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Abstract: This paper presents an introduction into the most important queueing theory concepts used for modeling computer

performance. In this paper, customers arrive in batches to the queuing system. Arrival of customers follows a poisson
process. The service to the customers is given in three stages in which the first two stages are compulsory and the third

stage is optional. Server can avail vacation of short or long period after the completion of service. Moreover, the server may

breakdown at random which leads to a repair process immediately. By means of supplementary variable technique and
generating function approach the probability generating function of the cloud computing user queue size is determined.

The other performance measures of the model are derived by means of Little’s law. A trade-off between the Quality of

service and queue length is observed.
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1. Introduction

Numerous authors have carried out enormous works in this vacation models. Doshi [3] has analyzed a single server vacation

models. An M[x]/G/1 queueing system with N-policy and multiple vacations was studied by Lee et al. [6]. Madan [11]

analyzed a single server two stage heterogeneous service and binomial schedule server vacations. Madan [9] has given a

detailed work on two stage heterogeneous service with deterministic server vacations. Vignesh and Maragathasundari [23]

studied a queuing system of compulsory three stages of service with optional fourth stage of service. A M/G/1 queue with

Second optional service and Bernoulli schedule vacations was analyzed by Madan et al [8]. Arumuganathan and Ramaswamy

[1] analyzed a Bulk Queue with State Dependent Arrivals and Multiple Vacations. Haridass and Arumuganathan [5] analyzed

a batch arrival general bulk service queueing system with variant threshold policy for secondary jobs.Maragathasundari [14]

made an analysis on bulk arrival queuein model with service interruption and delay in repair. Khalaf et.al [4] studied a

batch arrival queuing system with random breakdown, delay time and standby server. Srinivasan and Maragathasundari [16].

studied multi stages of service in non markovian queuing model. Ranjitham [20] analysed the batch arrival queuing model of

two stages of service. Ayappan et.al [2] studied M[x]/G/1 queue with two types of service and multiple server vacations with

restricted admissibility. Saravanarajan and Chandrasekaran [21] analysed M/G/1 feedback queue with two types of service,

Bernoulli schedule vacation and random breakdowns. Rakesh Kumar and Sumeet Kumar [19] studied two heterogeneous
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server Markovian model and retention of reneged customers. Srinivasan and Maragathasundari [15] made an analysis on

non markovian queue with multiple server vacation. Rajadurai et al., [18] investigated M[x]/G/1 retrial queue with two

phase service Bernoulli server vacation and random breakdowns. Madan [12] has given M[x]/G/1 queue with third stage

optional service and deterministic server vacations. Optional service in Non Markovian queue has been discussed in detail

by Maragathasundari and Srinivasan [13]. Little J.D.C [7] gave out the proof for queueing performance measures. Madan

[10] analyzed the queueing model with short and long vacations.Miriam cathy joy and Maragathasundari [17] investigated

a study on the optional services in web hosting queueing service.A queuing system with general service distribution and

extended vacation was analysed by Sowmiyah [22]. Vignesh and Maragathasundari [24] studied a batch arrival queueing

system of restricted admissibility. All the above works are done in obligatory vacation, discretionary get-away, multi server

get-away and so on. Vacation; by it methods for support work are not talked about in detail in view of the need of the

system. In this work, short and long vacations are presented as a standard technique which bolsters the system in limiting

the framework breakdown and runs easily. General support work can be worked out in short vacation and the significant

upkeep work should be possible in long excursion.

1.1. We have the following assumptions

• Customers arrive at a poison process with arrival rate λ.

• The first essential stage of service follows a general distributions with distribution function M1(v), and density function

m1(v).

Let µ1(x) dx be the conditional probability of completion of the first essential stage of service during (x, x+ dx) given that

elapsed time is x. So

µ1(x) =
m1(x)

1−M1(x)

m1(v) = µ1(v)e
−

v∫
0
µ1(x)dx

• The second essential stage of service follows a general distributions with distribution function M2(v), and density

function m2(v).

Let µ2(x) dx be the conditional probability of completion of the second essential stage of service during (x, x + dx) given

that elapsed time is x. So

µ2(x) =
m2(x)

1−M2(x)

m2(v) = µ2(v)e
−

v∫
0
µ2(x)dx

• Service time of the third stage of optional service follows a general distributions with distribution function Mi(v), and

density function mi(v), j = 1 to n

Let µi(x) dx be the conditional probability of completion of the ith stage of service during (x, x + dx) given that elapsed

time is x. So

µi(x) =
mi(v)

1−Mi(v)
, i = 1 to n

mi(v) = µi(v)e
−

v∫
0
µi(x)dx

, i = 1 to n
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• Vacation time of short period V e follows general (arbitrary) distribution with distribution function D1(s) and the

density function d1(s). The conditional probability distribution γ1(x)dx of a completion of a vacation time during

(x, x+ dx) given that the elapsed vacation time is x, is given by

γ1(x) =
d1(v)

1−D1(v)
,

d1(v) = γ1(v)e
−

s∫
0
γ1(x)dx

• Vacation time of long periodV f follows general (arbitrary) distribution with distribution function D2(s) and the

density function d2(s). The conditional probability distribution γ2(x)dx of a completion of a vacation time during

(x, x+ dx) given that the elapsed vacation time is x, is given by

γ2(x) =
d2(v)

1−D2(v)
,

d2(v) = γ2(v)e
−

s∫
0
γ2(x)dx

1.2. Notations

We define P
(1)
n,1(x, t) = probability that at time t, there are n customers in the queue excluding the one customer being

served, the server is active providing the first stage of service and the elapsed service time for this customer is x.

P
(1)
n,1(x, t) =

∞∫
0

P
(1)
n,1(x, t)dx denotes the probability that at time t there are n customer in the queue excluding the one

customer in the first stage of service irrespective of the value of x.

P
(2)
n,1(x, t) = probability that at time t, the server is active providing the second stage of service and there are n(≥ 0)

customers in the queue excluding the one being served and the elapsed service time for this customer is x.

P
(2)
n,1(x, t) =

∞∫
0

P
(2)
n,1(x, t)dx denotes the probability that at time t there are n customer in the queue excluding the one

customer in the second stage of service irrespective of the value of x.

P
(i)
n,1(x, t) = probability that at time t, the server is active providing the optional third stage of service and there are n(≥ 0)

customers in the queue excluding the one being served and the elapsed service time for this customer is x.

P
(i)
n,1(x, t) =

∞∫
0

P
(3)
n,1(x, t)dx denotes the probability that at time t there are n customer in the queue excluding the one

customer in the optional third stage of service irrespective of the value of x; i = 1 to n.

V 1
n (x, t) = probability that at time t the server is under short vacation with elapsed vacation time x and there are n(≥ 0)

customers waiting in the queue for service.

V 1
n (t) =

∞∫
0

V en (x, t)dx denotes the probability that at time t there are n customers in the queue and the server is under short

vacation irrespective of the value of x.

V 2
n (x, t) = probability that at time t the server is under long vacation with elapsed vacation time x and there are n(≥

0)customers waiting in the queue for service.

V 2
n (t) =

∞∫
0

V fn (x, t)dx denotes the probability that at time tthere are n customers in the queue and the server is under long

vacation irrespective of the value of x.

Q(t) = probability that at time t there are no customers in the system and the server is idle but available in the system.

1.3. Equations Governing the System

The steady state equations based on the assumptions of our model are given as follows:

∂

∂x
P (1)
n (x, t) +

∂

∂x
P (1)
n (x, t) + (λ+ µ1(x)P (1)

n (x, t)) =

n−1∑
j=1

CjP
(i)
n−j(x, t) (1)
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∂

∂x
P

(1)
0 (x, t) +

∂

∂x
P

(1)
0 (x, t) + (λ+ µ1(x)P

(1)
0 (x, t)) = 0 (2)

∂

∂x
P (2)
n (x, t) +

∂

∂x
P (2)
n (x, t) + (λ+ µ2(x)P (2)

n (x, t)) =

n−1∑
j=1

CjP
(2)
n−j(x, t) (3)

∂

∂x
P

(2)
0 (x, t) +

∂

∂x
P

(2)
0 (x, t) + (λ+ µ2(x)P

(2)
0 (x, t)) = 0 (4)

∂

∂x
P (i)
n (x, t) +

∂

∂x
P (i)
n (x, t) + (λ+ µi(x)P (i)

n (x, t)) =

n−1∑
j=1

CjP
(i)
n−j(x, t) (5)

∂

∂x
P

(i)
0 (x, t) +

∂

∂x
P

(i)
0 (x, t) + (λ+ µi(x)P (i)

n (x, t)) = 0 (6)

d

dt
Q(t) + λQ(t) =

∫ ∞
0

V 1
0 (x, t)γ1(x)dx+

∫ ∞
0

V 2
0 (x, t)γ2(x)dx+ γ3

∫ ∞
0

P
(i)
0 (x, t)µi(x)dx (7)

∂

∂x
V (1)
n (x, t) +

∂

∂x
V (1)
n (x, t) + (λ+ γ1(x)V (1)

n (x, t)) = λ

n−1∑
j=1

CjV
(1)
n−j(x, t) (8)

∂

∂x
V

(1)
0 (x, t) +

∂

∂x
V

(1)
0 (x, t) + (λ+ γ1(x)V

(1)
0 (x, t)) = 0 (9)

∂

∂x
V (2)
n (x, t) +

∂

∂x
V (2)
n (x, t) + (λ+ γ2(x)V (2)

n (x, t)) = λ

n−1∑
j=1

CjV
(2)
n−j(x, t) (10)

∂

∂x
V

(2)
0 (x, t) +

∂

∂x
V

(2)
0 (x, t) + (λ+ γ2(x)V

(2)
0 (x, t)) = 0 (11)

The boundary conditions are given by

P
(i)
0 (x, t) = r3

∫ ∞
0

P
(i)
n+1(x, t)µi(x)dx+

∫ ∞
0

V
(1)
n+1(x, t)γ1(x)dx+

∫ ∞
0

V
(2)
n+1(x, t)γ2(x)dx+ λCn+1Q(t) (12)

P (2)
n (0, t) =

∫ ∞
0

P
(1)
n+1(x, t)µ1(x)dx (13)

P (i)
n (0, t) = m

∫ ∞
0

P
(2)
n+1(x, t)µ2(x)dx (14)

V (1)
n (0, t) = γ1

∫ ∞
0

P (i)
n (x, t)µi(x)dx (15)

V (2)
n (0, t) = γ2

∫ ∞
0

P (i)
n (x, t)µi(x)dx (16)

Initial Conditions are Q(0) = 1, P
(1)
n = 0, V

(1)
n = 0,

(2)
n = 0 for n ≥ 0.

2. Probability Generating Function of the Queue Size

We define the Probability Generating Function as

Pn(x, z, t) =

∞∑
n=0

znPn(x, t)

V (1)(x, z, t) =

∞∑
n=0

znV (1)
n (x, t)

V (2)(x, z, t) =

∞∑
n=0

znV (2)
n (x, t)

PQ(x, t) =

∞∑
n=0

znPn(t), C(z) =

∞∑
n=0

Ciz
i, |z| ≤ 1



(17)

Similarly Laplace transform of PGF are to be defined, we take Laplace transform of Equation (1) to (16)

∂

∂x
P̄ (1)
n (x, s) + (s+ λ+ µ1(x))P̄ (1)

n (x, s) = λ

n−1∑
j=1

CjP̄
(1)
n−j(x, s) (18)
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∂

∂x
P̄ (1)
n (0, s) + (s+ λ+ µ1(x))P̄ (1)

n (0, s) = 0 (19)

∂

∂x
P̄ (2)
n (x, s) + (s+ λ+ µ2(x))P̄ (2)

n (x, s) = λ

n−1∑
j=1

CjP̄
(2)
n−j(x, s) (20)

∂

∂x
P̄ (2)
n (0, s) + (s+ λ+ µ2(x))P̄ (2)

n (0, s) = 0 (21)

∂

∂x
P̄ (i)
n (x, s) + (s+ λ+ µi(x))P̄ (i)

n (x, s) = λ

n−1∑
j=1

CjP̄
(i)
n−j(x, s) (22)

∂

∂x
P̄ (i)
n (0, s) + (s+ λ+ µi(x))P̄ (i)

n (0, s) = 0 (23)

(s+ λ)Q̄(s) = 1 +

∫ ∞
0

V̄
(1)
0 (x, s)γ1(x)dx+

∫ ∞
0

V̄
(2)
0 (x, s)γ2(x)dx+ γ3

∫ ∞
0

P̄
(i)
0 (x, s)γi(x)dx (24)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ γ1(x))V̄ (1)

n (x, s) = λ

n−1∑
j=1

Cj V̄
(1)
n−j(x, s) (25)

∂

∂x
V̄

(1)
0 (0, s) + (s+ λ+ γ1(x))V̄

(1)
0 (0, s) = 0 (26)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ γ2(x))V̄ (2)

n (x, s) = λ

n−1∑
j=1

Cj V̄
(2)
n−j(x, s) (27)

∂

∂x
V̄

(2)
0 (0, s) + (s+ λ+ γ2(x))V̄

(2)
0 (0, s) = 0 (28)

P̄ (1)
n (0, s) = r3

∫ ∞
0

P̄
(1)
n+1(x, z, s)µi(x)dx+

∫ ∞
0

V̄
(1)
n+1(x, s)γ1(x)dx+

∫ ∞
0

V̄
(2)
n+1(x, s)γ2(x)dx

+ r3(1−m)

∫ ∞
0

P̄
(2)
n+1(x, s)µ2(x)dx+ λCn+1Q̄(s) (29)

P̄ (2)
n (0, s) =

∫ ∞
0

P̄ (1)
n (x, s)µi(x)dx (30)

P̄ (i)
n (0, s) = m

∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx (31)

V̄ (1)
n (0, s) = r1

∫ ∞
0

P̄ (i)
n (x, s)µi(x)dx (32)

V̄ (2)
n (0, s) = r2

∫ ∞
0

P̄ (i)
n (x, s)µi(x)dx (33)

Multiply Equation (18) by Zn, taking summation n = 1to∞ then adding to Equation (19) and using (17) we get

∂

∂x
P̄ (1)(x, z, s) + (s+ λ− λC(z) + µ1(x))P̄ (1)(x, z, s) = 0 (34)

Similarly,

∂

∂x
P̄ (2)(x, z, s) + (s+ λ− λC(z) + µ2(x))P̄ (2)(x, z, s) = 0 (35)

∂

∂x
P̄ (i)(x, z, s) + (s+ λ− λC(z) + µi(x))P̄ (i)(x, z, s) = 0 (36)

∂

∂x
V̄ (1)(x, z, s) + (s+ λ− λC(z) + γ1(x))V̄ (1)(x, z, s) = 0 (37)

∂

∂x
V̄ (2)(x, z, s) + (s+ λ− λC(z) + γ2(x))V̄ (2)(x, z, s) = 0 (38)

zP̄ (1)(0, z, s) = r3

∫ ∞
0

P̄ (i)(x, z, s)µi(x)dx+

∫ ∞
0

V̄ (1)(x, z, s)γ1(x)dx+

∫ ∞
0

V̄ (2)(x, z, s)γ2(x)dx
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−
[
r3

∫ ∞
0

P̄
(i)
0 (x, s)µi(x)dx+

∫ ∞
0

V̄
(1)
0 (x, s)γ1(x)dx+

∫ ∞
0

V̄
(1)
0 (x, s)γ1(x)dx

]
+ λC(z)Q̄(s) (39)

Using (24), Equation (39) becomes,

ZP̄ (1)(0, z, s) = r3

∫ ∞
0

P̄ (i)(x, z, s)µi(x)dx+

∫ ∞
0

V̄ (1)(x, z, s)γ1(x)dx+

∫ ∞
0

V̄ (2)(x, z, s)γ2(x)dx

+ 1− (s+ λ− λC(z))Q̄(s) (40)

P̄ (2)(0, z, s) =

∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx (41)

P̄ (i)(0, z, s) = m

∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx (42)

V̄ (1)(0, z, s) = r1

∫ ∞
0

P̄ (i)(x, z, s)γ1(x)dx (43)

V̄ (2)(x, z, s) = r2

∫ ∞
0

P̄ (i)(x, z, s)γ2(x)dx (44)

Integrating equations (34) to (38) between 0 & x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e−s+λ−λC(z)x−
∫ x
0 µ1(t)dt (45)

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e−(s+λ−λC(z))x−
∫ x
0 µ2(t)dt (46)

P̄ (i)(x, z, s) = P̄ (i)(0, z, s)e−s+λ−λC(z)x−
∫ x
0 µi(t)dt (47)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e−(s+λ−λC(z))x−
∫ x
0 γ1(t)dt (48)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e−(s+λ−λC(z))x−
∫ x
0 γ2(t)dt (49)

Again integrating the above by parts, we get

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− M̄1[s+ λ− λC(z)]

s+ λ− λC(z)

]
(50)

Where M̄1[s+ λ− λC(z)] = e−(s+λ−λC(z))xdM1(x) is the Laplace Stieltjes transform of the service time S1. Similarly,

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− M̄2 [s+ λ− λC(z)]

s+ λ− λC(z)

]
(51)

P̄ (i)(z, s) = P̄ (i)(0, z, s)

[
1− M̄i [s+ λ− λC(z)]

s+ λ− λC(z)

]
(52)

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− D̄1 [s+ λ− λC(z)]

s+ λ− λC(z)

]
(53)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− D̄2 [s+ λ− λC(z)]

s+ λ− λC(z)

]
(54)

Next multiply Equation (45), (46), (47), (48) and (49) by µ1(x), µ2(x), µi(x), γ1(x) and γ2(x) respectively. And by the

usuage of equations (1) to (6), integrating we get,

∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)M̄1[s+ λ− λC(z)] (55)∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)M̄2[s+ λ− λC(z)] (56)∫ ∞
0

P̄ (i)(x, z, s)µi(x)dx = P̄ (i)(0, z, s)M̄i[s+ λ− λC(z)] (57)∫ ∞
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)D̄1[s+ λ− λC(z)] (58)

716



K.Anitha, S.Maragathasundari and M.Bala

∫ ∞
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)D̄2[s+ λ− λC(z)] (59)

Now the Equations (40) to (44) becomes,

P̄ (1)(0, z, s) =
(1− (s+ λ− λC(z))Q̄(s))

Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(60)

P̄ (2)(0, z, s) =
M̄1 [s+ λ− λC(z)] (1− (s+ λ− λC(z))Q̄(s))

Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(61)

P̄ (i)(0, z, s) =
mM̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] (1− (s+ λ− λC(z))Q̄(s))

Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(62)

V̄ 1(0, z, s) =
r1mM̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)] (1− (s+ λ− λC(z))Q̄(s))

Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(63)

V̄ (2)(0, z, s) =
r2mM̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)] (1− (s+ λ− λC(z))Q̄(s))

Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(64)

Using equations (61)-(65) we get,

P̄ (1)(z, s) =
(1− (s+ λ− λC(z))Q̄(s))

[
1− M̄1[s+λ−λC(z)]

s+λ−λC(z)

]
Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(65)

P̄ (2)(z, s) =
(1− (s+ λ− λC(z))Q̄(s))M̄1 [s+ λ− λC(z)]

[
1− M̄2[s+λ−λC(z)]

s+λ−λC(z)

]
Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(66)

P̄ (i)(z, s) =

(1− (s+ λ− λC(z))Q̄(s))

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)]

[
1− M̄2 [s+ λ− λC(z)]

s+ λ− λC(z)

]
Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(67)
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V̄ (1)(z, s) =

(1− (s+ λ− λC(z))Q̄(s))r1M̄1 [s+ λ− λC(z)]

M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

[
1− M̄2 [s+ λ− λC(z)]

s+ λ− λC(z)

]
Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(68)

V̄ (2)(z, s) =

r2M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(1− (s+ λ− λC(z))Q̄(s))[
1− (D̄2 [s+ λ− λC(z)]2)

s+ λ− λC(z)

]
Z − r3M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

−(D̄1 [s+ λ− λC(z)] r1 + D̄2 [s+ λ− λC(z)] r2)m

M̄1 [s+ λ− λC(z)] M̄2 [s+ λ− λC(z)] M̄i [s+ λ− λC(z)]

(69)

3. Steady State Solution

The Corresponding steady state solution can be obtained by the usage of Tauberian Property. Now multiply the above

equations (66)-(69) by s, taking limit as s→ 0 and applying the property we have,

P (1)(z, s) =
[−1 + M̄1[s+ λ− λC(z)]]Q

Z − r3M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

−(D̄1[s+ λ− λC(z)]r1 + D̄2[s+ λ− λC(z)]r2)m

M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

(70)

P (2)(z, s) =
M̄1[s+ λ− λC(z)][−1 + M̄2[s+ λ− λC(z)]]Q

Z − r3M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

−(D̄1[s+ λ− λC(z)]r1 + D̄2[s+ λ− λC(z)]r2)m

M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

(71)

P (i)(z, s) =
mM̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)][−1 + M̄1[s+ λ− λC(z)]]Q

Z − r3M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

−(D̄1[s+ λ− λC(z)]r1 + D̄2[s+ λ− λC(z)]r2)m

M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

(72)

V (1)(z, s) =
r1mM̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)][−1 + D̄1[s+ λ− λC(z)]]Q

Z − r3M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

−(D̄1[s+ λ− λC(z)]r1 + D̄2[s+ λ− λC(z)]r2)m

M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

(73)

V (2)(z, s) =
r2mM̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)][−1 + D̄2[s+ λ− λC(z)]]Q

Z − r3M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

−(D̄1[s+ λ− λC(z)]r1 + D̄2[s+ λ− λC(z)]r2)m

M̄1[s+ λ− λC(z)]M̄2[s+ λ− λC(z)]M̄i[s+ λ− λC(z)]

(74)
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Adding the above equations we have,

Pq(z) = P (1)(z) + P (2)(z) + P (i)(z) + V (1)(z) + V (2)(z)

To determine Q, the normalizing condition is used Pq(z) + Q = 1. For Z = 1 the above equations becomes indeterminate.

Using L’s Hopital’s rule, we get

P (1)(1) =
λE(I)E(M1)Q

D′(1)
(75)

P (2)(1) =
λE(I)E(M2)Q

D′(1)
(76)

P (i)(1) =
λE(I)E(Mi)Q

D′(1)
(77)

V (1)(1) =
r1mλE(I)E(D1)Q

D′(1)
(78)

V (2)(1) =
r2mλE(I)E(D2)Q

D′(1)
(79)

Therefore Pq(1) = P (1)(1) + P (2)(1) + P (i)(1) + V (e)(1) + V (f)(1). The Steady state Probability where the system is empty

is given by

Q =
1−mλE(I)[E(M1) + E(M2) + E(Mi) + r1E(D1) + r2E(D2)]

1 + λE(I)[1−m][E(M1) + E(M2)]
(80)

Also the utilization factor ρ can be found. Let Lq denote the mean queue size. Then

Lq =
d

dz
(Pq(z)|z=1 =

D
′
(1)N

′′
(1)−N

′
(1)D

′′
(1)

2(D′(1))2
(81)

D′(1) = 1−mλE(I)[E(M1) + E(M2) + E(Mi) + r1E(D1) + r2E(D2)] (82)

D′′(1) = 1−m{−λE(I(I − 1))(E(M1) + E(M2) + E(Mi))

+ (λE(I))2

 E(M2
1 ) + E(M2

2 ) + E(M2
3 )

+2(E(M1)E(M2)) + E(M2) + E(Mi) + E(M1) + E(Mi)


+ (λE(I))2[E(M1) + E(M2) + E(Mi)][r1E(D1) + r2E(D2)]− λE(I(I − 1))[r1E(D1) + r2E(D2)]

+ (λE(I))2[E(M1) + E(M2) + E(M3)][r1E(D1) + r2E(D2)] + (λE(I))2[r1E(D2
1) + r2E(D2

2)] (83)

N ′(1) = λE(I){E(M1) + E(M2) +mE(Mi) +mr1E(D1) + r2E(D2)} (84)

N ′′(1) = (1−m)[E(I(I − 1)[E(M1) + E(M2)]] + (λE(I))2[E(M2
1 ) + 2E(M1)E(M2) + E(M2

2 )]

+m(−λE(I(I − 1)))(E(M1) + E(M2) + E(Mi)) +m(λE(I))2[E(M2
1 ) + E(M2

2 ) + E(M2
i )

+ 2(E(M1)E(M2) + E(M2)E(Mi) + E(Mi) + E(M1))] +m(−λE(I(I − 1)))[r1E(D1) + r2E(D2)]

+m(λE(I))2[r1E(D2
1) + r2E(D2

2)] (85)

Substituting D′(1), D′′(1), N ′(1), N ′′(1) in (81), we get the mean queue size. The other performance measures L, Wq, W

can be derived using Little’s formula.

3.1. Special Cases

Case (i): Service time & Vacation time follows exponential distribution. Here we have E(I) = 1, E(I(I−1) = 0, E(M1) = 1
µ1

,

E(M2) = 1
µ2

, E(Mi) = 1
µi

,

E(D1) =
1

γ1
, E(D2) =

1

γ2
, E(D2

1) =
1

γ2
1

, E(D2
2) =

1

γ2
2
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E(M2
1 ) =

2

µ2
1

, E(M2
2 ) =

2

µ2
2

, E(M2
3 ) =

2

µ2
3

P (1)(1) =
λ 1
µ1
Q

D′(1)
(86)

P (2)(1) =
λ 1
µ2
Q

D′(1)
(87)

P (i)(1) =
mλ 1

µi
Q

D′(1)
(88)

V (1)(1) =
r1mλ

1
γ1
Q

D′(1)
(89)

V (2)(1) =
r2mλ

1
γ2
Q

D′(1)
(90)

Q =
1−mλ

[
1
µ1

+ 1
µ2

+ 1
µi

+ r1
1
γ1

+ r2
1
γ2

]
1 + λ [1−m]

[
1
µ1

+ 1
µ2

] (91)

Case (ii): No Optional Service. In this case put m = 0 in the results of the above case.

4. Conclusion

In this model, we examined a queuing system with batch arrival. Service is provided in three stages. After the completion

of first two essential stages of services, the third stage of service is left to the customer?s choice. The third stage of service

is provided with n number of voluntary services which leads to a intact approval of the customer. After close of the service,

the server takes a vacation. To one side from the vacation policies like single, multiple server and Bernoulli schedule server

vacations, a new concept of short and long vacation is discussed here. We investigated this system by means of this new

vacation conjecture and extended it in many directions. By adding a new assumption in this model, a diverse and more

highly developed queuing system is urbanized. The steady state solution and the performance measures of the queuing

system are derived. This model also plays a prominent role in mechanical system like factories, machineries, textile mills,

cotton mills etc. As future work, developing the above queuing model with service interruption, delay time in repair process

and close down time is suggested.
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