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1. Description of the Problem

Consider the three-point boundary value problem of the second order random differential inclusions,

y′′(t, ω) ∈ F (t, y(t, ω)), t ∈ J = [0, 1] (1)

y(0, ω) = 0, y(η, ω) = y(1, ω) (2)

where F : J × R × Ω → 2R is a multi-valued map with compact convex values and t ∈ J , ω ∈ Ω, η ∈ (0, 1). The study of

multi-point boundary value problems for second order ordinary differential equations was initiated by Il’ In, Moiseev [12, 13]

and work of Bitsadze on nonlocal elliptic boundary value problems [14]. The methods used are usually the topological

transversality of Granas .The method we are use is to reduce the existence of solutions to problem (1)-(2) to the search for

random fixed points of a suitable multi-valued map on the Banach space C(J,R). In order to prove the existence of random

fixed points, we shall employees a random fixed point theorem for condensing maps due to Martelli [15].

2. Preliminaries

Let (X, ‖‖) be a Banach space. A multi-valued map G : X → 2X is convex valued if G(x) is convex for all x ∈ X. G is

bounded on bounded sets if G(B) =
⋃
x∈B

G(x) is bounded in X for any bounded set B of X. G is called upper semi-continuous

(u.s.c.) on X if for each x∗ ∈ X the set, G(x∗) is a nonempty, closed subset of X, and if for each open set B of X containing
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G(x∗), there exists an open neighborhood V of x∗ such that G(V ) ⊆ B. G is said to be completely continuous if G(B) is

relatively compact for every bounded subset B ⊆ X. If the multi-valued map G is completely continuous with nonempty

compact values, then G is upper semicontinuous (u.s.c.) if and only if G has a closed graph (i.e. xn → x∗, yn → y∗,

yn ∈ Gxn imply y∗ ∈ Gx∗). G has a fixed point if there is x ∈ X such that x ∈ Gx. In the following CC(X) denotes the

set of all nonempty compact and convex subsets of X. A multi-valued map G : J → CC(E) is said to be measurable if for

each x ∈ X the function Y : J → R defined by Y (t) = d(x,G(t) = inf { |x− z| : z ∈ G(t)} is measurable.

Definition 2.1. A multi-valued map F : J ×R× Ω→ 2R is said to be an random L1−Caratheodory if

(1). t 7→ F (t, y, ω) is measurable for each y ∈ R;

(2). y 7→ F (t, y, ω) is upper semi-continuous for almost all t ∈ J , ω ∈ Ω.

(3). For each k > 0, there exists hk ∈ L1(J,Ω, R+) such that

‖F (t, y, ω)‖ = sup{‖v‖ : v ∈ F (t, y, ω)} ≤ hk(t, ω) for all |y| ≤ k, ω ∈ Ω and for almost all t ∈ J .

An upper semi-continuous map G : X → 2X is said to be condensing if for any subset B ⊆ X with α(B) 6= 0, we have

α(G(B)) < α(B), where α denotes the Kuratowski measure of non-compactness. We need the following hypotheses:

(A1). F : J ×R× Ω→ CC(R) is random L1-Caratheodory multi-valued map.

(A2). There exists a function H ∈ L1(Ω, J, R+) such that

‖F (t, y, ω)‖ = sup{‖v‖ : v ∈ F (t, y, ω)} ≤ Hk(t, ω) for all |y| ≤ k, ω ∈ Ω. ‖F (t, y, ω)‖ = sup{‖v‖ : v ∈ F (t, y, ω)} ≤ H(t, ω)

for all for almost all t ∈ J and all ω ∈ Ω, y ∈ R.

Definition 2.2. A function y : Ω → R is called a solution for the BVP (1)-(2) if y and its first derivative are absolutely

continuous and y′′ which exists almost everywhere satisfies the differential inclusion (1) a.e. on J and the condition (2).

For the multi-valued map F and for each y ∈ C(J,R) we define S1
F (y, ω) by

S1
F (y, ω) = {v ∈ L1(J,Ω, R) : v(t, ω) ∈ F (t, y(t, ω), ω)) for a.e. t ∈ J, ω ∈ Ω.}

Our considerations are based on the following lemmas.

Lemma 2.3. Let I be a compact real interval and X be a Banach space. Let F be a multi-valued map satisfying (A1) and

S1
F (y, ω) 6= φ for any y ∈ C(J,X). Let Γ be a linear continuous mapping from L1(I,X) to C(I,X) then the operator

ΓoSF (y, ω) : C(I,X)→ CC(C(I,X)), y 7→ (ΓoSF )(y, ω) := Γ(SF (y, ω))

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.4. Let (Ω, X) be a Banach space and N : Ω × X → CC(X) be a condensing map. If the set P := {y ∈ X :

λ(ω)y ∈ N(ω)(y) for some λ(ω) > 1}, where λ : Ω×X, is bounded, then N(ω) has a random fixed point.

3. Main Result

Our main result is

Theorem 3.1. Assume that hypotheses (A1)-(A2) hold. Then the BVP (1)-(2) has at least one random solution on J.
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Proof. Let C(J,R) be the Banach space provided with the norm ‖y‖
∞

:= sup{‖y(t, ω)‖ : t ∈ J, ω ∈ Ω}, for y ∈ C(J,R).

Transform the problem into a random fixed point problem. Consider the multi-valued map, N : C(J,Ω, R)→ 2C(J,R) defined

by

N(ω)(y) =

{
h ∈ C(J,Ω, R) : h(t, ω)

∫ t

0

(t− s)g(s, ω)ds+
t

1− η

∫ η

0

(η − s)g(s, ω)ds− t

1− η

∫ t

0

(1− s)g(s, ω)ds

}

where g ∈ SF (y, ω) = {g ∈ L1(J,Ω, R) : g(t, ω) ∈ F (t, y(t, ω), ω)) for a.e. t ∈ J, ω ∈ Ω}. We shall show that N(ω) satisfies

the assumptions of Lemma 2.2. The proof will be given in following several steps.

Step 1: N(ω) is convex for each y ∈ C(J,R). Indeed, if h1, h2 belong to N(ω)(y) then there exist g1, g2 ∈ SF (y, ω) such

that for each t ∈ J , ω ∈ Ω, we have

hi(t, ω) =

∫ t

0

(t− s)g1(s, ω)ds+
t

1− η

∫ η

0

(η − s)g1(s, ω)ds− t

1− η

∫ 1

0

(1− s)gi(s, ω)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for each t ∈ J , ω ∈ Ω, we have

(αh1 + (1− α)h2)(t, ω) =

∫ t

0

(t− s)[αg1(s, ω) + (1− α)g2(s, ω)]ds+
t

1− η

∫ η

0

(η − s)[αg1(s, ω) + (1− α)g2(s, ω)]ds

− t

1− η

∫ 1

0

(1− s)[αg1(s, ω) + (1− α)g2(s, ω)]ds.

Since SF (y, ω) is convex since F has convex values, then αh1 + (1− α)h2 ∈ N(y, ω).

Step 2: N(ω)(y) is bounded on bounded sets of C(J,R). Indeed, it is enough to show that there exists a positive constant

c such that for each h ∈ N(y), y ∈ Br = {y ∈ C(J,R) : ‖y‖∞ ≤ r} one has ‖h‖∞ ≤ c. If h ∈ N(y), then there exists

g ∈ SF (y, ω) such that for each t ∈ J , ω ∈ Ω we have

h(t, ω) =

∫ t

0

(t− s)g(s, ω)ds+
t

1− η

∫ η

0

(η − s)g(s, ω)ds− t

1− η

∫ 1

0

(1− s)g(s, ω)ds.

By (A1) we have for each ω ∈ Ω, t ∈ J that

‖h(t, ω)‖ ≤
∫ t

0

hr(s, ω)ds+
1

1− η

∫ η

0

(η − s)hr(s, ω)ds+
1

1− η

∫ 1

0

(1− s)hr(s, ω)ds

Then

|h|
∞
≤
∫ 1

0

hr(s, ω)ds+
1

1− η

∫ η

0

(η − s)hr(s, ω)ds+
1

1− η

∫ 1

0

(1− s)hr(s, ω)ds = c.

Step 3: N sends bounded sets of C(J,R) into equi-continuous sets. Let, t1, t2 ∈ J , t1 < t2 and Br be a bounded set of

C(J,R). For each y ∈ Br and h ∈ N(ω)(y) there exists g ∈ SF (y, ω) such that

h(t, ω) =

∫ t

0

(t− s)g(s, ω)ds+
t

1− η

∫ η

0

(η − s)g(s, ω)ds− t

1− η

∫ 1

0

(1− s)g(s, ω)ds, t ∈ J, ω ∈ Ω.

Thus we obtain

‖h(t2, ω)− h(t1ω)‖ ≤
∫ t2

0

(t2 − s) |g(s, ω)| ds+

∫ t2

t1

(t1 − s) ‖g(s, ω)‖ ds

+
t2 − t1
1− η

∫ η

0

(t− s) ‖g(s, ω)‖ ds+
t2 − t1
1− η

∫ 1

0

(1− s) ‖g(s, ω)‖ ds

≤
∫ t2

0

(t2 − s)hr(s, ω)ds+

∫ t2

t1

(t1 − s)hr(s, ω)ds
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+
t2 − t1
1− η

∫ η

0

(t− s)hr(s, ω)ds+
t2 − t1
1− η

∫ 1

0

(1− s)hr(s, ω)ds.

As t1 → t2 the right-hand side of the above inequality tends to zero. As a consequence of Step 2, Step 3 together with the

Ascoli-Arzela theorem we can conclude that N(ω)(y) is completely continuous.

Step 4: N(ω) has a closed graph. Let yn → y∗, hn ∈ N(ω)(yn), and hn → h∗. We shall prove that h∗ ∈ N(ω)(y∗).

hn ∈ N(ω)(yn) means that there exists gn ∈ SF (yn, ω) such that

hn(t, ω) =

∫ t

0

(t− s)gn(s, ω)ds+
t

1− η

∫ η

0

(η − s)gn(s, ω)ds− t

1− η

∫ 1

0

(1− s)gn(s, ω)ds, t ∈ J, ω ∈ Ω.

We must prove that there exists g∗ ∈ SF (y∗, ω) such that

h∗(t, ω) =

∫ t

0

(t− s)g∗(s, ω)ds+
t

1− η

∫ t

0

(η − s)g∗(s, ω)ds− t

1− η

∫ t

0

(t− s)g∗(s, ω)ds, t ∈ J, ω ∈ Ω.

Now, we consider the linear continuous operator Γ : L1(J,Ω, R)→ C(J,Ω, R)

g 7→ Γ(g, ω)(t) =

∫ t

0

(t− s)g(s, ω)ds+
t

1− η

∫ η

0

(η − s)g(s, ω)ds− t

1− η

∫ 1

0

(1− s)g(s, ω)ds, t ∈ J, ω ∈ Ω.

From Lemma, it follows that ΓoSF (y, ω) is a closed graph operator. Moreover, from the definition of Γ we have hn(t, ω) ∈

Γ(SF (yn, ω)). Since yn → y0, it follows from Lemma that

h∗(t, ω) =

∫ t

0

(t− s)g∗(s, ω)ds+
t

1− η

∫ η

0

(η − s)g∗(s, ω)ds− t

1− η

∫ 1

0

(1− s)g∗(s, ω)ds, t ∈ J, ω ∈ Ω.

For some g∗ ∈ SF (y∗, ω).

Step 5: The set Q := {y ∈ C(J,R) : λ(ω)y ∈ N(ω)(y) for some λ(ω) > 1} is bounded. Let y ∈ Q. Then λ(ω)y ∈ N(ω)(y)

for some λ(ω) > 1. Thus there exists g ∈ SF (y, ω) such that

y(t, ω) = λ−1

∫ t

0

(t− s)g(s, ω)ds+ λ−1 t

1− η

∫ η

0

(η − s)g(s, ω)ds− λ−1 t

1− η

∫ 1

0

(1− s)g(s, ω)ds, t ∈ J, ω ∈ Ω.

This implies by (A2) that for each t ∈ J we have

‖y(t, ω)‖ ≤
∫ t

0

(t− s)H(s, ω)ds+
1

1− η

∫ η

0

(η − s)H(s, ω)ds+
1

1− η

∫ 1

0

(1− s)H(s, ω)ds.

Thus

‖y(t, ω)‖
∞
≤
∫ 1

0

(1− s)H(s, ω)ds+
1

1− η

∫ η

0

(η − s)H(s, ω)ds+
1

1− η

∫ 1

0

(1− s)H(s, ω)ds := K.

This shows that Q is bounded. Set X := C(J,R). As a consequence of Lemma 2.2, we deduce that N(ω) has a fixed point

which is a solution of (1)-(2) on J.
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