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Abstract: Let P := P (t) be a polynomial in Z [X]. In this paper, we consider the polynomial solutions of Diophantine Equation

D : x2 − 6y2 − 10x+24y = 0. We also obtain some formulae and recurrence relations on the Polynomial solution (xn, yn)

of D.
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1. Introduction

A Diophantine equation is an indeterminate polynomial equation that allows the variables to be integers only. Diophantine

problems have fewer equations than unknown variables and involve finding integers that work correctly for all equations.

They are named after the Hellenistic Mathematician Diophantus of Alexandria. The mathematical study of Diophantine

problems is called Diophantine Analysis. The formulation of general theories of Diophantine equations was an achievement

of the twentieth century. There are Diophantine equations which possess no solutions, finite number of solutions or infinite

number of solutions. Among the various Diophantine equations, the Pythagorean equation and Pell’s equation are bestowed

with importance. A Pythagorean equation is a quadratic Diophantine equation x2 + y2 = z2. The equation x2 −Dy2 = N

with given integers D and N and unknowns x, y is called Pell’s equation. If D is a square or negative, it can have only

a finite number of solutions. The generalized Pell’s equation x2 − Dy2 = 1 was solved by Lagrange in terms of simple

Continued fraction. If (x0, y0) represents the fundamental solution, a sequence of solutions can be derived from this by using

the equality xn +
√
D yn =

(
x0 +

√
D y0

)n
. In this communication, yet another interesting quadratic Diophantine equation

given by x2 − 6y2 − 10x + 24y = 0 is considered for finding all possible solutions by various methods.

2. The Diophantine Equation x2 − 6y2 − 10x+ 24y = 0

In [11–15], we considered some specific Pell (also Diophantine) equations and their integer solutions. In the present paper,

we consider the integer solutions of Diophantine equation

D : x2 − 6y2 − 10x + 24y = 0 (1)
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over Z. Note that it is very difficult to solve D in its present form, that is, we cannot determine how many integer solutions

D has and what they are. So we have to transform D into an appropriate Diophantine equation which can be easily solved.

To get this let

T :

 x = u + h

y = v + k
(2)

be a translation for some h and k. In this case {h, k} is called the base of T and denote it by T [h; k] = {h, k}. If we apply

T to D, then we get

T (D) = D̃ : (u + h)2 − 6(v + k)2 − 10 (u + h) + 24 (v + k) = 0 (3)

In (3), we consider u(2h+ 2− 12) and v (−12k + 24). So we get h = 5 and k = 2. Consequently for x = u+ 5 and y = v + 2,

we have the Diophantine equation

D̃ : u2 − 6v2 = 1 (4)

which is a Pell equation. Now we try to find all integer solutions (un, vn) of D̃ and then we can retransfer all results from

D̃ to D by using the inverse of T .

Theorem 2.1. Let D̃ be the Diophantine equation in (4). Then

(1). The continued fraction expansion of
√

6 is
√

6 = [2; 2, 4].

(2). The fundamental solution of D̃ is (u1, v1) = (5, 2).

(3). Define the sequence {(un, vn)}, where  un

vn

 =

 5 12

2 5


n 1

0

 (5)

for n ≥ 1. Then (un, vn) is a solution of D̃.

(4). The solutions (un, vn) satisfy un = 5un−1 + 12vn−1 and vn = 2un−1 + 5vn−1 for n ≥ 2.

(5). The solutions (un, vn) satisfy the recurrence relations un = 9 (un−1 + un−2) − un−3 and vn = 9 (vn−1 + vn−2) − vn−3

for n ≥ 4.

(6). The nth solution (un, vn) can be given by

un

vn
= [2; 2, 4, · · · , 2, 4, 2] , for n ≥ 1. (6)

Proof.

(1). The continued fraction expansion of
√

6 is

√
6 = 2 +

(√
6 − 3 + 1

)
√

6 = 2 +
1
√
6+2
2

= 2 +
1

2 +
√
6−2
2

= 2 +
1

2 + 1√
6+2

= 2 +
1

2 + 1

4+
√
6−2

so
√

6 =
[
2; 2, 4

]
.
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(2). It is easily seen that (u1, v1) = (5, 2) is the fundamental solution of D̃ since 52 − 6(2)2 = 1.

(3). We prove it by Mathematical induction. Let n = 1. Then by (5), we get (u1, v1) = (5, 2) which is the fundamental

solution and so is a solution of D̃. Let us assume that the Diophantine equation in (4) is satisfied for n − 1, that is,

D̃ : u2
n−1 − 6v2n−1 = 1. We want to show that this equation is also satisfied for n. Applying (5), we find that

 un

vn

 =

 5 12

2 5


n 1

0


 un

vn

 =

 5 12

2 5


 5 12

2 5


n−1 1

0


 un

vn

 =

 5 12

2 5


 un−1

vn−1

 (7)

Hence we conclude that

u2
n − 6v2n = (5un−1 + 12vn−1)2 − 6(2un−1 + 5vn−1)2

= u2
n−1 − 6v2n−1 = 1.

So (un, vn) is also a solution D̃.

(4). From (7), we find that un = 5un−1 + 12vn−1 and vn = 2un−1 + 5vn−1 for n ≥ 2.

(5). We only prove that un satisfy the recurrence relation. For n = 4, we get u1 = 5, u2 = 49, u3 = 477, u4 = 4729. Hence

u4 = 9 (u3 + u2)− u1

= 9 (477 + 49)− 5

So un = 9 (un−1 + un−2)− un−3 is satisfied for n = 4. Let us assume that this relation is satisfied for n− 1, that is,

un−1 = 9 (un−2 + un−3)− un−4 (8)

Then applying the previous assertion, (7) and (8), we conclude that un = 9 (un−1 + un−2)− un−3 for n ≥ 4

(6). Note that u1
v1

= [2; 2] = 2 + 1
2

= 5
2

which is the fundamental solution. Let us assume that (un, vn) is a solution of D̃,

that is, u2
n − 6v2n = 1. Then by (6), we derive

un+1

vn+1
= 2 +

1

2 + 1

4+ 1

2+ 1
4+ 1

···+4+1
2

= 2 +
1

2 + 1

2+2+ 1

2+ 1
4+ 1

···+4+1
2

un+1

vn+1
= 2 +

1

2 + 1
2+un

vn

=
5un + 12vn
2un + 5vn

So (un+1, vn+1) is also a solution of D̃ since u2
n+1 − 6v2n+1 = (5un + 12vn)2 − 6(2un + 5vn)2 = u2

n − 6v2n = 1.
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Corollary 2.2. The base of the transformation T in (2) is the fundamental solution of D̃, that is T [h; k] = {h, k} = {u1, v1}.

Proof. We proved that (u1, v1) = (5, 2) is the fundamental solution of D̃. Also we showed that h = 5 and k = 2. So the

base of T is T [h, k] = {5, 2} as we claimed. We saw as above that the Diophantine equation D could be transformed into

the Diophantine equation D̃ via the transformation T . Also we showed that x = u + 5 and y = v + 2. So we can retransfer

all results from D̃ to D by using the inverse of T . Thus we can give the following main theorem.

Theorem 2.3. Let D be the Diophantine equation in (1). Then

(1). The fundamental solution of D is (x1, y1) = (10, 4).

(2). Define the sequence {(xn, yn)}n≥1 = {(un + 5, vn + 2)}, where {(un, vn)} defined in (5). Then (xn, yn) is a solution of

D. So it has infinitely many integer solutions (xn, yn) ∈ Z ×Z.

(3). The solutions (xn, yn) satisfy

xn = 5xn−1 + 12yn−1 − 44

yn = 2xn−1 + 5yn−1 − 18

(4). The solutions (xn, yn) satisfy the recurrence relations

xn = 9 (xn−1 + xn−2)− xn−3 − 80

yn = 9 (yn−1 + yn−2)− yn−3 − 32

for n ≥ 4.

Proof.

(1). It is easily seen that (x1, y1) = (10, 4) is the fundamental solution of D since 102 − 6(4)2 − 10 (10) + 24 (4) = 0.

(2). We prove it by Mathematical induction. Let n = 1. Then (x1, y1) = (u1 + 5, v1 + 2) = (10, 4) which is the fundamental

solution and so is a solution of D. Let us assume that the Diophantine equation in (1) is satisfied for n − 1, that is,

(un−1 + 5)2− 6
(
v2n−1 + 2

)
− 10 (un−1 + 5) + 24 (vn−1 + 2) = 0. We want to show that this equation is also satisfied for

n.

x2 − 6y2 − 10x + 24y = (un + 5)2 − 6(vn + 2)2 − 10 (un + 5) + 24(vn + 2)

= u2
n − 6v2n − 1

= 0 (un and vn solutions of D̃).

So (xn, yn) = (un + 5, vn + 2) is also a solution D.

(3). From (7), un = 5un−1 + 12vn−1. Adding 5 on both sides, un + 5 = 5un−1 + 12vn−1 + 5. We know that xn−1 = un−1 + 5

and yn−1 = vn−1 + 2. Therefore, un−1 = xn−1 − 5 and vn−1 = yn−1 − 2.

un + 5 = 5un−1 + 12vn−1 + 5

xn = 5 (xn−1 − 5) + 12 (yn−1 − 2) + 5
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We get,

xn = 5xn−1 + 12yn−1 − 44 (9)

Similarly,

yn = 2xn−1 + 5yn−1 − 18 (10)

(4). We prove that xn satisfy the recurrence relation. For n = 4, we get x1 = 10, x2 = 54, x3 = 490, x4 = 4806. Hence

x4 = 9 (x3 + x2)− x1 − 80

= 9 (490 + 54)− 10− 80

So xn = 9 (xn−1 + xn−2)− xn−3 − 80 is satisfied for n = 4. Let us assume that this relation is satisfied for n− 1, that

is,

xn−1 = 9 (xn−2 + xn−3)− xn−4 − 80 (11)

Then applying the previous assertion, (9) and (11), we conclude that xn = 9 (xn−1 + xn−2)−xn−3− 80 for n ≥ 4. Now

prove that yn satisfy the recurrence relation. For n = 4, we get y1 = 4, y2 = 22, y3 = 200, y4 = 1962. Hence

y4 = 9 (y3 + y2)− y1 − 32

= 9 (200 + 22)− 4− 32

So yn = 9 (yn−1 + yn−2)− yn−3− 32 is satisfied for n = 4. Let us assume that this relation is satisfied for n− 1, that is,

yn−1 = 9 (yn−2 + yn−3)− yn−4 − 32 (12)

Then applying the previous assertion, (10) and (12), we conclude that yn = 9 (yn−1 + yn−2)− yn−3− 32, for n ≥ 4.

3. Conclusion

Diophantine equations are rich in variety. There is no universal method for finding all possible solution (if it exists) for

Diophantine equations. The method looks to be simple but it is very difficult for reaching the solutions.
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