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1. Description of the Problem

Consider the three-point boundary value problem of the second order random differential inclusions,

y'(t,w) € F(t,y(t,w)), t € J=[0,1] (1)

y(ovw) =0, y(’i»w) = y(lvw) (2)

where F : J x R x Q — 2F is a multi-valued map with compact convex values and ¢t € J, w € Q, n € (0,1). The study of
multi-point boundary value problems for second order ordinary differential equations was initiated by II’ In, Moiseev [12, 13]
and work of Bitsadze on nonlocal elliptic boundary value problems [14]. The methods used are usually the topological
transversality of Granas .The method we are use is to reduce the existence of solutions to problem (1)-(2) to the search for
random fixed points of a suitable multi-valued map on the Banach space C(J, R). In order to prove the existence of random

fixed points, we shall employees a random fixed point theorem for condensing maps due to Martelli [15].

2. Preliminaries

Let (X,]||]) be a Banach space. A multi-valued map G : X — 2% is convex valued if G(z) is convex for all z € X. G is

bounded on bounded sets if G(B) = |J G(z) is bounded in X for any bounded set B of X. G is called upper semi-continuous
rxeEB

(u.s.c.) on X if for each z, € X the set, G(z) is a nonempty, closed subset of X, and if for each open set B of X containing
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G(z«), there exists an open neighborhood V of z. such that G(V) C B. G is said to be completely continuous if G(B) is
relatively compact for every bounded subset B C X. If the multi-valued map G is completely continuous with nonempty
compact values, then G is upper semicontinuous (u.s.c.) if and only if G has a closed graph (i.e. Tn — Tu, Yn — Yx,
Yn € Gzp imply y. € Gz,). G has a fixed point if there is x € X such that x € Gz. In the following CC(X) denotes the
set of all nonempty compact and convex subsets of X. A multi-valued map G : J — CC(FE) is said to be measurable if for

each z € X the function Y : J — R defined by Y (¢) = d(z,G(t) = inf { |z — z| : z € G(¢¥)} is measurable.
Definition 2.1. A multi-valued map F : J x R x Q — 2% is said to be an random L'— Caratheodory if
(1). t = F(t,y,w) is measurable for each y € R;

(2). y— F(t,y,w) is upper semi-continuous for almost allt € J, w € Q.

(3). For each k > 0, there exists hi, € L'(J,Q, R+) such that

|E(t,y,w)|| = sup{||v] : v € F(t,y,w)} < hp(t,w) for all ly| < k, w € Q and for almost all t € J.
An upper semi-continuous map G : X — 2% is said to be condensing if for any subset B C X with a(B) # 0, we have

a(G(B)) < a(B), where o denotes the Kuratowski measure of non-compactness. We need the following hypotheses:
(A1). F:Jx RxQ— CC(R) is random L'-Caratheodory multi-valued map.
(A2). There exists a function H € L*(Q, J, R+) such that

1E @ y,w)|| = sup{llv]| : v € F(t,y,w)} < Hy(t,w) for all ly| <k, w e Q. [|[F(t,y,w)|| = sup{[[v] : v € F(t,y,w)} < H(t,w)

for all for almost allt € J and allw € Q, y € R.

Definition 2.2. A function y : Q@ — R is called a solution for the BVP (1)-(2) if y and its first derivative are absolutely
continuous and y" which ezists almost everywhere satisfies the differential inclusion (1) a.e. on J and the condition (2).

For the multi-valued map F and for each y € C(J, R) we define Sk (y,w) by

Sk(y,w) = {v e L'(J,Q,R) : v(t,w) € F(t,y(t,w),w)) for a.e tec JweQ}

Our considerations are based on the following lemmas.

Lemma 2.3. Let I be a compact real interval and X be a Banach space. Let F be a multi-valued map satisfying (A1) and

St(y,w) # ¢ for any y € C(J,X). Let T be a linear continuous mapping from L*(I, X) to C(I,X) then the operator

PoSr(y,w) : C(I, X) = CO(C(I, X)),y = (ToSr) (y,w) = D(Sk(y, w))

is a closed graph operator in C(I,X) x C(I,X).

Lemma 2.4. Let (2, X) be a Banach space and N : Q x X — CC(X) be a condensing map. If the set P :== {y € X :

AMw)y € N(w)(y) for some AM(w) > 1}, where A : Q x X, is bounded, then N(w) has a random fixed point.

3. Main Result

Our main result is

Theorem 3.1. Assume that hypotheses (A1)-(A2) hold. Then the BVP (1)-(2) has at least one random solution on J.
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Proof.  Let C(J, R) be the Banach space provided with the norm ||y||  :=sup{|ly(t,w)|| : t € J,w € Q}, fory e C(J,R).
Transform the problem into a random fixed point problem. Consider the multi-valued map, N : C(J,Q, R) — 2C(LR) defined
by

N(w)(y) = {h e C(J,Q,R): h(t,w)/o (t—9)g(s, w)ds + ﬁ /:(77 —5)g(s, w)ds — ﬁ/g (1-19)g(s, w)ds}

where g € Sr(y,w) = {g € L'(J, %, R) : g(t,w) € F(t,y(t,w),w)) for a.e.t € J,w € Q}. We shall show that N(w) satisfies
the assumptions of Lemma 2.2. The proof will be given in following several steps.
Step 1: N(w) is convex for each y € C(J, R). Indeed, if h1, he belong to N(w)(y) then there exist g1,g2 € Sr(y,w) such
that for each t € J, w € 2, we have

" 1

t n
mtw) = [ - onGwis+ 1 [To-aawds— [0 gatwds =12
0 1—=nJo 1-=nJo

Let 0 < o < 1. Then for each t € J, w € 2, we have

(ahs + (1= )h)(t0) = [ (0= 9lag(5.0) + (1= )mlsw)ds + 1 [0 9lag(5:0) + (1 = Q)aa(s. s

- 1f777 ) (1= 9)[agi(s,w) + (1 — a)ga(s,w)]ds.

Since Sr(y,w) is convex since F' has convex values, then ahy + (1 — a)hz € N(y,w).
Step 2: N(w)(y) is bounded on bounded sets of C(J, R). Indeed, it is enough to show that there exists a positive constant
c such that for each h € N(y),y € B, = {y € C(J,R) : |y|ll,, < r} one has |||, < c. If h € N(y), then there exists

g € Sr(y,w) such that for each t € J, w € Q we have

1

) = [ (¢ =aw)is + = [Mo=aw)is = [0 = gts.0)ds,

By (A1) we have for each w € Q, t € J that

|h(t, w)|| < /0 hr(s,w)ds + ﬁ /On(n — s)h,(s,w)ds + ﬁ/{; (1= 98)h,(s,w)ds

Then
1

1 Y
|h| < / hr(s,w)ds + S / (n— s)hr(s,w)ds + S (1—=8)hr(s,w)ds =c.
> 0 1-n/Jo 1-=nJo

Step 3: N sends bounded sets of C(J, R) into equi-continuous sets. Let, t1,t2 € J, t1 < t2 and B, be a bounded set of

C(J,R). For each y € B, and h € N(w)(y) there exists g € Sr(y,w) such that

1

t n
h(t,w) = / (t—s)g(s,w)ds + L/ (n—s)g(s,w)ds — L (1—s)g(s,w)ds, te€ JweQ.
o 1—nJ, 1-nJo

Thus we obtain

Ih(ta,w) — h(tiw)]| < / (ts — ) lg(s,w)| ds + / (tr— ) lg(s,w) | ds

ty
to —t1

n t
+ / t—s s,w)|| ds +
= /), (t—s)llg(s,w)ll

2 — 11
1-n

| a=9lsts.olas
S/o (t2 fs)hr(s,w)der/ (t1 — 8)hr(s,w)ds

ty
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_ n _ 1
—|—t2 tl/ (15—s)hr(s,c/.))ds—|—t2 tl/ (1= s)hr(s,w)ds.

1-n Jo 1-=n Jo

As t1 — t2 the right-hand side of the above inequality tends to zero. As a consequence of Step 2, Step 3 together with the
Ascoli-Arzela theorem we can conclude that N(w)(y) is completely continuous.
Step 4: N(w) has a closed graph. Let y, — y«, hn € N(w)(yn), and h, — h.. We shall prove that h. € N(w)(yx).

hn € N(w)(yn) means that there exists gn € Sr(yn,w) such that

t n 1
hn(t,w) = / (t— 8)gn(s,w)ds + L/ (n — s)gn(s,w)ds — L/ (1—38)gn(s,w)ds, t€ JweQ.
0 I—=nJo I—=nJo

We must prove that there exists g« € Sr(y«,w) such that

t

t t
ha(t,w) = / (t — 8)g«(s,w)ds + L/ (n — s)g«(s,w)ds — _t (t— 8)g«(s,w)ds, t € JweQ.
o 1—-nJy 1—nJo

Now, we consider the linear continuous operator I" : L*(J,Q, R) — C(J,, R)

1

g—T(g,w)(t) = /0 (t—s)g(s,w)ds + ﬁ /On(n —5)g(s,w)ds — ﬁ ; (1—3s)g(s,w)ds, t € Jwe.

From Lemma, it follows that 'oSF(y,w) is a closed graph operator. Moreover, from the definition of I' we have h,(t,w) €

L(SF(yn,w)). Since y, — yo, it follows from Lemma that

t
ha(t, w) :/ (t — s)g«(s, w)ds—l—i/ $)g«(s,w)ds — 7/ $)g«(s,w)ds, t € JweQ.
0

For some g, € Sp(y«,w).
Step 5: The set Q := {y € C(J,R) : AN(w)y € N(w)(y) for some A(w) > 1} is bounded. Let y € Q. Then A(w)y € N(w)(y)

for some A(w) > 1. Thus there exists g € Sr(y,w) such that

t n 1
y(t,w) =171 / (t —s)g(s,w)ds + )flL/ (n—s)g(s,w)ds — )\71#/ (1—-19)g(s,w)ds, t€ JweQ.
0 1-=nJo 1=nJo
This implies by (A2) that for each ¢t € J we have
t 1 n 1 1
ly(t,w)| < / (t—s)H(s,w)ds+ —— | (n—s)H(s,w)ds+ —— [ (1 —s)H(s,w)ds.
0 1-nJo L=nlJo
Thus
1 1 1
lytwl_ < / (1—s)H(s,w)ds + 7/ —s)H(s,w)ds + —— 7 (1-s)H(s,w)ds := K.
0 —NJo

This shows that Q is bounded. Set X := C(J, R). As a consequence of Lemma 2.2, we deduce that N(w) has a fixed point

which is a solution of (1)-(2) on J. O
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