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1. Introduction

Let G be a finite, simple, connected graph with vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v

is the number of vertices adjacent to V. Let ∆(G)(δ(G)) denote the maximum(minimum) degree among the vertices of

G. We refer to [1] for undefined term and notation. A molecular graph is a graph such that its vertices correspond to

the atoms and the edges to the bonds. Chemical graph theory is a branch of Mathematical Chemistry which has an

important effect on the development of the Chemical Sciences. A topological index is a numerical parameter mathematically

derived from the graph structure. Numerous such topological indices have been considered in theoretical chemistry and

have some applications, especially in QSPR/QSAR research [2, 3]. The Revan vertex degree of a vertex v in G is defined as

rG(v) = ∆(G) + δ(G)− dG(v). The revan edge connecting the revan vertices u and v will be denoted by uv. We introduce

the first and second Revan indices of a molecular graph G as follows:

The first and second Revan indices of a graph G are defined as

R1 (G) =
∑

uv∈E(G)

[rG (u) + rG (v)] , R2 (G) =
∑

uv∈E(G)

rG (u) rG (v) .

The first Revan vertex index of a graph G is defined as

R01 (G) =
∑

u∈V (G)

rG (u)2 .

Also we define the third Revan index of a graph G and defined it as

R3 (G) =
∑

uv∈E(G)

|rG (u)− rG (v)| . (1)
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The Zagreb indices were studied, for example, in [4–7]; the Banhatti indices were studied, for example, in [8–12]; the Gourava

indices were studied, for example, in [13–16]. In this paper, we initiate a study of the Revan indices. For networks see [17]

and references cited therein.

2. Results for Oxide Networks

Oxide networks are of vital importance in the study of silicate networks. An oxide network of dimension n is denoted by

OXn. A 5-dimensional oxide network is shown in Figure 1.

Figure 1. A 5-dimensional oxide network

Let G be the graph of oxide network OXn. From Figure 1, it is easy to see that the vertices of OXn are either of degree 2

or 4. By calculation, we obtain that G has 9n2 + 3n vertices and 18n2 edges. We partition V (G) into two sets, vertices of

degree 2 and 4 respectively.

V2 = {u ∈ V (G)|dG(u) = 2}, |V2| = 6n.

V4 = {u ∈ V (G)|dG(u) = 4}, |V4| = 9n2 − 3n.

Clearly we have ∆(G) + δ(G) = 6. For vertex u ∈ V (G), dG(u) = 2. Then rG(u) = 4 and |Vr4| = 6n. For vertex u ∈ V (G),

dG(u) = 4. Then rG(u) = 2 and |Vr2| = 9n2 − 3n. We compute the first Revan vertex index of OXn.

Theorem 2.1. The first Revan vertex index of an oxide network OXn is given by R01(OXn) = 36n2 + 84n.

Proof. By definition, we have R01 (G) =
∑

u∈V (G)

rG (u)2. Thus

R01 (OXn) =
∑
Vr4

rG (u)2 +
∑
Vr2

rG (u)2 = 6n× 42 +
(
9n2 − 3n

)
22 = 36n2 + 84n.

We compute the value of R1(OXn), R2(OXn), R3(OXn) for oxide networks.

Theorem 2.2. Let OXn be the oxide network. Then

(1). R1 (OXn) = (3n+ 1) 24n.

(2). R2 (OXn) = (3n+ 2) 24n.

(3). R3 (OXn) = 24n.

Proof. Let G be the graph of oxide network. In OXn, by algebraic method, there are two types of edges based on the

degree of the end vertices of each edge as follows:

E24 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 4}, |E24| = 12n.
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E44 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E44| = 18n2 − 12n.

Thus there are two types of revan edges based on the degree of the end revan vertices of each revan edge as follows: we have

∆(G) + δ(G) = 6.

RE42 = {uv ∈ E(G)|rG(u) = 4, rG(v) = 2}, |RE42| = 12n.

RE22 = {uv ∈ E(G)|rG(u) = rG(v) = 2}, |RE22| = 18n2 − 12n.

(1) To compute R1(OXn), we see that

R1 (G) =
∑

uv∈E(G)

[rG (u) + rG (v)] =
∑
RE42

[rG (u) + rG (v)] +
∑
RE22

[rG (u) + rG (v)]

= 12n× 6 + (18n2 − 12n)4 = (3n+ 1)24n.

(2) To determine R2(OXn), we see that

R2 (G) =
∑

uv∈E(G)

rG (u) rG (v) =
∑
RE42

rG (u) rG (v) +
∑
RE22

rG (u) rG (v)

= 12n× 8 + (18n2 − 12n)4 = (3n+ 2)24n.

(3) To determine R3(OXn), we see that

R3 (G) =
∑

uv∈E(G)

|rG (u)− rG (v)| =
∑
RE42

|rG (u)− rG (v)|+
∑
RE22

|rG (u)− rG (v)|

= 12n× 2 + (18n2 − 6n)× 0 = 24n.

3. Results for Honeycomb Networks

If we recursively use hexagonal tiling in a particular pattern, honeycomb networks are formed. These networks are very

useful in computer graphics and also in chemistry. A honeycomb network of dimension n is denoted by HCn where n is the

number of hexagons between central and boundary hexagon. A 4-dimensional honeycomb network is shown in Figure 2.

Figure 2. A 4-dimensional honeycomb network

Let H be the graph of honeycomb network HCn. From Figure 2, it is easy to see that the vertices of HCn are either of

degree 2 or 3. By calculation, we obtain that H has 6n2 vertices and 9n2 − 3n edges. We partition V (H) into two sets,

vertices of degree 2 and 3 respectively.

V2 = {u ∈ V (H)|dH(u) = 2}, |V2| = 6n.
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V3 = {u ∈ V (H)|dH(u) = 3}, |V3| = 6n2 − 6n.

Clearly we have ∆(G) + δ(G) = 5.

Vr3 = {u ∈ V (H) , dH (u) = 2⇒ rH (u) = 3} , |Vr3 | = 6n.

Vr2 = {u ∈ V (H) , dH (u) = 3⇒ rH (u) = 2} , |Vr2 | = 6n2 − 6n.

We compute the first Revan vertex index of HCn.

Theorem 3.1. The first Revan vertex index of honeycomb network HCn is given by R01(HCn) = 24n2 + 30n.

Proof. By Definition, we have R01 (H) =
∑

u∈V (H)

rH (u)2. Thus

R01 (HCn) =
∑
Vr3

rH (u)2 +
∑
Vr2

rH (u)2

= 6n× 32 + (6n2 − 6n)22 = 24n2 + 30n.

We compute the values of R1(HCn), R2(HCn), R3(HCn) for honeycomb networks.

Theorem 3.2. Let HCn be the honeycomb network. Then

(1). R1 (HCn) = 36n2,

(2). R2 (HCn) = 36n2 + 12n+ 6,

(3). R3 (HCn) = 12n− 12.

Proof. Let H be the graph of honeycomb network. In HCn, by algebraic method, there are three types of edges based on

the degree of the end vertices of each edge as follows:

E22 = {uv ∈ E(H)|dH(u) = dH(v) = 2}, |E22| = 6.

E23 = {uv ∈ E(H)|dH(u) = 2, dH(v) = 3}, |E23| = 12n− 12.

E33 = {uv ∈ E(H)|dH(u) = dH(v) = 3}, |E33| = 9n2 − 15n+ 6.

Thus there are three types of revan edges based on the degree of the end revan vertices of each revan edge as follows: we

have ∆(H) + δ(H) = 5.

RE33 = {uv ∈ E(H)|rH(u) = rH(v) = 3}, |RE33| = 6.

RE32 = {uv ∈ E(H)|rH(u) = 3, rH(v) = 2}, |RE32| = 12n− 12.

RE22 = {uv ∈ E(H)|rH(u) = rH(v) = 2}, |RE22| = 9n2 − 15n+ 6.

(1) To compute R1(HCn), we see that

R1 (H) =
∑

uv∈E(H)

[rH (u) + rH (v)] =
∑
RE33

[rH (u) + rH (v)] +
∑
RE32

[rH (u) + rH (v)] +
∑
RE22

[rH (u) + rH (v)]

= 6× 6 + (12n− 12)5 + (9n2 − 15n+ 6)4 = 36n2.
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(2) To determine R2(HCn), we see that

R2 (H) =
∑

uv∈E(H)

rH (u) rH (v) =
∑
RE33

rH (u) rH (v) +
∑
RE32

rH (u) rH (v) +
∑
RE22

rH (u) rH (v)

= 6× 9 + (12n− 12)6 + (9n2 − 15n+ 6)4 = 36n2 + 12n+ 6.

(3) To determine R3(HCn), we see that

R3 (H) =
∑

uv∈E(H)

|rH (u)− rH (v)| =
∑
RE33

|rH (u)− rH (v)|+
∑
RE32

|rH (u)− rH (v)|+
∑
RE22

|rH (u)− rH (v)|

= 6× 0 + (12n− 12) + (9n2 − 15n+ 6)0 = 12n− 12.
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[4] I.Gutman and N.Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons,

Chem. Phys. Lett., 17(1972), 535-538.

[5] V.R.Kulli, On K edge index of some nanostructures, Journal of Computer and Mathematical Sciences, 7(7)(2016),

373-378.
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