International Journal of Mathematics And its Applications

Three Point Boundary Value Problem for Random Differential Inclusions

Research Article

B. K. Pedge ${ }^{1}$ and D. S. Palimkar ${ }^{2 *}$
1 Department of Mathematics, Chate Jr. College, Pune, Maharashtra, India.
2 Department of Mathematics, Vasantrao Naik College, Vasarni, Nanded, Maharashtra, India.

Abstract: In this paper, we prove the existence of solution on a compact interval to a-three-point boundary value problem for a class of second order random differential inclusions. We shall employees random fixed point theorem for condensing maps due to Martelli.

MSC: $\quad 34 \mathrm{~A} 60,34 \mathrm{~B} 10,60 \mathrm{H} 25$.
Keywords: Three point boundary value problems, random differential inclusion, random fixed point.
(c) JS Publication.

1. Description of the Problem

Consider the three-point boundary value problem of the second order random differential inclusions,

$$
\begin{align*}
& y^{\prime \prime}(t, \omega) \in F(t, y(t, \omega)), t \in J=[0,1] \tag{1}\\
& y(0, \omega)=0, y(\eta, \omega)=y(1, \omega) \tag{2}
\end{align*}
$$

where $F: J \times R \times \Omega \rightarrow 2^{R}$ is a multi-valued map with compact convex values and $t \in J, \omega \in \Omega, \eta \in(0,1)$. The study of multi-point boundary value problems for second order ordinary differential equations was initiated by Il' In, Moiseev [12, 13] and work of Bitsadze on nonlocal elliptic boundary value problems [14]. The methods used are usually the topological transversality of Granas. The method we are use is to reduce the existence of solutions to problem (1)-(2) to the search for random fixed points of a suitable multi-valued map on the Banach space $C(J, R)$. In order to prove the existence of random fixed points, we shall employees a random fixed point theorem for condensing maps due to Martelli [15].

2. Preliminaries

Let $(X,\| \|)$ be a Banach space. A multi-valued map $G: X \rightarrow 2^{X}$ is convex valued if $G(x)$ is convex for all $x \in X$. G is bounded on bounded sets if $G(B)=\bigcup_{x \in B} G(x)$ is bounded in X for any bounded set B of X. G is called upper semi-continuous (u.s.c.) on X if for each $x_{*} \in X$ the set, $G\left(x_{*}\right)$ is a nonempty, closed subset of X, and if for each open set B of X containing

[^0]$G\left(x_{*}\right)$, there exists an open neighborhood V of x_{*} such that $G(V) \subseteq B . G$ is said to be completely continuous if $G(B)$ is relatively compact for every bounded subset $B \subseteq X$. If the multi-valued map G is completely continuous with nonempty compact values, then G is upper semicontinuous (u.s.c.) if and only if G has a closed graph (i.e. $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}$, $y_{n} \in G x_{n}$ imply $\left.y_{*} \in G x_{*}\right)$. G has a fixed point if there is $x \in X$ such that $x \in G x$. In the following $C C(X)$ denotes the set of all nonempty compact and convex subsets of X. A multi-valued map $G: J \rightarrow C C(E)$ is said to be measurable if for each $x \in X$ the function $Y: J \rightarrow R$ defined by $Y(t)=d(x, G(t)=\inf \{|x-z|: z \in G(t)\}$ is measurable.

Definition 2.1. A multi-valued map $F: J \times R \times \Omega \rightarrow 2^{R}$ is said to be an random $L^{1}-$ Caratheodory if
(1). $t \mapsto F(t, y, \omega)$ is measurable for each $y \in R$;
(2). $y \mapsto F(t, y, \omega)$ is upper semi-continuous for almost all $t \in J, \omega \in \Omega$.
(3). For each $k>0$, there exists $h_{k} \in L^{1}(J, \Omega, R+)$ such that
$\|F(t, y, \omega)\|=\sup \{\|v\|: v \in F(t, y, \omega)\} \leq h_{k}(t, \omega)$ for all $|y| \leq k, \omega \in \Omega$ and for almost all $t \in J$.
An upper semi-continuous map $G: X \rightarrow 2^{X}$ is said to be condensing if for any subset $B \subseteq X$ with $\alpha(B) \neq 0$, we have $\alpha(G(B))<\alpha(B)$, where α denotes the Kuratowski measure of non-compactness. We need the following hypotheses:
(A1). $F: J \times R \times \Omega \rightarrow C C(R)$ is random L^{1}-Caratheodory multi-valued map.
(A2). There exists a function $H \in L^{1}(\Omega, J, R+)$ such that
$\|F(t, y, \omega)\|=\sup \{\|v\|: v \in F(t, y, \omega)\} \leq H_{k}(t, \omega)$ for all $|y| \leq k, \omega \in \Omega .\|F(t, y, \omega)\|=\sup \{\|v\|: v \in F(t, y, \omega)\} \leq H(t, \omega)$ for all for almost all $t \in J$ and all $\omega \in \Omega, y \in R$.

Definition 2.2. A function $y: \Omega \rightarrow R$ is called a solution for the $B V P$ (1)-(2) if y and its first derivative are absolutely continuous and $y^{\prime \prime}$ which exists almost everywhere satisfies the differential inclusion (1) a.e. on J and the condition (2). For the multi-valued map F and for each $y \in C(J, R)$ we define $S_{F}^{1}(y, \omega)$ by

$$
\left.S_{F}^{1}(y, \omega)=\left\{v \in L^{1}(J, \Omega, R): v(t, \omega) \in F(t, y(t, \omega), \omega)\right) \text { for a.e. } t \in J, \omega \in \Omega .\right\}
$$

Our considerations are based on the following lemmas.
Lemma 2.3. Let I be a compact real interval and X be a Banach space. Let F be a multi-valued map satisfying (A1) and $S_{F}^{1}(y, \omega) \neq \phi$ for any $y \in C(J, X)$. Let Γ be a linear continuous mapping from $L^{1}(I, X)$ to $C(I, X)$ then the operator

$$
\Gamma o S_{F}(y, \omega): C(I, X) \rightarrow C C(C(I, X)), y \mapsto\left(\Gamma o S_{F}\right)(y, \omega):=\Gamma\left(S_{F}(y, \omega)\right)
$$

is a closed graph operator in $C(I, X) \times C(I, X)$.

Lemma 2.4. Let (Ω, X) be a Banach space and $N: \Omega \times X \rightarrow C C(X)$ be a condensing map. If the set $P:=\{y \in X$: $\lambda(\omega) y \in N(\omega)(y)$ for some $\lambda(\omega)>1\}$, where $\lambda: \Omega \times X$, is bounded, then $N(\omega)$ has a random fixed point.

3. Main Result

Our main result is

Theorem 3.1. Assume that hypotheses (A1)-(A2) hold. Then the BVP (1)-(2) has at least one random solution on J.

Proof. Let $C(J, R)$ be the Banach space provided with the norm $\|y\|_{\infty}:=\sup \{\|y(t, \omega)\|: t \in J, \omega \in \Omega\}$, for $y \in C(J, R)$. Transform the problem into a random fixed point problem. Consider the multi-valued map, $N: C(J, \Omega, R) \rightarrow 2^{C(J, R)}$ defined by

$$
N(\omega)(y)=\left\{h \in C(J, \Omega, R): h(t, \omega) \int_{0}^{t}(t-s) g(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{t}(1-s) g(s, \omega) d s\right\}
$$

where $g \in S_{F}(y, \omega)=\left\{g \in L^{1}(J, \Omega, R): g(t, \omega) \in F(t, y(t, \omega), \omega)\right)$ for a.e. $\left.t \in J, \omega \in \Omega\right\}$. We shall show that $N(\omega)$ satisfies the assumptions of Lemma 2.2. The proof will be given in following several steps.

Step 1: $N(\omega)$ is convex for each $y \in C(J, R)$. Indeed, if h_{1}, h_{2} belong to $N(\omega)(y)$ then there exist $g_{1}, g_{2} \in S_{F}(y, \omega)$ such that for each $t \in J, \omega \in \Omega$, we have

$$
h_{i}(t, \omega)=\int_{0}^{t}(t-s) g_{1}(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g_{1}(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g_{i}(s, \omega) d s, \quad i=1,2 .
$$

Let $0 \leq \alpha \leq 1$. Then for each $t \in J, \omega \in \Omega$, we have

$$
\begin{aligned}
\left(\alpha h_{1}+(1-\alpha) h_{2}\right)(t, \omega) & =\int_{0}^{t}(t-s)\left[\alpha g_{1}(s, \omega)+(1-\alpha) g_{2}(s, \omega)\right] d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s)\left[\alpha g_{1}(s, \omega)+(1-\alpha) g_{2}(s, \omega)\right] d s \\
& -\frac{t}{1-\eta} \int_{0}^{1}(1-s)\left[\alpha g_{1}(s, \omega)+(1-\alpha) g_{2}(s, \omega)\right] d s .
\end{aligned}
$$

Since $S_{F}(y, \omega)$ is convex since F has convex values, then $\alpha h_{1}+(1-\alpha) h_{2} \in N(y, \omega)$.
Step 2: $N(\omega)(y)$ is bounded on bounded sets of $C(J, R)$. Indeed, it is enough to show that there exists a positive constant c such that for each $h \in N(y), y \in B_{r}=\left\{y \in C(J, R):\|y\|_{\infty} \leq r\right\}$ one has $\|h\|_{\infty} \leq c$. If $h \in N(y)$, then there exists $g \in S_{F}(y, \omega)$ such that for each $t \in J, \omega \in \Omega$ we have

$$
h(t, \omega)=\int_{0}^{t}(t-s) g(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g(s, \omega) d s .
$$

By (A1) we have for each $\omega \in \Omega, t \in J$ that

$$
\|h(t, \omega)\| \leq \int_{0}^{t} h_{r}(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{\eta}(\eta-s) h_{r}(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{1}(1-s) h_{r}(s, \omega) d s
$$

Then

$$
|h|_{\infty} \leq \int_{0}^{1} h_{r}(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{\eta}(\eta-s) h_{r}(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{1}(1-s) h_{r}(s, \omega) d s=c .
$$

Step 3: N sends bounded sets of $C(J, R)$ into equi-continuous sets. Let, $t_{1}, t_{2} \in J, t_{1}<t_{2}$ and B_{r} be a bounded set of $C(J, R)$. For each $y \in B_{r}$ and $h \in N(\omega)(y)$ there exists $g \in S_{F}(y, \omega)$ such that

$$
h(t, \omega)=\int_{0}^{t}(t-s) g(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

Thus we obtain

$$
\begin{aligned}
\left\|h\left(t_{2}, \omega\right)-h\left(t_{1} \omega\right)\right\| & \leq \int_{0}^{t_{2}}\left(t_{2}-s\right)|g(s, \omega)| d s+\int_{t_{1}}^{t_{2}}\left(t_{1}-s\right)\|g(s, \omega)\| d s \\
& +\frac{t_{2}-t_{1}}{1-\eta} \int_{0}^{\eta}(t-s)\|g(s, \omega)\| d s+\frac{t_{2}-t_{1}}{1-\eta} \int_{0}^{1}(1-s)\|g(s, \omega)\| d s \\
& \leq \int_{0}^{t_{2}}\left(t_{2}-s\right) h_{r}(s, \omega) d s+\int_{t_{1}}^{t_{2}}\left(t_{1}-s\right) h_{r}(s, \omega) d s
\end{aligned}
$$

$$
+\frac{t_{2}-t_{1}}{1-\eta} \int_{0}^{\eta}(t-s) h_{r}(s, \omega) d s+\frac{t_{2}-t_{1}}{1-\eta} \int_{0}^{1}(1-s) h_{r}(s, \omega) d s .
$$

As $t_{1} \rightarrow t_{2}$ the right-hand side of the above inequality tends to zero. As a consequence of Step 2, Step 3 together with the Ascoli-Arzela theorem we can conclude that $N(\omega)(y)$ is completely continuous.

Step 4: $N(\omega)$ has a closed graph. Let $y_{n} \rightarrow y_{*}, h_{n} \in N(\omega)\left(y_{n}\right)$, and $h_{n} \rightarrow h_{*}$. We shall prove that $h_{*} \in N(\omega)\left(y_{*}\right)$. $h_{n} \in N(\omega)\left(y_{n}\right)$ means that there exists $g_{n} \in S_{F}\left(y_{n}, \omega\right)$ such that

$$
h_{n}(t, \omega)=\int_{0}^{t}(t-s) g_{n}(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g_{n}(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g_{n}(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

We must prove that there exists $g_{*} \in S_{F}\left(y_{*}, \omega\right)$ such that

$$
h_{*}(t, \omega)=\int_{0}^{t}(t-s) g_{*}(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{t}(\eta-s) g_{*}(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{t}(t-s) g_{*}(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

Now, we consider the linear continuous operator $\Gamma: L^{1}(J, \Omega, R) \rightarrow C(J, \Omega, R)$

$$
g \mapsto \Gamma(g, \omega)(t)=\int_{0}^{t}(t-s) g(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

From Lemma, it follows that $\Gamma o S_{F}(y, \omega)$ is a closed graph operator. Moreover, from the definition of Γ we have $h_{n}(t, \omega) \in$ $\Gamma\left(S_{F}\left(y_{n}, \omega\right)\right)$. Since $y_{n} \rightarrow y_{0}$, it follows from Lemma that

$$
h_{*}(t, \omega)=\int_{0}^{t}(t-s) g_{*}(s, \omega) d s+\frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g_{*}(s, \omega) d s-\frac{t}{1-\eta} \int_{0}^{1}(1-s) g_{*}(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

For some $g_{*} \in S_{F}\left(y_{*}, \omega\right)$.
Step 5: The set $Q:=\{y \in C(J, R): \lambda(\omega) y \in N(\omega)(y)$ for some $\lambda(\omega)>1\}$ is bounded. Let $y \in Q$. Then $\lambda(\omega) y \in N(\omega)(y)$ for some $\lambda(\omega)>1$. Thus there exists $g \in S_{F}(y, \omega)$ such that

$$
y(t, \omega)=\lambda^{-1} \int_{0}^{t}(t-s) g(s, \omega) d s+\lambda^{-1} \frac{t}{1-\eta} \int_{0}^{\eta}(\eta-s) g(s, \omega) d s-\lambda^{-1} \frac{t}{1-\eta} \int_{0}^{1}(1-s) g(s, \omega) d s, \quad t \in J, \omega \in \Omega .
$$

This implies by (A2) that for each $t \in J$ we have

$$
\|y(t, \omega)\| \leq \int_{0}^{t}(t-s) H(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{\eta}(\eta-s) H(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{1}(1-s) H(s, \omega) d s
$$

Thus

$$
\|y(t, \omega)\|_{\infty} \leq \int_{0}^{1}(1-s) H(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{\eta}(\eta-s) H(s, \omega) d s+\frac{1}{1-\eta} \int_{0}^{1}(1-s) H(s, \omega) d s:=K
$$

This shows that Q is bounded. Set $X:=C(J, R)$. As a consequence of Lemma 2.2, we deduce that $N(\omega)$ has a fixed point which is a solution of (1)-(2) on J.

References

[^1][3] C.P.Gupta, A note on a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 186(1994), 277-281.
[4] C.P.Gupta, A second order m-point boundary value problem at resonance, Nonlinear Analysis, 24(1994), 1483-1489.
[5] C.P.Gupta, Solvability of a multi-point boundary value problem at resonance, Results in Mathematics, 28(1995), 270-276.
[6] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, On an m-point boundary value problem for second order ordinary differential equations, Nonlinear Analysis, 23(1994), 1427-1436.
[7] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, Existence results for m-point boundary value problems, Differential Equations and Dynamical Systems, 2(1994), 289-298.
[8] C.P.Gupta, S.K.Ntouyas and P.C.Tsmatos, Solvability of an m-point bound-ary value problem for second order ordinary differential equations, Journal of Mathematical Analysis and Applications, 189(1995), 575-584.
[9] C.P.Gupta and S.I.Trofimchuk, A sharper condition for the solvability of a three-point second order boundary value problem, Journal of Mathematical Analysis and Applications, 285(1997), 586-597.
[10] C.P.Gupta and S.I.Trofimchuk, A Wirtinger type inequality and a three-point boundary value problem, Dynamic Systems and Applications, 8(1999), 127-132.
[11] S.A.Marano, A remark on a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 183(1994), 518-522.
[12] V.A.IinIn and E.I.Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its. differential and finite difference aspects, Differential Equations, 23(7)(1987), 803-810.
[13] V.A.IinIn and E.I.Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations, 23(8)(1987), 979-987.
[14] A.V.Bitsadze, On the theory of nonlocal boundary value problem, Soviet Mathematics Doklady, 30(1)(1984), 8-10.
[15] M.Martelli, Rothe's type theorem for noncompact acyclic-valued map, Bolletino Unione Mathematica Italiana, 11(1975), 70-76.

[^0]: * E-mail: dspalimkar@rediffmail.com

[^1]: [1] A.Boucherif and S.M.Bouguima, Nonlinear second order ordinary differential equations with nonlocal boundary conditions, Communications on Applied Nonlinear Analysis, 5(2)(1998), 73-85.
 [2] C.P.Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, Journal of Mathematical Analysis and Applications, 168(1992), 540-551.

