ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Three Point Boundary Value Problem for Random Differential Inclusions

Research Article

B. K. Pedge¹ and D. S. Palimkar²*

- 1 Department of Mathematics, Chate Jr. College, Pune, Maharashtra, India.
- 2 Department of Mathematics, Vasantrao Naik College, Vasarni, Nanded, Maharashtra, India.

Abstract: In this paper, we prove the existence of solution on a compact interval to a-three-point boundary value problem for a class

of second order random differential inclusions. We shall employees random fixed point theorem for condensing maps due

to Martelli.

MSC: 34A60, 34B10, 60H25.

Keywords: Three point boundary value problems, random differential inclusion, random fixed point.

© JS Publication.

1. Description of the Problem

Consider the three-point boundary value problem of the second order random differential inclusions,

$$y''(t,\omega) \in F(t,y(t,\omega)), \ t \in J = [0,1]$$
 (1)

$$y(0,\omega) = 0, \ y(\eta,\omega) = y(1,\omega) \tag{2}$$

where $F: J \times R \times \Omega \to 2^R$ is a multi-valued map with compact convex values and $t \in J$, $\omega \in \Omega$, $\eta \in (0,1)$. The study of multi-point boundary value problems for second order ordinary differential equations was initiated by Il' In, Moiseev [12, 13] and work of Bitsadze on nonlocal elliptic boundary value problems [14]. The methods used are usually the topological transversality of Granas .The method we are use is to reduce the existence of solutions to problem (1)-(2) to the search for random fixed points of a suitable multi-valued map on the Banach space C(J,R). In order to prove the existence of random fixed points, we shall employees a random fixed point theorem for condensing maps due to Martelli [15].

2. Preliminaries

Let $(X, \|\|\|)$ be a Banach space. A multi-valued map $G: X \to 2^X$ is convex valued if G(x) is convex for all $x \in X$. G is bounded on bounded sets if $G(B) = \bigcup_{x \in B} G(x)$ is bounded in X for any bounded set B of X. G is called upper semi-continuous (u.s.c.) on X if for each $x_* \in X$ the set, $G(x_*)$ is a nonempty, closed subset of X, and if for each open set B of X containing

^{*} E-mail: dspalimkar@rediffmail.com

 $G(x_*)$, there exists an open neighborhood V of x_* such that $G(V) \subseteq B$. G is said to be completely continuous if G(B) is relatively compact for every bounded subset $B \subseteq X$. If the multi-valued map G is completely continuous with nonempty compact values, then G is upper semicontinuous (u.s.c.) if and only if G has a closed graph (i.e. $x_n \to x_*$, $y_n \to y_*$, $y_n \in Gx_n$ imply $y_* \in Gx_*$). G has a fixed point if there is $x \in X$ such that $x \in Gx$. In the following CC(X) denotes the set of all nonempty compact and convex subsets of X. A multi-valued map $G: J \to CC(E)$ is said to be measurable if for each $x \in X$ the function $Y: J \to R$ defined by $Y(t) = d(x, G(t)) = \inf\{|x - z| : z \in G(t)\}$ is measurable.

Definition 2.1. A multi-valued map $F: J \times R \times \Omega \to 2^R$ is said to be an random L^1 -Caratheodory if

- (1). $t \mapsto F(t, y, \omega)$ is measurable for each $y \in R$;
- (2). $y \mapsto F(t, y, \omega)$ is upper semi-continuous for almost all $t \in J$, $\omega \in \Omega$.
- (3). For each k > 0, there exists $h_k \in L^1(J, \Omega, R+)$ such that

 $\|F(t,y,\omega)\|=\sup\{\|v\|:v\in F(t,y,\omega)\}\leq h_k(t,\omega) \text{ for all } |y|\leq k,\ \omega\in\Omega \text{ and for almost all } t\in J.$

An upper semi-continuous map $G: X \to 2^X$ is said to be condensing if for any subset $B \subseteq X$ with $\alpha(B) \neq 0$, we have $\alpha(G(B)) < \alpha(B)$, where α denotes the Kuratowski measure of non-compactness. We need the following hypotheses:

- (A1). $F: J \times R \times \Omega \to CC(R)$ is random L^1 -Caratheodory multi-valued map.
- (A2). There exists a function $H \in L^1(\Omega, J, R+)$ such that

 $||F(t,y,\omega)|| = \sup\{||v|| : v \in F(t,y,\omega)\} \le H_k(t,\omega) \text{ for all } |y| \le k, \ \omega \in \Omega. \ ||F(t,y,\omega)|| = \sup\{||v|| : v \in F(t,y,\omega)\} \le H(t,\omega) \text{ for all for almost all } t \in J \text{ and all } \omega \in \Omega, \ y \in R.$

Definition 2.2. A function $y: \Omega \to R$ is called a solution for the BVP (1)-(2) if y and its first derivative are absolutely continuous and y" which exists almost everywhere satisfies the differential inclusion (1) a.e. on J and the condition (2). For the multi-valued map F and for each $y \in C(J,R)$ we define $S_F^1(y,\omega)$ by

$$S_F^1(y,\omega) = \{v \in L^1(J,\Omega,R) : v(t,\omega) \in F(t,y(t,\omega),\omega)\} \text{ for a.e. } t \in J,\omega \in \Omega.\}$$

Our considerations are based on the following lemmas.

Lemma 2.3. Let I be a compact real interval and X be a Banach space. Let F be a multi-valued map satisfying (A1) and $S_F^1(y,\omega) \neq \phi$ for any $y \in C(J,X)$. Let Γ be a linear continuous mapping from $L^1(I,X)$ to C(I,X) then the operator

$$\Gamma oS_F(y,\omega): C(I,X) \to CC(C(I,X)), y \mapsto (\Gamma oS_F)(y,\omega) := \Gamma(S_F(y,\omega))$$

is a closed graph operator in $C(I,X) \times C(I,X)$.

Lemma 2.4. Let (Ω, X) be a Banach space and $N: \Omega \times X \to CC(X)$ be a condensing map. If the set $P:=\{y \in X: \lambda(\omega)y \in N(\omega)(y) \text{ for some } \lambda(\omega)>1\}$, where $\lambda: \Omega \times X$, is bounded, then $N(\omega)$ has a random fixed point.

3. Main Result

Our main result is

Theorem 3.1. Assume that hypotheses (A1)-(A2) hold. Then the BVP (1)-(2) has at least one random solution on J.

Proof. Let C(J,R) be the Banach space provided with the norm $||y||_{\infty} := \sup\{||y(t,\omega)|| : t \in J, \omega \in \Omega\}$, for $y \in C(J,R)$. Transform the problem into a random fixed point problem. Consider the multi-valued map, $N: C(J,\Omega,R) \to 2^{C(J,R)}$ defined by

$$N(\omega)(y) = \left\{ h \in C(J,\Omega,R) : h(t,\omega) \int_0^t (t-s)g(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g(s,\omega)ds - \frac{t}{1-\eta} \int_0^t (1-s)g(s,\omega)ds \right\}$$

where $g \in S_F(y,\omega) = \{g \in L^1(J,\Omega,R) : g(t,\omega) \in F(t,y(t,\omega),\omega)\}$ for a.e. $t \in J,\omega \in \Omega\}$. We shall show that $N(\omega)$ satisfies the assumptions of Lemma 2.2. The proof will be given in following several steps.

Step 1: $N(\omega)$ is convex for each $y \in C(J, R)$. Indeed, if h_1, h_2 belong to $N(\omega)(y)$ then there exist $g_1, g_2 \in S_F(y, \omega)$ such that for each $t \in J$, $\omega \in \Omega$, we have

$$h_i(t,\omega) = \int_0^t (t-s)g_1(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g_1(s,\omega)ds - \frac{t}{1-\eta} \int_0^1 (1-s)g_i(s,\omega)ds, \quad i = 1, 2.$$

Let $0 \le \alpha \le 1$. Then for each $t \in J$, $\omega \in \Omega$, we have

$$(\alpha h_1 + (1 - \alpha)h_2)(t, \omega) = \int_0^t (t - s)[\alpha g_1(s, \omega) + (1 - \alpha)g_2(s, \omega)]ds + \frac{t}{1 - \eta} \int_0^{\eta} (\eta - s)[\alpha g_1(s, \omega) + (1 - \alpha)g_2(s, \omega)]ds - \frac{t}{1 - \eta} \int_0^1 (1 - s)[\alpha g_1(s, \omega) + (1 - \alpha)g_2(s, \omega)]ds.$$

Since $S_F(y,\omega)$ is convex since F has convex values, then $\alpha h_1 + (1-\alpha)h_2 \in N(y,\omega)$.

Step 2: $N(\omega)(y)$ is bounded on bounded sets of C(J,R). Indeed, it is enough to show that there exists a positive constant c such that for each $h \in N(y), y \in B_r = \{y \in C(J,R) : ||y||_{\infty} \le r\}$ one has $||h||_{\infty} \le c$. If $h \in N(y)$, then there exists $g \in S_F(y,\omega)$ such that for each $t \in J$, $\omega \in \Omega$ we have

$$h(t,\omega) = \int_0^t (t-s)g(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g(s,\omega)ds - \frac{t}{1-\eta} \int_0^1 (1-s)g(s,\omega)ds.$$

By (A1) we have for each $\omega \in \Omega$, $t \in J$ that

$$||h(t,\omega)|| \le \int_0^t h_r(s,\omega)ds + \frac{1}{1-\eta} \int_0^\eta (\eta-s)h_r(s,\omega)ds + \frac{1}{1-\eta} \int_0^1 (1-s)h_r(s,\omega)ds$$

Then

$$|h|_{\infty} \le \int_0^1 h_r(s,\omega)ds + \frac{1}{1-\eta} \int_0^{\eta} (\eta - s)h_r(s,\omega)ds + \frac{1}{1-\eta} \int_0^1 (1-s)h_r(s,\omega)ds = c.$$

Step 3: N sends bounded sets of C(J,R) into equi-continuous sets. Let, $t_1,t_2 \in J$, $t_1 < t_2$ and B_r be a bounded set of C(J,R). For each $y \in B_r$ and $h \in N(\omega)(y)$ there exists $g \in S_F(y,\omega)$ such that

$$h(t,\omega) = \int_0^t (t-s)g(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g(s,\omega)ds - \frac{t}{1-\eta} \int_0^1 (1-s)g(s,\omega)ds, \quad t \in J, \omega \in \Omega.$$

Thus we obtain

$$||h(t_{2},\omega) - h(t_{1}\omega)|| \leq \int_{0}^{t_{2}} (t_{2} - s) |g(s,\omega)| ds + \int_{t_{1}}^{t_{2}} (t_{1} - s) ||g(s,\omega)|| ds$$
$$+ \frac{t_{2} - t_{1}}{1 - \eta} \int_{0}^{\eta} (t - s) ||g(s,\omega)|| ds + \frac{t_{2} - t_{1}}{1 - \eta} \int_{0}^{1} (1 - s) ||g(s,\omega)|| ds$$
$$\leq \int_{0}^{t_{2}} (t_{2} - s) h_{r}(s,\omega) ds + \int_{t_{1}}^{t_{2}} (t_{1} - s) h_{r}(s,\omega) ds$$

$$+\frac{t_2-t_1}{1-\eta}\int_0^{\eta}(t-s)h_r(s,\omega)ds+\frac{t_2-t_1}{1-\eta}\int_0^1(1-s)h_r(s,\omega)ds.$$

As $t_1 \to t_2$ the right-hand side of the above inequality tends to zero. As a consequence of Step 2, Step 3 together with the Ascoli-Arzela theorem we can conclude that $N(\omega)(y)$ is completely continuous.

Step 4: $N(\omega)$ has a closed graph. Let $y_n \to y_*$, $h_n \in N(\omega)(y_n)$, and $h_n \to h_*$. We shall prove that $h_* \in N(\omega)(y_*)$. $h_n \in N(\omega)(y_n)$ means that there exists $g_n \in S_F(y_n, \omega)$ such that

$$h_n(t,\omega) = \int_0^t (t-s)g_n(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g_n(s,\omega)ds - \frac{t}{1-\eta} \int_0^1 (1-s)g_n(s,\omega)ds, \quad t \in J, \omega \in \Omega.$$

We must prove that there exists $g_* \in S_F(y_*, \omega)$ such that

$$h_*(t,\omega) = \int_0^t (t-s)g_*(s,\omega)ds + \frac{t}{1-\eta} \int_0^t (\eta-s)g_*(s,\omega)ds - \frac{t}{1-\eta} \int_0^t (t-s)g_*(s,\omega)ds, \ t \in J, \omega \in \Omega.$$

Now, we consider the linear continuous operator $\Gamma: L^1(J,\Omega,R) \to C(J,\Omega,R)$

$$g\mapsto \Gamma(g,\omega)(t)=\int_0^t (t-s)g(s,\omega)ds+\frac{t}{1-\eta}\int_0^\eta (\eta-s)g(s,\omega)ds-\frac{t}{1-\eta}\int_0^1 (1-s)g(s,\omega)ds,\ \ t\in J, \omega\in\Omega.$$

From Lemma, it follows that $\Gamma oS_F(y,\omega)$ is a closed graph operator. Moreover, from the definition of Γ we have $h_n(t,\omega) \in \Gamma(S_F(y_n,\omega))$. Since $y_n \to y_0$, it follows from Lemma that

$$h_*(t,\omega) = \int_0^t (t-s)g_*(s,\omega)ds + \frac{t}{1-\eta} \int_0^\eta (\eta-s)g_*(s,\omega)ds - \frac{t}{1-\eta} \int_0^1 (1-s)g_*(s,\omega)ds, \ t \in J, \omega \in \Omega.$$

For some $g_* \in S_F(y_*, \omega)$.

Step 5: The set $Q := \{ y \in C(J, R) : \lambda(\omega)y \in N(\omega)(y) \text{ for some } \lambda(\omega) > 1 \}$ is bounded. Let $y \in Q$. Then $\lambda(\omega)y \in N(\omega)(y)$ for some $\lambda(\omega) > 1$. Thus there exists $g \in S_F(y, \omega)$ such that

$$y(t,\omega) = \lambda^{-1} \int_0^t (t-s)g(s,\omega)ds + \lambda^{-1} \frac{t}{1-\eta} \int_0^\eta (\eta-s)g(s,\omega)ds - \lambda^{-1} \frac{t}{1-\eta} \int_0^1 (1-s)g(s,\omega)ds, \quad t \in J, \omega \in \Omega.$$

This implies by (A2) that for each $t \in J$ we have

$$||y(t,\omega)|| \le \int_0^t (t-s)H(s,\omega)ds + \frac{1}{1-n}\int_0^\eta (\eta-s)H(s,\omega)ds + \frac{1}{1-n}\int_0^1 (1-s)H(s,\omega)ds$$

Thus

$$\|y(t,\omega)\|_{\infty} \le \int_0^1 (1-s)H(s,\omega)ds + \frac{1}{1-\eta} \int_0^{\eta} (\eta-s)H(s,\omega)ds + \frac{1}{1-\eta} \int_0^1 (1-s)H(s,\omega)ds := K.$$

This shows that Q is bounded. Set X := C(J, R). As a consequence of Lemma 2.2, we deduce that $N(\omega)$ has a fixed point which is a solution of (1)-(2) on J.

References

^[1] A.Boucherif and S.M.Bouguima, Nonlinear second order ordinary differential equations with nonlocal boundary conditions, Communications on Applied Nonlinear Analysis, 5(2)(1998), 73-85.

^[2] C.P.Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, Journal of Mathematical Analysis and Applications, 168(1992), 540-551.

- [3] C.P.Gupta, A note on a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 186(1994), 277-281.
- [4] C.P.Gupta, A second order m-point boundary value problem at resonance, Nonlinear Analysis, 24(1994), 1483-1489.
- [5] C.P.Gupta, Solvability of a multi-point boundary value problem at resonance, Results in Mathematics, 28(1995), 270-276.
- [6] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, On an m-point boundary value problem for second order ordinary differential equations, Nonlinear Analysis, 23(1994), 1427-1436.
- [7] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, Existence results for m-point boundary value problems, Differential Equations and Dynamical Systems, 2(1994), 289-298.
- [8] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, Solvability of an m-point bound-ary value problem for second order ordinary differential equations, Journal of Mathematical Analysis and Applications, 189(1995), 575-584.
- [9] C.P.Gupta and S.I.Trofimchuk, A sharper condition for the solvability of a three-point second order boundary value problem, Journal of Mathematical Analysis and Applications, 285(1997), 586-597.
- [10] C.P.Gupta and S.I.Trofimchuk, A Wirtinger type inequality and a three-point boundary value problem, Dynamic Systems and Applications, 8(1999), 127-132.
- [11] S.A.Marano, A remark on a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 183(1994), 518-522.
- [12] V.A.IinIn and E.I.Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its. differential and finite difference aspects, Differential Equations, 23(7)(1987), 803-810.
- [13] V.A.IinIn and E.I.Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations, 23(8)(1987), 979-987.
- [14] A.V.Bitsadze, On the theory of nonlocal boundary value problem, Soviet Mathematics Doklady, 30(1)(1984), 8-10.
- [15] M.Martelli, Rothe's type theorem for noncompact acyclic-valued map, Bolletino Unione Mathematica Italiana, 11(1975), 70-76.