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Abstract: In this paper, we consider a mathematical model of the type SIR (susceptible, infected and recovered) to understand the
dynamic of the disease. We calculate the basic reproduction number R0, using the next generation method, the disease

free equilibrium and endemic equilibrium are established and their stability analysis done. We show that the disease free

equilibrium point is globally asymptotically stable if Ro < 1 and if Ro > 1, there exist the endemic equilibrium state,
which is also globally asymptotically stable.
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1. Introduction

Typhoid fever is an acute illness associated with fever caused by the Salmonella typhi bacteria, a Gram-negative bacterium.

It can also be caused by Salmonella serotype paratyphi A, a related bacterium that usually causes a less severe illness.

Salmonella nomenclature is complex, and scientists use different systems to refer to and communicate about this genus.

The criteria for designating bacteria as individual species is not clear, making the nomenclature of these bacteria a bit

confusing. There are two main views on the nomenclature of the genus Salmonella.

Two species are to be recognized: Salmonella bongori and Salmonella enterica. S.enterica include six subspecies, of

which subspecies I (one) contain all the pathogens of warm-blooded animals. S.typhi was a serotype within subspecies

I: Salmonella enterica subspecies I serotype typhi. The correct nomenclature for the causal agent of typhoid fever is

Salmonella typhi as noted in the International Journal of Systematic and Evolutionary Microbiology. During an acute

infection, S.typhi multiplies in mononuclear phagocytic cells before being released into the bloodstream. After ingestion in

food or water, typhoid organisms pass through the pylorus and reach the small intestine [16].

It is endemic in Southeast Asia [5, 13], Central America [1, 12, 4] and Indian subcontinent [7, 10] some parts of Africa. We

formulate the mathematical model and define all the parameters there in. The basic reproduction is obtained to study the

local stability and global stability of the disease free and endemic equilibrium.
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2. Mathematical Model

Ronoh, M.,et al. [8] analysed SIR model of tuberculosis with drug resistance effects,the proposed model is

dS
dt

= λN − βSI − µS
dI
dt

= βSI − (µ+ δ + α+ η) I

dRES
dt

= ηI − (µ+ δ1 + σ)RES

dR
dt

= αI − µR+ σRES


(1)

Parameter Description

β : Rate at which the susceptible become infectious to S.typhi

δ : disease induced death rate

α : recovery rate due to prompt treatment

δ1 : disease induced death rate after resistance

η : Resistance rate to treatment

σ : recovery rate after second line of resistance treatment

µ : natural death rate

2.1. Reproduction Number

To find the reproduction number using the next generation method for the model and define the basic reproduction number,

Ro = ρ
(
FV −1

)
where F =

[
∂Fi(x0)
∂xj

]
and V =

[
∂Vi(x0)
∂xj

]

F =

 βλN
µ

0

0 0

 , V =

 (µ+ δ + α+ η) 0

0 (µ+ δ1 + σ)

 ,
V −1 =

1

(µ+ δ + α+ η) (µ+ δ1 + σ)

 (µ+ δ1 + σ) 0

0 (µ+ δ + α+ η)


By calculating largest eigen value of FV −1, the basic reproduction number Ro is expressed as

Ro =
βλN

µ (µ+ δ + α+ η)
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2.2. Equilibrium Points

The equilibrium points of the system (1) are the solution of the following system

λN − βSI − µS = 0

βSI − (µ+ δ + α+ η) I = 0

ηI − (µ+ δ1 + σ)RES = 0

αI − µR+ σRES = 0


(2)

Solving above system, we always get an equilibrium points E0 =
(
λN
µ
, 0, 0, 0

)
which is called the disease free equilibrium of

the system (1) and the endemic equilibrium E∗ = (S∗, I∗, R∗
ES , R

∗), exist only if Ro > 1, where

S∗ = (µ+δ+α+η)
β

, I∗ =
(λN−µS∗)

βS∗

R∗
ES = ηI∗

µ+δ1+σ
, R∗ =

(
α(µ+δ1+σ)+ησ
µ(µ+δ1+σ)

)
I∗

 (3)

3. Stability of Equilibriums

The local stability of the equilibrium point is determined from the jacobian matrix of the system of ordinary differential

equation (1) evaluated at each equilibrium point and we will find the global stability of both equilibrium points by Lyapunov

Lasalle function.

3.1. Disease Free Equilibrium

The jacobian matrix at Eo is shown as:

J (E0) =



−µ −βλN
µ

0 0

0 − (µ+ δ + α+ η) 0 0

0 η − (µ+ δ1 + σ) 0

0 α σ −µ


The characteristic equation of the jacobian matrix is |J0 − tI | = 0, that is



−µ− t −βλN
µ

0 0

0 βλN
µ
− (µ+ δ + α+ η)− t 0 0

0 η − (µ+ δ1 + σ)− t 0

0 α σ −µ− t


= 0

This implies

(µ+ t)2
(
βλN

µ
− (µ+ δ + α+ η)− t

)
(µ+ δ1 + σ + t) = 0

Three eigen values of the jacobian matrix has negative real part and forth eigen value namely βλN
µ
− (µ+ δ + α+ η) is

negative when Ro < 1. So by Routh Hurwitz criteria the disease free equilibrium is locally asymptotically stable. From the

above discussion we have the following theorem.

Theorem 3.1. The disease free equilibrium Eo is locally asymptotically stable if Ro < 1.
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Now we will discuss the global stability of disease free equilibrium, using Lyapunov-Lasalle function. We consider the

lyapunov-Lasalle function

dV

dt
=
dI

dt

= βSI − (µ+ δ + α+ η) I

= (µ+ δ + α+ η) I

[
βλN

µ (µ+ δ + α+ η)
− 1

]
= (µ+ δ + α+ η) I [R0 − 1]

≤ 0

when Ro < 1. Further more dV
dt

= 0 when I = 0. Hence the largest invariant set contained in the set E = {(S, I) ∈

O|V̇ (S, I) = 0} is reduced to DFE. Thus by Lasalle’s invariance principle the DFE is globally asymptotically stable on Ω.

So we have the following theorem.

Theorem 3.2. If Ro < 1, then the disease free equilibrium Eo is globally asymptotically stable.

3.2. Endemic Equilibrium

First we shall discuss on the local stability of endemic equilibrium. Jacobian matrix of the system at endemic equilibrium

is given by

J (E∗) =



−βI∗ − µ −βS∗ 0 0

βI∗ βS∗ − (µ+ δ + α+ η) 0 0

0 η − (µ+ δ1 + σ) 0

0 α σ −µ


The characteristic equation of the jacobian matrix is |J(E∗)− tI| = 0, that is



−βI∗ − µ− t −βS∗ 0 0

βI∗ βS∗ − (µ+ δ + α+ η)− t 0 0

0 η − (µ+ δ1 + σ)− t 0

0 α σ −µ− t


= 0

This implies

(t+ µ) (t+ µ+ δ1 + σ)
(
t2 + a1t+ a2

)
= 0

where a1 = βI∗ + 2µ + δ + α + η − βS∗ = βI∗ + µ > 0, a2 = (βI∗ + µ) + (µ+ δ + α+ η) > 0. It is clear that first two

eigen values namely −µ, − (µ+ δ1 + σ) are negative and since a1 > 0, a2 > 0 so the roots of equation t2 + a1t + a2 = 0

have negative real parts. Thus all the eigen values of the jacobian matrix at endemic equilibrium has negative real part. So

by Routh Hurwitz criteria the endemic equilibrium is locally asymptotically stable. From the above discussion we have the

following theorem.

Theorem 3.3. If Ro > 1, then endemic equilibrium E∗ = (S∗, I∗, R∗
ES , R

∗) is locally asymptotically stable.

Now for global stability of the endemic equilibrium, An equilibrium for system (1) is given by (S∗, I∗), where

S∗ =
λ

µ

(
1

Ro

)
N, I∗ =

µRo
β

[
1− 1

Ro

]
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It follows from first equation of the system (2),

λS∗I∗ = λN − µS∗ (4)

Define a Lyapunov function as:

V (S, I) = S∗
(
S

S∗ − log
S

S∗

)
+ I∗

(
I

I∗
− log

I

I∗

)
dV (S, I)

dt
= λN − µS − λN S∗

S
+ S∗β I + µS∗ − γ I − βSI∗ + γ I∗

= λN

(
1− S∗

S
− S

S∗ + 1

)
= λN

(
2− S∗

S
− S

S∗

)
= −λN S∗

S

(
1− S

S∗

)2

≤ 0

For all S, I ≥ 0, then we conclude dV
dt

is semi-definite positive. Then the endemic equilibrium is globally asymptotically

stable. Thus we can write the above result in the following theorem form.

Theorem 3.4. If Ro > 1, then endemic equilibrium is globally asymptotically stable.

4. Numerical Simulation

In this section we explain our result through graphically, using MATLAB. If we select parameter as: β = 0.36, λ = 0.001,

N = 1000, µ = 0.3, δ = 0.02, δ1 = 0.067, η = 0.570104, α = 0.6, σ = 0.21 and (S, I,RES , R) = (2, 1, 1, 1). Then we have

Ro = 0.8753 < 1 and from the Figure 1, we can easily see that (S, I,RES , R) = (2, 1, 1, 1) goes to the disease free equilibrium

Eo = (3.33, 0, 0, 0). So disease free equilibrium is globally asymptotically stable.

Figure 1. when <o < 1

Again, if β = 3, λ = 0.025, N = 1000, µ = 0.3, δ = 1.6, δ1 = 0.067, η = 0.570104, α = 0.6, σ = 0.21 and (S, I,RES , R) =

(2, 1, 1, 1). Then we have Ro = 81.4304 > 1 and from the Figure 2, we can easily see that (S, I,RES , R) = (2, 1, 1, 1) goes to

the endemic equilibrium E∗ = (1.023, 8.04, 7.95, 21.65). So endemic equilibrium is globally asymptotically stable.
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Figure 2. when <o > 1

5. Conclusion

In this paper, we analyzed the existence and global stability of the equilibrium points. We found that when the basic

reproduction number Ro < 1, then disease dies out and when the basic reproduction number Ro > 1, then disease persists.
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