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Abstract: Let G be a non-trivial connected graph on which is defined a colouring c : E(G) → {1, 2, 3, . . . , k}, k ∈ N of edges of G,

where adjacent edges may be coloured the same. A path P in G is a rainbow path if no two edges of P are coloured the

same. G is rainbow-connected if it contains a rainbow u − v path for every two vertices u and v of G. The minimum k
for which there exists such a k-edge colouring is called rainbow connection number of G, denoted by rc(G). In this paper

we determine rc(G) for some brick product graphs C(2n,m, r) associated with even cycles for m = 2.
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1. Introduction

Let G be a nontrivial connected graph with an edge coloring c : E(G)→ {1, 2, 3, . . . , k}, k ∈ N where adjacent edges may be

colored the same. A path in G is called a rainbow path if no two edges of it are colored the same. An edge colored graph G is

said to be rainbow connected if for any two vertices in G, there is a rainbow path in G connecting them. Clearly, if a graph

is rainbow connected, then it must be connected. Conversely, any connected graph has a trivial edge coloring that makes it

rainbow connected, i.e., a coloring such that each edge has a distinct color. The minimum k for which there exists a rainbow

k-coloring of G is called the rainbow connection number of G, denoted by rc(G). If u and v are any two vertices in G, a

rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v). G is termed strongly rainbow connected if G contains

a rainbow u− v geodesic for every pair of vertices u and v in it. The concept of rainbow connection number was introduced

by Chartrand et.al. [2] in 2008. The rainbow connection number of line graphs and some upper bounds for the same were

studied by Li and Sun in [3] and [4]. The rainbow connection number of the fan graph, sun graph, gear graph, book graph

and cycle-chain graph was obtained by Syafrizal et.al. in [5] and [6]. Various results on the rainbow connection number can

be found in [7–10]. An overview about the rainbow connection number can be found in a book in Li and Sun in [11]. In [1],

Alspach et.al. have proved that brick product graphs associated with even cycles C2n are Hamiltonian laceable, in the sense

that any two vertices at an odd distance apart have a Hamiltonian path. Brick product graphs of even cycles, introduced

by Alspach et.al., are a class of three regular graphs that exhibit interesting graph properties. Some results on the rainbow

connection number of brick product graphs and modified brick product graphs have been determined by Srinivasa Rao and

Murali in [12–14]. We begin with the formal definition of the brick product graph [1] associated with an even cycle.

Definition 1.1. Let m, n and r be a positive integers. Let C2n = v0, v1, . . . , v2n−1, v2n = v0 denote a cycle of order 2n. The

(m, r) brick product of C2n, denoted by C(2n,m, r) is defined in two cases as follows:
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1. For m = 1, we require that r be odd and greater than 1. Then C(2n,m, r) is obtained from C2n by adding chords

v2k (v2k+r), k = 1, 2, . . . , n, where the computation is performed modulo 2n.

2. For m > 1, we require that m + r be even. Then C(2n,m, r) is obtained by first taking the disjoint union of m copies

of C2n, namely C2n(1), C2n(2), . . . , C2n(m) where for each i = 1, 2, . . . ,m, C2n (i) = vi1, vi2, . . . , vi2n, vi0. Next for

each odd i = 1, 2, . . . ,m− 1 and each even k = 0, 1, 2, . . . , 2n− 2, an edge (called a brick edge) is drawn to join (vi, vk)

to (vi+1, vk) whereas for each even i = 1, 2, . . . ,m − 1 and each odd k = 1, 2, . . . , 2n − 1 an edge (also called a brick

edge) is drawn to join (vi, vk) to (vi+1, vk). Finally, for each odd k = 1, 2, . . . , 2n− 1, an edge (called a hooking edge)

is drawn to join (v1, vk) to (vm, vk+r). An edge in C(2n,m, r) which is neither a brick edge nor a hooking edge is

called a flat edge.

Figure 1. The brick product graph C(12, 2, 4)

Definition 1.2. A graph G is termed k-strongly (k*-strongly) rainbow connected if for every pair of vertices (at least one

pair of vertices) u, v such that d(u, v) = k, there exists a rainbow path where 1 ≤ k ≤ diam G. By definition, every strongly

rainbow connected graph is 1-strongly rainbow connected.

2. Results

Theorem 2.1. Let G = C(2n, 2, r). Then, for r = 4 and n ≥ 5, rc(G) = n + 1.

Proof. Consider two copies of C2n namely C2n(1) and C2n(2). Let (V0)1, (V1)1, (V2)1, . . . , (V2n)1 = (V0)1 be the vertices

of the cycle C2n(1) and let (V0)2, (V1)2, (V2)2, . . . , (V2n)2 = (V0)2 be the vertices of the cycle (C2n)2. Let the edges of G be

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 where

E1 = {(ei)1/(ei)1 = ((vi)1, (vi+1)1); 0 ≤ i < 2n} under modulo 2n.

E2 = {(ei)2/(ei)2 = ((vi)2, (vi+1)2); 0 ≤ i < 2n} under modulo 2n

E3 = {(ebi)/(ebi) = ((vi)1, (vi)2); 0 ≤ i ≤ 2n− 2, where i is even} (Brick edges)

E4 = {(ehi)/(ehi) = ((v2i+1)1, (v2i+5)2)for0 ≤ i < n− 2} (Hooking edges)

E5 = {(ehi′)/(ehi′) = ((v2i+1)2, (v2n+2i−3)1); i = 0, 1} (Brick edges)

Now, let us define a colouring C to the edges of G as follows: C : e(G)→ {1, 2, 3, 4, . . . , n, n + 1} such that

C : (ei)1 =

 i, for 1 ≤ i ≤ n

i− n, for n + 1 ≤ i ≤ 2n
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C : (ei)2 =

 (n + 1)− i, for 1 ≤ i ≤ n

(2n + 1)− i, for n + 1 ≤ i ≤ 2n

C : (ebi) = (n + 1), 0 ≤ i ≤ 2n− 2, where i is even

C : (ehi) = (n + 1), 0 ≤ i ≤ n− 2 and

C : (ehi′) = (n + 1), 0 ≤ i ≤ 1.

Using this assignment of colours it is clear that rc(G) = n+ 1. (An illustration for the assignment of colors in brick product

C(10, 2, 4) is provided in figure 2)

Figure 2. Assignment of colors in C(10, 2, 4)

Theorem 2.2. Let G = (2n, 2, r). Then, for r = 6 and n ≥ 5, rc(G) = n + 1.

Proof. We consider the vertices of G as in Theorem 2.1. Let the edges of G be E be E = E1 ∪E2 ∪E3 ∪E4 ∪E5, where

E1 = {(ei)1/(ei)1 = ((vi)1, (vi+1)1); 0 ≤ i < 2n} under modulo 2n.

E2 = {(ei)2/(ei)2 = ((vi)2, (vi+1)2); 0 ≤ i < 2n} under modulo 2n.

E3 = {(ebi)/(ebi) = ((vi)1, (vi)2), 0 ≤ i ≤ 2n− 2 where i is even }

E4 = {(ehi)/(ehi) = ((v2i+1)1, (v2i+7)2)for0 ≤ i < n− 3}

E5 = {(ehi′)/(ehi′) = ((v2i+1)2, (v2n+2i−5)1); 0 ≤ i ≤ 2}

Now let us define colouring C to the edges of G as follows: C : e(G)→ {1, 2, 3, 4, . . . , n, n + 1} such that

C : (ei)1 =

 i, for 1 ≤ i ≤ n

i− n, for n + 1 ≤ i ≤ 2n

C : (ei)2 =

 (n + 1)− i, for 1 ≤ i ≤ n

(2n + 1)− i, for n + 1 ≤ i ≤ 2n

C : (ebi) = (n + 1), 0 ≤ i ≤ 2n− 2, where i is even

C : (ehi) = (n + 1), 0 ≤ i ≤ n− 4

C : (ehi′) = (n + 1), 0 ≤ i ≤ 2.

Using this assignment of colours it is clear that rc(G) = n+ 1. (An illustration for the assignment of colors in brick product

C(26, 2, 6) is provided in figure 3)
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Figure 3. Assignment of colors in C(26, 2, 6)

Theorem 2.3. Let G = (2n, 2, r). Then, for r = 8 and n ≥ 5, rc(G) = n + 1.

Proof. We consider the vertices of G as in Theorem 2.1. Let the edges of G beE = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 where

E1 = {(ei)1/(ei)1 = ((vi)1, (vi+1)1); 0 ≤ i < 2n} under modulo 2n.

E2 = {(ei)2/(ei)2 = ((vi)2, (vi+1)2); 0 ≤ i < 2n} under modulo 2n.

E3 = {(ebi)/(ebi) = ((vi)1, (vi)2), 0 ≤ i ≤ 2n− 2 where i is even }

E4 = {(ehi)/(ehi) = ((v2i+1)1, (v2i+9)2) for 0 ≤ i < n− 4}

E5 = {(ehi′)/(ehi′) = ((v2i+1)2, (v2n+2i−7)1); 0 ≤ i ≤ 3}

Now let us define colouring C to the edges of G as follows: C : e(G)→ {1, 2, 3, 4, . . . , n, n + 1} such that

C : (ei)1 =

 i, for 1 ≤ i ≤ n

i− n, for n + 1 ≤ i ≤ 2n

C : (ei)2 =

 (n + 1)− i, for 1 ≤ i ≤ n

(2n + 1)− i, for n + 1 ≤ i ≤ 2n

C : (ebi) = (n + 1), 0 ≤ i ≤ 2n− 2, where ’i’ is even

C : (ehi) = (n + 1), 0 ≤ i ≤ n− 5

C : (ehi′) = (n + 1), 0 ≤ i ≤ 3.

Using this assignment of colours it is clear that rc(G) = n+ 1. (An illustration for the assignment of colors in brick product

C(16, 2, 8) is provided in figure 4)

Figure 4. Assignment of colors in C(16, 2, 8)
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Theorem 2.4. Let G = C(2n, 2, r). Then, for r ≥ 4 and n ≥ 5, G is 2-strongly rainbow connected.

Proof. We have the following cases:

Case 1: For every u, v, w ∈ C2n(1) or C2n(2) such that u − v − w is a path of length two, the edges (u, v) and (v, w) are

assigned with colours as in Theorem 2.1, i.e.,

C : (ei)1or(ei)2 =

 i, 1 ≤ i ≤ n

i− n, n + 1 ≤ i ≤ 2n
(1)

From this assignment of colors, it is clear that u− v − w is a rainbow path.

Case 2: For every u ∈ C2n(1) and v, w ∈ C2n(2) such that u − v − w is a path of length two, the edge (u, v) is assigned

with the color (n + 1) and, for the edge (v, w) we consider the coloring in (1) above. From this assignment of colors, it is

clear that u− v − w is a rainbow path.

Case 3: For every u ∈ C2n(2) and v, w ∈ C2n(1) such that u − v − w is a path of length two, the edge (u, v) is assigned

with the color (n + 1) and, for the edge (v, w) we consider the coloring in (1) above. From this assignment of colors, it is

clear that u− v − w is a rainbow path.

Consider the graph G = C(2n, 2, r). For r ≥ 4 and n ≥ 5, G is only 3*-strongly rainbow connected since for (v1)1, (v1)2 ∈ G,

we have d((v1)1, (v1)2) = 3 and (v1)1 − (v2)1 − (v2)2 − (v1)2 is a rainbow path. But, for (v7)1, (v5)2 ∈ G again we have

d((v7)1, (v5)2) = 3 but (v7)1 − (v6)1 − (v6)2 − (v5)2 is not a rainbow path (figure 2). This observation leads to the following

result:

Theorem 2.5. Let G = C(2n, 2, r). Then, for r ≥ 4 and n ≥ 5, G is 3*-strongly rainbow connected.

3. Conclusion

In this paper, we obtain the rainbow connection number of some brick product graphs C(2n,m, r) for m = 2 and r = 4, 6

and 8. We also show that for m = 2 and r = 4, the brick product graphs are 2-strongly rainbow connected and 3*-strongly

rainbow connected respectively.
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