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Abstract: Due to lack of accuracy or fluctuation in collected data, often it is too difficult to evaluate the precise value, especially
in the continuous degradation element or system. To overcome this challenge, fuzzy set theory is employed to assess the

performance. In this paper, the imprecise costs of the replacement problem, whose money value changes with time are
taken as Triangular Intuitionistic Fuzzy Numbers (TIFN). A method is proposed to find the optimum replacement time

and the effectiveness of the same is illustrated by an example.
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1. Introduction

The fuzzy sets introduced by Zadeh. A [1] were generalized by Atanassov [2] to develop the intuitionistic fuzzy sets

which includes non-membership function which is very useful to express vagueness more accurately. The basic arithmetic

operations of generalized triangular intuitionistic fuzzy numbers and the notion of (α, β)-cut sets were defined by Seikh et

al [5]. Nagoorgani et al [7] introduced a ranking technique for TIFN using (α, β)-cut, score function and accuracy function.

Chiu and park [2] use fuzzy numbers in cash flow analysis and provides good survey of methods for ranking mutually exclusive

fuzzy projects. Biswas and Pramanik [5] developed a method of finding the optimal replacement time of fuzzy equipment

replacement problems with trapezoidal fuzzy numbers and triangular fuzzy numbers using Yager’s ranking method.

The considerations in this paper are: a replacement problem where the capital cost, C̃, the running cost (to be paid at the

beginning of the tth year) R̃t, are taken as TIFN. It is assumed that the running cost increases with time and the money has

a value over time. V = (1 + r)−1 is the present worth of a rupee to be spent after one year, where r is the rate of interest.

2. Preliminaries

Definition 2.1 (Fuzzy set). Let X be a classical set. A fuzzy set Ã is defined by Ã = {(x, µÃ(x))/x ∈ X}, where

µÃ(x) : X → [0, 1] is called the membership function of Ã and µÃ(x) is the degree of membership of x in Ã.

Definition 2.2 (Intuitionistic fuzzy set). Let X denote universe of discourse, then an intuitionistic fuzzy set ÃI in X

is given by ÃI = {(x, µÃ(x), νÃ(x))/x ∈ X} where µÃ(x) : X → [0, 1] and νÃ(x) : X → [0, 1] are functions such that

∗ E-mail: kannagi1011@gmail.com

851

http://ijmaa.in/


Intuitionistic Fuzzy Replacement Problem with Change in Money Value

0 ≤ µÃ(x) + νÃ(x) ≤ 1, ∀ x ∈ X. For each x ∈ X, µÃ(x) and νÃ(x) represent the degre of membership and the degree of

non-membership respectively.

Definition 2.3 (Intuitionistic fuzzy number). An intuitionistic fuzzy subset ÃI = {(x, µÃ(x), νÃ(x))/x ∈ X} of the real

line R is called an intuitionistic fuzzy number if the following holds:

(1). There exists m ∈ R, µÃ(m) = 1 and νÃ(m) = 0, m is called the mean value of ÃI .

(2). µÃ is a continuous mapping from R to the closed interval [0, 1] and ∀ x ∈ R, the relation 0 ≤ µÃ(x) + νÃ(x) ≤ 1 holds.

The membership function and non-membership function of ÃI are of the following form:

µÃ(x) =



0, −∞ < x ≤ m− α

f1(x), m− α < x < m

1, x = m

h1(x), m < x < m+ β

0, m+ β ≤ x <∞

νÃ(x) =



1, −∞ < x ≤ m− α′

f2(x), m− α′ < x < m & 0 ≤ f1(x) + f2(x) ≤ 1

0, x = m

h2(x), m < x < m+ β′ & 0 ≤ h1(x) + h2(x) ≤ 1

1, m+ β′ ≤ x <∞

Here m is the mean value of ĀI , α and β are called left and right spreads of membership function µĀ(x) respectively. α′, β′

represent left and right spreads of non-membership function νĀ(x) respectively.

Definition 2.4 (Triangular intuitionistic fuzzy number). A triangular intuitionistic fuzzy number ã is an intuitionistic fuzzy

subset in R with the following membership function µã(x) and non-membership function νã(x).

µã(x) =



x− a1

a2 − a1
; a1 ≤ x ≤ a2

a3 − x
a3 − a2

; a2 ≤ x ≤ a3

0; otherwise

νã′(x) =



a2 − x
a2 − a′1

; a′1 ≤ x ≤ a2

x− a2

a′3 − a2
; a2 ≤ x ≤ a′3

1; otherwise

Where a′1 ≤ a1 ≤ a2 ≤ a3 ≤ a′3 and 0 ≤ µā′(x) ≤ 1, 0 ≤ νā′(x) ≤ 1; 0 ≤ νā′(x) + µā′(x) ≤ 1 for all x ∈ X. Triangular

intuitionistic fuzzy number ã is denoted by (a1, a2, a3; a′1, a2, a
′
3).

2.1. Operations on triangular intuitionistic fuzzy number

Let ã = (a1, a2, a3; a′1, a2, a
′
3) and b̃ = (b1, b2, b3; b′1, b2, b

′
3) be two triangular intuitionistic fuzzy numbers. The arithmetic

operations on ã and b̃ is given below:

Addition: (a1, a2, a3; a′1, a2, a
′
3) + (b1, b2, b3; b′1, b2, b

′
3) = (a1 + b1, a2 + b2, a3 + b3; a′1 + b′1, a2 + b2, a

′
3 + b′3)

Subtraction: (a1, a2, a3; a′1, a2, a
′
3)− (b1, b2, b3; b′1, b2, b

′
3) = (a1 − b3, a2 − b2, a3 − b1; a′1 − b′3, a2 − b2, a′3 − b′1)

Multiplication: (a1, a2, a3; a′1, a2, a
′
3)× (b1, b2, b3; b′1, b2, b

′
3) = (a1b1, a2b2, a3b3; a′1b

′
1, a2b2, a

′
3b
′
3)

Scalar Multiplication:

k(a1, a2, a3; a′1, a2, a
′
3) = (ka1, ka2, ka3; ka′1, ka2, ka

′
3), if k > 0

= (ka3, ka2, ka1; ka′3, ka2, ka
′
1), if k < 0

Defuzzification: An accuracy function H(ã) =
a1+2a2+a3+a′1+2a2+a′3

8
is used to defuzzify the triangular intuitionistic fuzzy

number.
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3. Fuzzy Replacement Problem

The items whose maintenance cost increases with time and the money value decreases with constant rate are considered.

Then the replacement policy will be

(1). Replace if the next period’s cost is > the weighted average of previous costs.

(2). Do not replace if the next period’s cost is < the weighted average of previous costs. Time is taken to be a discrete

random variable. Let

C̃ = capital cost

R̃t = running cost at the beginning of the tth year

r = rate of interest

V = (1 + r)−1 the present worth factor. (or) depreciation value

The table gives the present worth of the item at the end of the corresponding year. It is assumed that the item has no resale

YEAR 1 2 · · · · · · · · · n

Present worth C̃ + R̃1 R̃2V R̃nV n−1

YEAR n + 1 n + 2 · · · · · · · · · 2n

Present worth (C̃ + R̃1)V n R̃2V n+1 R̃nV 2n−1

YEAR 2n + 1 2n + 2 · · · · · · · · · 3n

Present worth (C̃ + R̃1)V 2n R̃2V 2n+1 R̃nV 3n−1

value at the time of replacement. The present worth of all discounted costs at the end of every n years will be given by

P̃ (n) = (C̃ + R̃1)[1 + V n + V 2n + · · · ] + R̃2V [1 + V n + V 2n + · · · ] + · · ·+ R̃nV
n−1[1 + V n + V 2n + · · · ]

= (C̃ + R̃1 + R̃2V + · · ·+ R̃nV
n−1)(1 + V n + V 2n + · · · )

= (C̃ + R̃1 + R̃2V + · · ·+ R̃nV
n−1)

(
1

1− V n

)
[V < 1]

=
F̃ (n)

1− V n
where F̃ (n) = C̃ + R̃1 + R̃2V + · · ·+ R̃nV

n−1

P̃ (n+ 1) =
F̃ (n+ 1)

1− V n+1

P̃ (n) is minimum if P̃ (n+ 1)− P̃ (n) > 0 > P̃ (n)− P̃ (n− 1) i.e., if

F̃ (n+ 1)

1− V n+1
− F̃ (n)

1− V n
> 0 >

F̃ (n)

1− V n
− F̃ (n− 1)

1− V n−1

Now

F̃ (n+ 1)

1− V n+1
− F̃ (n)

1− V n
=

(1− V n)F̃ (n+ 1)− (1− V n+1)F̃ (n)

(1− V n+1)(1− V n)

=
bF̃ (n+ 1)− F̃ (n)c+ F̃ (n)V n+1 − F̃ (n+ 1)V n

(1− V n+1)(1− V n)

But

F̃ (n+ 1) = F̃ (n) + R̃n+1V
n

=
R̃n+1V

n + F̃ (n)V n+1 − V nbF̃ (n) + R̃n+1V
nc

(1− V n+1)(1− V n)
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=
R̃n+1V

n[1− V n] + F̃ (n)V n[V − 1]

(1− V n+1)(1− V n)

=
V n(1− V )

[
R̃n+1

(
1−V n

1−V

)
− F̃ (n)

]
(1− V n+1)(1− V n)

So P̃ (n) is minimum if

V n(1− V )
[
R̃n+1

(
1−V n

1−V

)
− F̃ (n)

]
(1− V n+1)(1− V n)

> 0 >
V n−1(1− V )

[
R̃n

(
1−V n−1

1−V

)
− F̃ (n− 1)

]
(1− V n)(1− V n−1)

V n
[
R̃n+1

(
1−V n

1−V

)
− F̃ (n)

]
(1− V n+1)

> 0 >
V n−1

[
R̃n

(
1−V n−1

1−V

)
− F̃ (n− 1)

]
(1− V n−1)

V
{
R̃n+1

[
1−V n

1−V

]
− F̃ (n)

}
1− V n+1

> 0 >

[
R̃n

(
1−V n−1

1−V

)
− F̃ (n− 1)

]
1− V n−1

R̃n+1

[
1− V n

1− V

]
− F̃ (n) > 0 > R̃n

[
1− V n−1

1− V

]
− [F̃ (n)− R̃nV

n−1

R̃n+1

[
1− V n

1− V

]
− F̃ (n) > 0 > R̃n

[
1− V n−1

1− V

]
− F̃ (n) + R̃nV

n−1

R̃n+1

[
1− V n

1− V

]
> F̃ (n) > R̃n

[
1− V n−1

1− V + V n−1

]
R̃n+1 > F̃ (n)

[
1− V
1− V n

]
> R̃n

R̃n+1 >
F̃ (n)

1 + V + V 2 + · · ·+ V n−1
> R̃n

R̃n+1 >
F̃ (n)

n−1∑
r=0

V r

> R̃n

F̃ (n)

n−1∑
r=0

V r

is the weighted average cost of previous n years with weights 0, 1, V, V 2, . . . V n−1 respectively. The value of n

satisfying the above relation will be the best replacement time.

4. Illustration

The triangular intuitionistic fuzzy capital cost of an equipment is C̃ = (2500, 3000, 3200; 2100, 3000, 3800). Assume that the

present value of one rupee to be spent in a year’s time is Re. 0.9. The running costs are given in the following table.

YEAR RUNNING COST

1 (400, 500, 600; 300, 500, 800)

2 (400, 600, 800; 200, 600, 900)

3 (700, 800, 900; 500, 800, 1000)

4 (800, 1000, 1200; 600, 1000, 1500)

5 (1200, 1300, 1500; 900, 1300, 1600)

6 (1400, 1600, 1700; 1300, 1600, 1800)

7 (1800, 2000, 2200; 1500, 2000, 2400)

Find the optimum replacement time of the equipment.

Solution: The above is an intuitionistic fuzzy replacement problem where the money has a value over time.The costs are

given as triangular intuitionistic fuzzy numbers.
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year R̃t (Rs. In thousands) V t−1 R̃tV t−1 (Rs. In thousands)
n∑

t=1

R̃tV
t−1 (Rs. In thousands)

1 (0.4,0.5,0.6;0.3,0.5,0.8) 1 (0.4,0.5,0.6;0.3,0.5,0.8) (0.4,0.5,0.6;0.3,0.5,0.8)

2 (0.4,0.6,0.8;0.2,0.6,0.9) 0.9 (0.36,0.54,0.72;0.18,0.54,0.81) (0.76,1.04,1.32;0.48,1.04,1.61)

3 (0.7,0.8,0.9;0.5,0.8,1.0) 0.81 (0.57,0.65,0.73;0.41,0.65,0.81) (1.33,1.69,2.05;0.89,1.69,2.42)

4 (0.8,1.0,1.2;0.6,1.0,1.5) 0.73 (0.58,0.73,0.88;0.44,0.73,1.1) (1.91,2.42,2.93;1.33,2.42,3.52)

5 (1.2,1.3,1.5;0.9,1.3,1.6) 0.66 (0.79,0.86,0.99;0.59,0.86,1.06) (2.7,3.28,3.92;1.92,3.28,4.58)

6 (1.4,1.6,1.7;1.3,1.6,1.8) 0.59 (0.83,0.94,1.0;0.77,0.94,1.06) (3.53,4.22,4.92;2.69,4.22,5.64)

7 (1.8,2.0,2.2;1.5,2.0,2.4) 0.53 (0.95,1.06,1.17;0.8,1.06,1.27) (4.48,5.28,6.09;3.49,5.28,6.91)

Year C̃ +

n∑
t=1

R̃tV
t−1 = F̃n

n∑
t=1

V t−1 ω̃(n) =
F̃n

n∑
t=1

V t−1

H(ã)

(Rs. In thousands) (Rs. In thousands)

1 (2.9,3.5,3.8;2.4,3.5,4.6) 1 (2.9,3.5,3.8;2.4,3.5,4.6) 3.463

2 (3.26,4.04,4.52;2.58,4.04,5.41) 1.9 (1.73,2.14,2.4;1.37,2.14,2.87) 2.116

3 (3.83,4.69,5.25;2.99,4.69,6.22) 2.71 (1.42,1.74,1.94;1.11,1.74,2.3) 1.716

4 (4.41,5.42,6.13;3.43,5.42,7.32) 3.44 (1.28,1.57,1.78;0.99,1.57,2.12) 1.556

5 (5.2,6.28,7.12;4.02,6.28,8.38) 4.1 (1.25,1.51,1.71;0.96,1.51,2.01) 1.496*

6. (6.03,7.22,8.12;4.79,7.22,9.44) 4.69 (1.27,1.52,1.71;1.01,1.52,1.98) 1.506

7. (6.98,8.28,9.29;5.59,8.28,10.71) 5.22 (1.33,1.57,1.77;1.06,1.57,2.03) 1.559

Where H(ã) =
a1+2a2+a3+a′1+2a2+a′3

8
. H(ã) is minimum at the fifth year. Therefore optimum replacement is at the end of

the 5th year.

5. Conclusion

The theory of intuitionistic fuzzy numbers is the generalization of fuzzy sets. Intuitionistic fuzzy numbers can be used to any

activity demanding human expertise and knowledge which are inevitably imprecise and not totally reliable. To deal with

this impreciseness the proposed method presents a procedure to find the optimum time of replacement for intuitionistic fuzzy

replacement problem with present worth factor, all costs being assumed as TIFN. The proposed procedure is supported by

an example. The procedure is very simple and more effective.
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