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Abstract: The Fuzzy set theory has been applied in many fields such as management, Engineering etc. In this paper, a new

membership function and new ranking function introduce on Heptagon fuzzy number and a new ranking method based

on heptagon fuzzy numbers used to a Travelling Salesman problems.
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1. Introduction

The ordinary form of travelling salesman problem, a map of cities is given to the salesman problem and has to visit all the

cities only one and return to the starting point to compute the tour. There are different methods to solve travelling salesman

problem. But this method to solve easily and minimum number of iteration. In fuzzy environment ranking fuzzy numbers is

a very important decision making procedure. The idea of fuzzy set was first proposed by Bellman and Zadeh [3] as a mean

of handling uncertainty that is due to imprecision rather than randomness. K.Dhurai and A.Karpagam [7] proposed a new

membership function on hexagonal fuzzy number. The concept of Fuzzy Linear Programming (FLP) was first introduced

by Tanaka et al [10]. Zimmerman [12] introduced fuzzy linear programming in fuzzy environment. Chanas [4] proposed a

fuzzy programming in multiobjective linear programming. Amit Kumar et al. [1] proposed a new method for solving fully

fuzzy linear programming problems with inequality constraints. H. Arsham and A.B.Kahn [2] introduced a Simplex type

algorithm for general transportation problems. This paper is organized as follows: In section 2 Basic definitions, In section

3 new membership function and new ranking function with fuzzy Travelling Salesman problems are presented. Finally

concludes the paper.

2. Preliminaries

Definition 2.1. The characteristic function µA of a crisp set A ⊂ X assigns a value either 0 or 1 to each member

in X. This function can be generalized to a function µÃ such that the value assigned to the element of the universal set

X fall within a specified range i.e. µÃ : X → [0, 1]. The assigned value indicate the membership function and the set

Ã = {(x, µÃ(x)) : x ∈ X} defined by µÃ(x) for x ∈ X is called fuzzy set.
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Definition 2.2. A Fuzzy set Ã, defined on the universal set of real numbers R, is said to be a fuzzy number if its membership

function has the following characteristics:

(1). µÃ : R→ [0, 1] is continuous.

(2). µÃ(x) = 0 for all x ∈ (∞, a] ∪ [d,∞)

(3). µÃ(x) is strictly increasing on [a, b] and strictly decreasing on [c, d]

(4). µÃ(x) = 1 for all x ∈ [b, c] where a < b < c < d.

Definition 2.3. An effective approach for ordering the elements of F(R) is also to define a ranking function R : F (R)→ R

which maps each fuzzy number into the real line, where a natural order exists. We define orders on F (R) by:

ã ≥ b̃ if and only if R(ã) ≥ R(b̃)

ã ≤ b̃ if and only if R(ã) ≤ R(b̃)

ã = b̃ if and only if R(ã) = R(b̃)

3. New Membership Function and New Ranking Function

3.1. New Membership Function of Heptagon fuzzy number

Let Ahep = (a1, a2, a3, a4, a5, a6, a7) and Bhep = (b1, b2, b3, b4, b5, b6, b7) be two heptagon fuzzy numbers, then its membership

function is defined as,

Figure 1. Graphical representation of a Heptagon fuzzy number
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3.2. New Ranking Function of Heptagon Fuzzy Number

Let Ahep = (a1, a2, a3, a4, a5, a6, a7) and Bhep = (b1, b2, b3, b4, b5, b6, b7) be two heptagon fuzzy numbers, then

Ahep = Bhep ⇔ R(Ahep) = R(Bhep)

Ahep ≥ Bhep ⇔ R(Ahep) ≥ R(Bhep)

Ahep ≤ Bhep ⇔ R(Ahep) ≤ R(Bhep)

In this paper for a heptagon of fuzzy number in a ranking method is from the following formula,

R
(
Ã
)

=
a1 + 0.75a2 + a3 + a4 + 0.75a5 + 0.5a6 + a7

6

3.3. Formulation of Fuzzy Travelling Salesman Problems

Suppose a person has to visit n cities. He starts from a particular city once and then returns to the starting point. The

fuzzy travelling costs from ith city to jth city is given by cij . The chosen of Travelling salesman problem may be formulated

by Maximize or Minimize Z =
∑
Xij ; j = 1, 2, . . . , n, j 6= i

and Xij = 1, i = 1, 2, . . . , n, i 6= j and j = 1
n∑

j=1

Xij = 1, i = 1, 2, . . . , n, i 6= j.

3.4. Numerical Example

The expected times required to be taken by a salesman in travelling from one city to another are as follows



A B C D

A − (3, 4, 5, 6, 8, 10, 11) (0, 1, 2, 3, 5, 7, 8) (4, 6, 7, 9, 12, 15, 16)

B (1, 2, 3, 4, 6, 8, 9) − (0, 4, 6, 7, 8, 10, 11) (1, 2, 3, 4, 8, 9, 10)

C (2, 6, 7, 8, 12, 13, 14) (2, 4, 6, 7, 8, 12, 15) − (0, 2, 3, 4, 6, 8, 9)

D (1, 2, 3, 4, 6, 8, 9) (1, 2, 3, 4, 8, 9, 10) (1, 2, 3, 4, 8, 9, 12) −


How should the salesman plan his trip so that he covers each of these cities no more than once, and completes his trip in

minimum possible time required for travelling?

Solution. Here

R
(
Ã
)

=
a1 + 0.75a2 + a3 + a4 + 0.75a5 + 0.5a6 + a7

6
.

Therefore

R
(
Ã12

)
=

3 + 0.75(4) + 5 + 6 + 0.75(8) + 0.5(10) + 11

6
= 6.5.

Similarly R
(
Ã13

)
= 3.5, R

(
Ã14

)
= 9.5, R

(
Ã21

)
= 4.5, R

(
Ã23

)
= 6.3, R

(
Ã24

)
= 5.

Step 1: Row Reduction



A B C D

A − 6.5 3.5 9.5

B 4.5 − 6.3 5

C 8.5 7.5 − 4.3

D 5.5 5 5.3 −


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Step 2: Column Reduction



A B C D

A − 1.5 0 5.2

B 0 − 2.8 0.7

C 4 2.5 − 0

D 1 0 1.8 −


Therefore the optimal solution is A→ c→ D → B → A = 17.3.

4. Conclusion

In this paper, New membership function and New Ranking Function of Heptagon fuzzy number has been newly introduced

with numerical example. Numerical example shows that by this new Ranking function we can have the optimal solution as

well as the crisp and fuzzy optimal cost. This technique occurring real life situations.
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