold, it comes (d‘F') = 0, the above Equation is equivalent to
(DLF)(X,Y)+ (DLF)(X,Y) = -AY)F(X,Z2)+ AX)F(Y,Z) - 4F(X,Y)A(Z) (42)
Theorem 3.9. PKCT-Riemannian structure is normal if (42) holds.

4. Conclusion

It is concluded from (6) that an almost para contact metric manifold on which ‘F is closed is called Para Quasi-Sasakian type
Manifold (PQST) manifold and from (16) an almost para contact metric type Riemannian manifold is called Para K-Contact
Type (PKCT)-Riemannian manifold. If (42) holds then PKCT Riemannian structure (F,T,A,g) is normal. These results

can be helpful for further researches.
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