

International Journal of Mathematics And its Applications

Fixed Point Theorems for Generalized (ψ, ϕ) -contractive Mappings in a Complete Strong Fuzzy Metric Space

Research Article

K.K.M. Sarma¹ and Yohannes Gebru^{1*}

1 Department of Mathematics, Andhra University, Viskapatnam, (A.P), India.

Abstract:	In this paper, we introduce generalized (ψ, ϕ) -contractive mapping in strong fuzzy metric spaces and prove fixed point theorems to this class of maps. Further we introduce a generalized (ψ, ϕ) -contractive mapping f with respect a mapping g and prove common fixed point theorems. We provide examples in support of our results.
MSC:	Primary 47H10; Secondary 54H25.
Keywords:	Strong fuzzy metric space, generalized (ψ, ϕ) -contractive mappings, generalized (ψ, ϕ) - contractive pair of mappings.

1. Introduction

The concept of fuzzy metric space was introduced in different ways by various authors (see [5, 9]) and the fixed point theory in these spaces has been intensively studied. The notion of fuzzy metric space, introduced by Kramosil and Michálek [9] was modified by George and Veeramani [3] and that obtained a Hausdorff topology for this section of fuzzy metric spaces. Gregori and Sapena [5] have introduced a kind of contractive mappings in fuzzy metric spaces in the sense of George and Veeramani and proved a fuzzy Banach contraction theorem using a strong condition for completeness, which is Completeness in the sense of Grabiec, or G-completeness. Subsequently, deeper and significant research in fuzzy metric spaces was undertaken by various researchers (see [1, 14, 15]). In 2010, Gregori et al. [11] introduced Strong fuzzy metric space and proved a fixed point theorem. Motivated from Azizollah et al. [2], we have developed this paper. In this paper, we first introduce generalized contractive conditions of maps and also prove some fixed point theorems for generalized (ψ , ϕ)-contractive mapping in strong fuzzy metric spaces.

2. Preliminaries

We begin with some basic definitions and results which will be used in the main part of our paper.

Definition 2.1 ([16]). A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous t-norm if it satisfies the following conditions :

(T1) * is associative and commutative,

^{*} E-mail: yohannesgebru2005@gmail.com

(T2) * is continuous,

(T3) a * 1 = a for all $a \in [0, 1]$,

(T4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Remark 2.2. A t-norm * is called positive, if a * b > 0 for all $a, b \in (0, 1)$.

The Lukasievicz t-norm, i.e, $a *_L b = \max\{a + b - 1, 0\}$, product t-norm, i.e, a * b = ab and minimum t-norm, *i.e.*, $a *_M b = \min\{a, b\}$, for $a, b \in [0, 1]$ are some examples of t-norms. The concept of fuzzy metric space as defined by George and Veeramani [3] is as follows.

Definition 2.3 ([3]). Let X be a nonempty set, * be a continuous t-norm. Assume that a fuzzy set $M : X \times X \times (0, \infty) \to [0, 1]$ satisfies the following conditions, for each $x, y, z \in X$ and t, s > 0,

- (M1) M(x, y, t) > 0,
- (M2) M(x, y, t) = 1 if and only if x = y,
- (M3) M(x, y, t) = M(y, x, t),
- $(M4) \ M(x, y, t) * M(y, z, s) \le M(x, z, t+s),$
- (M5) $M(x, y, \cdot) : (0, \infty) \to [0, 1]$ is continuous,

then we call M a fuzzy metric on X, and we call the 3-tuple (X, M, *) a fuzzy metric space.

Definition 2.4 ([6]). Let (X, M, *) be a fuzzy metric space. The fuzzy metric M is said to be strong (non-Archimedean) if it satisfies

$$(M4^{'}): M(x,z,t) \geq M(x,y,t) * M(y,z,t), \ \ for \ each \ x,y,z \in X \ and \ each \ t > 0$$

Remark 2.5. Axiom (M4') can not replace axiom (M4) in the above definition of fuzzy metric, since in that case, M could not be a fuzzy metric on X (See Example 8 in [13]).

Note that it is possible to define a strong fuzzy metric by replacing (M4) by (M4') and demanding in (M5) that the function $M(x, y, \cdot)$ be an increasing continuous function on t, for each $x, y \in X$. (In fact, in such a case we have that $M(x, z, t+s) \ge M(x, y, t+s) * M(y, z, t+s) \ge M(x, y, t) * M(y, z, s)$).

Remark 2.6. Not every fuzzy metric space is a strong fuzzy metric space.

The following example shows that there exists non -strong fuzzy metric spaces.

Example 2.7 ([8]). Let $X = \{x, y, z\}, * = \cdot$ and $M : X \times X \times (0, \infty) \to [0, 1]$ be defined for each t > 0 as M(x, x, t) = M(y, y, t) = M(z, z, t) = 1, $M(x, z, t) = M(z, x, t) = M(y, z, t) = M(z, y, t) = \frac{t}{t+1}$, $M(x, y, t) = M(y, x, t) = \frac{t^2}{(t+2)^2}$. Then (X, M, *) is non-strong fuzzy metric space.

Lemma 2.8 ([4]). Let (X, M, *) be a fuzzy metric space. For all $x, y \in X$, $M(x, y, \cdot)$ is a non-decreasing function on $(0, \infty)$.

Remark 2.9. We observe that 0 < M(x, y, t) < 1, provided $x \neq y$, for all t > 0 (see [10]). Let (X, M, *) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center $x \in X$ and radius 0 < r < 1 is defined by $B(x, r, t) = \{y \in X : M(x, y, t) > 1 - r\}$. A subset $A \subset X$ is called open, if for each $x \in A$, there exists t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Let τ denote the family of all open subsets of X. Then τ is a topology on X, called the topology induced by the fuzzy metric M. This topology is metrizable (see [7]).

Definition 2.10 ([3]). Let (X, M, *) be a fuzzy metric space.

- 1. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n, x, t) = 1$ for all t > 0.
- 2. A sequence $\{x_n\}$ in X is called a Cauchy sequence if, for each $0 < \epsilon < 1$ and t > 0, there exits $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 \epsilon$ for each $n, m \ge n_0$.
- 3. A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.
- 4. A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Remark 2.11. In a fuzzy metric space the limit of a convergent sequence is unique.

Definition 2.12 ([17]). Let (X, M, *) be a fuzzy metric space. Then the mapping M is said to be continuous on $X \times X \times (0, \infty)$ if

$$\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t),$$

when $\{(x_n, y_n, t_n)\}$ is a sequence in $X \times X \times (0, \infty)$ which converges to a point $(x, y, t) \in X \times X \times (0, \infty)$, i.e.,

$$\lim_{n \to \infty} M(x_n, x, t) = \lim_{n \to \infty} M(y_n, y, t) = 1 \text{ and } \lim_{n \to \infty} M(x, y, t_n) = M(x, y, t).$$

Lemma 2.13 ([12]). If (X, M, *) is a fuzzy metric space, then M is a continuous function on $X \times X \times (0, \infty)$.

In section 3, we prove the existence of fixed points to generalized (ψ, ϕ) – contractive mappings of a complete strong fuzzy metric space.

3. Main results

We begin our main results with the following definition

Definition 3.1. Let $\psi: (0,1] \to [1,\infty)$ be a function which satisfies the following conditions.

- (1). ψ is continuous and non-increasing, and
- (2). $\psi(x) = 1$ if and only if x = 1.

We denote by Ψ the class of all functions which satisfies the above conditions. Note that $\Psi \neq \emptyset$, in fact the map $\psi : (0,1] \rightarrow [1,\infty)$ defined by $\psi(t) = \frac{1}{t}$ is in Ψ .

Definition 3.2. Let $\phi: (0,1] \times (0,1] \to (0,1]$ be a function which satisfies the following conditions.

(1). ϕ is upper semi continuous and non-decreasing, and

(2). $\phi(s,t) = 1$ if and only if s = t = 1.

We denote by Φ the class of all functions which satisfies the above conditions. Note that $\Phi \neq \emptyset$, in fact the map ϕ : $(0,1] \times (0,1] \rightarrow (0,1]$ defined by $\phi(s,t) = st$ is in Φ .

Now, we introduce generalized (ψ, ϕ) contractive mapping in fuzzy metric space.

Definition 3.3. Let (X, M, *) be a fuzzy metric space. We say that a mapping $T : X \to X$ is a generalized (ψ, ϕ) - contractive mapping if there exists $(\psi, \phi) \in \Psi \times \Phi$ such that,

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)),$$
(1)

for all $x, y \in X$, and for all t > 0, where

$$\begin{split} N(x,y,t) &= \min\{M(x,y,t), M(x,Tx,t), M(y,Ty,t)\},\\ N^{'}(x,y,t) &= \min\{M(x,y,t), M(x,Tx,t), M(x,Ty,t)\},\\ N^{''}(x,y,t) &= \min\{M(x,y,t), M(y,Ty,t), M(y,Tx,t)\}. \end{split}$$

Definition 3.4. Let (X, M, *) be a fuzzy metric space and let f, g be two self mappings on X. A mapping f is said to be generalized (ψ, ϕ) - contractive with respect to g if there exist $(\psi, \phi) \in \Psi \times \Phi$ such that,

$$\psi(M(fx, gy, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)),$$
(2)

for all $x, y \in X$, and for all t > 0, where

$$\begin{split} N(x,y,t) &= \min\{M(x,y,t), M(x,fx,t), M(y,gy,t)\},\\ N^{'}(x,y,t) &= \min\{M(x,y,t), M(x,fx,t), M(x,gy,t)\},\\ N^{''}(x,y,t) &= \min\{M(x,y,t), M(y,Ty,t), M(y,Tx,t)\}. \end{split}$$

The following propositions are useful to prove our main results.

Proposition 3.5. Let (X, M, *) be a strong fuzzy metric space. Let $T : X \to X$ be a generalized (ψ, ϕ) - contractive mapping. Fix $x_0 \in X$. Define a sequence $\{x_n\}$ in X by $x_{n+1} = Tx_n$ for $n = 0, 1, 2, \cdots$. If $\lim_{n \to \infty} M(x_n, x_{n+1}, t) = 1$ for all t > 0 then $\{x_n\}$ is a Cauchy sequence.

Proof. Since the mapping T is generalized (ψ, ϕ) - contractive there exists $(\psi, \phi) \in \Psi \times \Phi$ such that

$$\psi(M(Tx,Ty,t)) \leq \psi(N(x,y,t))\phi(N^{'}(x,y,t),N^{''}(x,y,t)) \quad \forall x,y \in X$$

Suppose that sequence $\{x_n\}$ is not a Cauchy sequence. Then there exist $\epsilon \in (0, 1)$ and $t_0 > 0$ such that for all $k \ge 1$, there are positive integers $m(k), n(k) \in \mathbb{N}$ with $m(k) > n(k) \ge k$ and

$$M(x_{n(k)}, x_{m(k)}, t_0) \le 1 - \epsilon.$$
(3)

We assume that m(k) is the least integer exceeding n(k) and satisfying the above inequality, that is equivalently,

$$M(x_{n(k)}, x_{m(k)-1}, t_0) > 1 - \epsilon \text{ and } M(x_{n(k)}, x_{m(k)}, t_0) \le 1 - \epsilon.$$

Now, we have

$$1 - \epsilon \ge M(x_{n(k)}, x_{m(k)}, t_0) \ge M(x_{n(k)}, x_{m(k)-1}, t_0) * M(x_{m(k)-1}, x_{m(k)}, t_0)$$

> $(1 - \epsilon) * M(x_{m(k)-1}, x_{m(k)}, t_0).$

 $\lim_{k \to \infty} (1 - \epsilon) * M(x_{m(k)-1}, x_{m(k)}, t_0) = 1 - \epsilon.$ It follows that $\lim_{k \to \infty} M(x_{n(k)}, x_{m(k)}, t_0)$ exists and equal to $1 - \epsilon$. First we prove that

- (i). $\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 \epsilon,$
- (ii). $\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) = 1 \epsilon,$
- (iii). $\lim_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) = 1 \epsilon.$

We have

$$M(x_{m(k)}, x_{n(k)}, t_0) \ge M(x_{m(k)}, x_{m(k)-1}, t_0) * M(x_{m(k)-1}, x_{n(k)-1}, t_0) * M(x_{n(k)-1}, x_{n(k)}, t_0),$$
(4)

$$M(x_{m(k)-1}, x_{n(k)-1}, t_0) \ge M(x_{m(k)-1}, x_{m(k)}, t_0) * M(x_{m(k)}, x_{n(k)}, t_0) * M(x_{n(k)}, x_{n(k)-1}, t_0).$$
(5)

Taking limit superior in (4) and limit inferior in (5) we get,

$$1 - \epsilon \ge \limsup_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0) \tag{6}$$

and

$$\liminf_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0) \ge 1 - \epsilon.$$

$$\tag{7}$$

Since limit superior is always greater than or equal to limit inferior, from (6) and (7), we obtain

$$\limsup_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 - \epsilon$$

and

$$\liminf_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 - \epsilon$$

Thus, $\lim_{k\to\infty} M(x_{m(k)-1}, x_{n(k)-1}, t_0)$ exists and equal to $1 - \epsilon$. Thus (i) holds. We now prove (ii). By condition (M4') of strong fuzzy metric space, we have

$$M(x_{m(k)-1}, x_{n(k)}, t_0) \ge M(x_{m(k)-1}, x_{m(k)}, t_0) * M(x_{m(k)}, x_{n(k)}, t_0),$$
(8)

and

$$M(x_{m(k)}, x_{n(k)}, t_0) \ge M(x_{m(k)}, x_{m(k)-1}, t_0) * M(x_{m(k)-1}, x_{n(k)}, t_0).$$
(9)

Taking limit inferior in (8) and limit superior in (9) as $n \to \infty$, we have

$$\liminf_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) \ge 1 - \epsilon$$

and

$$1 - \epsilon \ge \limsup_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0).$$

This implies that

$$1 - \epsilon \ge \limsup_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) \ge \liminf_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) \ge 1 - \epsilon.$$

Thus,

$$\limsup_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) = \liminf_{k \to \infty} M(x_{m(k)-1}, x_{n(k)}, t_0) = 1 - \epsilon$$

Hence $\lim_{k\to\infty} M(x_{m(k)-1}, x_{n(k)}, t_0)$ exists and $\lim_{k\to\infty} M(x_{m(k)-1}, x_{n(k)}, t_0) = 1 - \epsilon$. Thus (ii) holds.

927

We now prove (iii). By Condition (M'4) in a strong fuzzy metric space, we have

$$M(x_{n(k)-1}, x_{m(k)}, t_0) \ge M(x_{n(k)-1}, x_{n(k)}, t_0) * M(x_{n(k)}, x_{m(k)}, t_0),$$
(10)

and

$$M(x_{n(k)}, x_{m(k)}, t_0) \ge M(x_{n(k)}, x_{n(k)-1}, t_0) * M(x_{n(k)-1}, x_{m(k)}, t_0).$$
(11)

Taking limit inferior in (10) and limit superior in (11) as $n \to \infty$, we obtain

$$\liminf_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) \ge 1 - \epsilon$$

and

$$1 - \epsilon \ge \limsup_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0).$$

This implies that

$$1 - \epsilon \ge \limsup_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) \ge \liminf_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) \ge 1 - \epsilon$$

Thus,

$$\limsup_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) = \liminf_{k \to \infty} M(x_{n(k)-1}, x_{m(k)}, t_0) = 1 - \epsilon.$$

Hence $\lim_{k\to\infty} M(x_{n(k)-1}, x_{m(k)}, t_0)$ exists and $\lim_{k\to\infty} M(x_{n(k)-1}, x_{m(k)}, t_0) = 1 - \epsilon$. Hence (iii) holds. Now, from the inequality (1), we have

$$\begin{aligned} \psi(M(x_{m(k)}, x_{n(k)}, t_0)) &= \psi(M(Tx_{m(k)-1}, Tx_{n(k)-1}, t_0)) \\ &\leq \psi(N(x_{m(k)-1}, x_{n(k)-1}, t_0))\phi(N'(x_{m(k)-1}, x_{n(k)-1}, t_0), N''(x_{m(k)-1}, x_{n(k)-1}, t_0)) \end{aligned}$$

where

$$N(x_{m(k)-1}, x_{n(k)-1}, t_0) = \min\{M(x_{m(k)-1}, x_{n(k)-1}, t_0), M(x_{m(k)-1}, x_{m(k)}, t_0), M(x_{n(k)-1}, x_{n(k)}, t_0)\}, \\ N'(x_{m(k)-1}, x_{n(k)-1}, t_0) = \min\{M(x_{m(k)-1}, x_{n(k)-1}, t_0), M(x_{m(k)-1}, x_{m(k)}, t_0), M(x_{m(k)-1}, x_{m(k)}, t_0)\}, \\ N''(x_{m(k)-1}, x_{n(k)-1}, t_0) = \min\{M(x_{m(k)-1}, x_{n(k)-1}, t_0), M(x_{n(k)-1}, x_{n(k)}, t_0), M(x_{n(k)-1}, x_{m(k)}, t_0)\}.$$

Hence, it follows that

$$\lim_{k \to \infty} N(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 - \epsilon,$$
(12)

$$\lim_{k \to \infty} N'(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 - \epsilon,$$
(13)

$$\lim_{k \to \infty} N''(x_{m(k)-1}, x_{n(k)-1}, t_0) = 1 - \epsilon.$$
(14)

Since ψ is continuous and ϕ is upper semi continuous with respect to both components, by taking limit superior as $k \to \infty$ in (12), and by using (12), (13) and (14), we get

$$\psi(1-\epsilon) \le \psi(1-\epsilon)\phi(1-\epsilon,1-\epsilon)$$

it follows that, $\phi(1-\epsilon, 1-\epsilon) = 1$. Hence from the property of ϕ , we have $\epsilon = 0$, which contradicts that $0 < \epsilon < 1$. Therefore, $\{x_n\}$ is a Cauchy sequence in X.

Proposition 3.6. Let (X, M, *) be a strong fuzzy metric space. Let f, g be two self maps on X and let f be a generalized (ψ, ϕ) - contractive mapping with respect to g. Fix $x_0 \in X$. Define a sequence $\{x_n\}$ in X by $x_{2n} = fx_{2n-1}$ and $x_{2n+1} = gx_{2n}$ for all $n = 0, 1, 2, \cdots$. If $\lim_{n \to \infty} M(x_n, x_{n+1}, t) = 1$, $\forall t > 0$. Then $\{x_n\}$ is a Cauchy sequence.

Proof. Suppose that the sequence $\{x_n\}$ is not a Cauchy sequence. Since $\lim_{n \to \infty} M(x_n, x_{n+1}, t) = 1$ for all t > 0, the sequence $\{x_{2n}\}$ is not Cauchy. Then there exist $\epsilon \in (0, 1)$ and $t_0 > 0$ such that for all $k \ge 1$, there are positive integers $m(k), n(k) \in \mathbb{N}$ with $n(k) > m(k) \ge k$ and

$$M(x_{2n(k)}, x_{2m(k)}, t_0) \le 1 - \epsilon.$$
(15)

We assume that 2n(k) is the least positive even integer exceeding 2m(k) and satisfying the above inequality, that is equivalently,

$$M(x_{2n(k)}, x_{2m(k)}, t_0) \le 1 - \epsilon$$
, and $M(x_{2m(k)}, x_{2n(k)-2}, t_0) > 1 - \epsilon$.

By condition (M4') in a strong fuzzy metric space, we have

$$1 - \epsilon \ge M(x_{2n(k)}, x_{2m(k)}, t_0) \ge M(x_{2n(k)}, x_{2n(k)-2}, t_0) * M(x_{2n(k)-2}, x_{2m(k)}, t_0)$$

$$\ge M(x_{2n(k)-2}, x_{2n(k)}, t_0) * (1 - \epsilon) \quad \forall k \in \mathbb{N}.$$
(16)

Since $\{M(x_{2n(k)}, x_{2n(k)}, t)\}$ is a sub sequence of $\{M(x_n, x_{n+1}, t)\}$ by taking limit as $k \to \infty$ on both sides of (16) we get,

$$\lim_{k \to \infty} M(x_{2n(k)}, x_{2m(k)}, t_0) = 1 - \epsilon.$$
(17)

From the condition (M'4) of strong fuzzy metric space, we have

$$\begin{split} \psi(M(x_{2m(k)+2}, x_{2n(k)+1}, t_0)) &= \psi(M(fx_{2m(k)+1}), gx_{2n(k)}, t_0) \\ &\leq \psi(N(x_{2m(k)+1}, x_{2n(k)}, t_0))\phi(N'(x_{2m(k)+1}, x_{2n(k)}, t_0), N''(x_{2m(k)+1}, x_{2n(k)}, t_0)), \end{split}$$

where

$$N(x_{2m(k)+1}, x_{2n(k)}, t_0) = \min\{M(x_{2m(k)+1}, x_{2n(k)}, t_0), M(x_{2m(k)+1}, f_{2m(k)+1}, t_0), M(x_{2n(k)}, g_{2n(k)}, t_0)\},$$
(18)

$$N'(x_{2m(k)+1}, x_{2n(k)}, t_0) = \min\{M(x_{2m(k)+1}, x_{2n(k)}, t_0), M(x_{2m(k)+1}, f_{2m(k)+1}, t_0), M(x_{2m(k)}, g_{2n(k)}, t_0)\}$$
(19)

and

$$N^{''}(x_{2m(k)+1}, x_{2n(k)}, t_0) = \min\{M(x_{2m(k)+1}, x_{2n(k)}, t_0), M(x_{2n(k)}, gx_{2n(k)}, t_0), M(x_{2n(k)}, fx_{2m(k)+1}, t_0)\}.$$
(20)

0.20

Thus, letting as $k \to \infty$ in (18), (19) and (20), it follows that

$$\lim_{k \to \infty} N(x_{2m(k)+1}, x_{2n(k)}, t_0) = 1 - \epsilon,$$
(21)

$$\lim_{k \to \infty} N'(x_{2m(k)+1}, x_{2n(k)}, t_0) = 1 - \epsilon,$$
(22)

$$\lim_{k \to \infty} N(x_{2m(k)+1}, x_{2n(k)}, t_0) = 1 - \epsilon.$$
(23)

On taking limit as $k \to \infty$ in (18) and by using (21), (22) and (23), it follows that

$$\psi(1-\epsilon) \le \psi(1-\epsilon)\phi(1-\epsilon, 1-\epsilon). \tag{24}$$

Which implies $\epsilon = 0$, a contradiction. Therefore $\{x_n\}$ is a Cauchy Sequence.

We now prove our main theorems and draw some corollaries.

Theorem 3.7. Let (X, M, *) be a strong fuzzy metric space and $T : X \to X$ be continuous and generalized (ψ, ϕ) -contractive mapping. Then T has a unique fixed point.

Proof. Let $x_0 \in X$ be arbitrary element of X. We define a sequence $x_{n+1} = Tx_n$ for $n = 0, 1, 2, \cdots$. If there exist $n_0 \in \mathbb{N} \cup \{0\}$ such that $x_{n_0} = x_{n_0+1} = Tx_{n_0}$, then x_0 is the fixed point of T. Assume that $x_n \neq x_{n+1}$, for all $n = 1, 2, 3, \ldots$. Since T is a generalized (ψ, ϕ) -contractive mapping there exists $(\psi, \phi) \in \Psi \times \Phi$ such that

$$\psi(M(Tx,Ty,t)) \leq \psi(N(x,y,t))\phi(N'(x,y,t),N''(x,y,t))$$
 for all $x, y \in X$ and for each $t > 0$.

Thus, for $x_{n-1} \neq x_n$ and t > 0, we have

$$\psi(M(Tx_{n-1}, Tx_n, t)) \le \psi(N(x_{n-1}, x_n, t))\phi(N'(x_{n-1}, x_n, t), N''(x_{n-1}, x_n, t)).$$

This implies,

$$\psi(M(x_n, x_{n+1}, t)) \le \psi(N(x_{n-1}, x_n, t))\phi(N'(x_{n-1}, x_n, t), N''(x_{n-1}, x_n, t)),$$

where

$$N(x_{n-1}, x_n, t) = \min\{M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\},\$$

$$N'(x_{n-1}, x_n, t) = \min\{M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_{n-1}, x_{n+1}, t)\},\$$

$$N''(x_{n-1}, x_n, t) = \min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_n, x_n, t)\}.$$

Since $\phi(N'(x_{n-1}, x_n, t), N''(x_{n-1}, x_n, t)) < 1$, we conclude that

$$\psi(M(x_n, x_{n+1}, t)) < \psi(\min\{M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t)\})$$

Again ψ is non-increasing imply that

$$M(x_n, x_{n+1}, t) > \min\{M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t)\}.$$

This implies,

$$\min\{M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t)\} = M(x_{n-1}, x_n, t).$$

Thus, $M(x_n, x_{n+1}, t) > M(x_{n-1}, x_n, t)$. Therefore, for every t > 0, $\{M(x_n, x_{n+1}, t)\}$ is an increasing sequence of real numbers in (0,1]. Since every bounded and monotone sequence is convergent, the sequence $\{M(x_n, x_{n+1}, t)\}$ converges to some number in (0,1]. Let $\lim_{n \to \infty} M(x_n, x_{n+1}, t) = l_t$.

Claim: $l_t = 1, \forall t > 0$. We have that T is a generalized contractive mapping, so for all $n \in \mathbb{N}$ and t > 0

$$\psi(M(Tx_{n-1}, Tx_n, t)) \le \psi(N(x_{n-1}, x_n, t))\phi(N'(x_{n-1}, x_n, t), N''(x_{n-1}, x_n, t)).$$

Since ϕ is non-decreasing with respect to both variables, we get that

$$\psi(M(x_n, x_{n+1}, t)) \le \psi(N(x_{n-1}, x_n, t))\phi(M(x_{n-1}, x_n, t_0), \min\{M(x_{n-1}, x_n, t_0), M(x_n, x_{n+1}, t_0)\}\}.$$
(25)

Taking limit superior as $k \to \infty$ in the inequality (25), the continuity of ψ and the upper semi continuity of ϕ , shows $\psi(l_t) \leq \psi(l_t)\phi(l_t, l_t)$. Which implies $\phi(l_t, l_t) = 1$. Hence $l_t = 1$. Now by Proposition (3.5) the sequence $\{x_n\}$ is Cauchy. Since X is a complete strong fuzzy metric space there exists $x \in X$ such that $x_n \to x$ as $n \to \infty$. The continuity of T implies that $Tx_n \to Tx$ as $n \to \infty$. Since the limit of a convergent sequence in fuzzy metric space is unique, we have that Tx = x. Therefore x is a fixed point of T. We show the uniqueness of fixed points of T. Let u and v be two fixed points of T. Then Tu = u and Tv = v. Since T is a generalized (ψ, ϕ) -contractive map, for $u, v \in X$, and t > 0 we have

$$\psi(M(u, v, t)) = \psi(M(Tu, Tv, t))$$

$$\leq \psi(N(u, v, t))\phi(N'(u, v, t), N''(u, v, t)),$$
(26)

where

$$N(u, v, t) = \min\{M(u, v, t), M(u, Tu, t), M(v, Tv, t)\}$$

$$= \min\{M(u, v, t), 1, 1\}$$

$$= M(u, v, t),$$

$$N'(u, v, t) = \min\{M(u, v, t), M(u, Tu, t), M(u, Tv, t)\}$$

$$= \min\{M(u, v, t), 1, M(u, v, t)\} = M(u, v, t),$$

$$N''(u, v, t) = \min\{M(u, v, t), M(v, Tv, t), M(v, Tu, t)\}$$

$$= \min\{M(u, v, t), 1, M(v, u, t)\} = M(u, v, t).$$
(29)

From (26)-(29) we have observed that

$$\psi(M(u, v, t)) \le \psi(M(u, v, t))\phi((M(u, v, t), M(u, v, t))).$$

This implies, $\phi((M(u, v, t), M(u, v, t))) = 1$, thus M(u, v, t) = 1, which implies u = v. Therefore, the fixed point of T is unique.

If we take $\psi(t) = \frac{1}{t}$ and $\phi(s, t) = st$ in Theorem 3.7 we get the following corollary.

(29)

Corollary 3.8. Let (X, M, *) be a strong fuzzy metric space and T be a self map of X which satisfies

$$N(x,y,t) \leq M(Tx,Ty,t)N^{'}(x,y,t)N^{''}(x,y,t),$$

where

$$\begin{split} N(x,y,t) &= \min\{M(x,y,t), M(x,Tx,t), M(y,Ty,t)\},\\ N^{'}(x,y,t) &= \min\{M(x,y,t), M(x,Tx,t), M(x,Ty,t)\},\\ N^{''}(x,y,t) &= \min\{M(x,y,t), M(y,Ty,t), M(y,Tx,t)\}. \end{split}$$

Then T has a unique fixed point.

For the next result we use the following notation: Let $f: X \to X$, $g: X \to X$ be maps, we denote the set of all fixed points of f by $F(f) = \{x \in X | f(x) = x\}$ and the set of all common fixed points of f and g by $F(f,g) = \{x \in X | f(x) = g(x) = x\}$.

Theorem 3.9. Let (X, M, *) be a strong complete fuzzy metric space. Let $f, g : X \to X$ be two mappings and f is generalized (ψ, ϕ) - contractive mapping with respect g then F(f) = F(g). Further if either f or g is continuous then f and g have a unique common fixed point.

Proof. By our assumption there exists $(\psi, \phi) \in \Psi \times \Phi$, for all x, y in X and t > 0 such that

$$\psi(M(fx, gy, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)),$$
(30)

where

$$N(x, y, t) = \min\{M(x, y, t), M(x, fx, t), M(y, gy, t)\},\$$
$$N'(x, y, t) = \min\{M(x, y, t), M(x, fx, t), M(x, gy, t)\},\$$
$$N''(x, y, t) = \min\{M(x, y, t), M(y, gy, t), M(y, fx, t)\}.$$

We now show that F(f) = F(g) = F(f,g). Let $z \in F(f)$, so fz = z. Thus, for x = y = z, we have

$$\psi(M(z, gz, t)) \le \psi(N(z, z, t))\phi(N'(z, z, t), N''(z, z, t)) \text{ for all } t > 0,$$
(31)

where

$$N(z, z, t) = M(z, gz, t), N'(z, z, t) = M(z, gz, t) and N''(z, z, t) = M(z, gz, t).$$

Thus from (31) and the above result we get the following inequality;

$$\psi(M(z, gz, t)) \le \psi(M(z, gz, t))\phi(M(z, gz, t), M(z, gz, t)), \text{ for all } t > 0.$$
(32)

Which yields $\phi(M(z, gz, t), M(z, gz, t)) = 1$, for all t > 0. Since $\phi \in \Phi$, we obtain $M(z, gz, t) = 1, \forall t > 0$. Hence gz = z, that is $z \in F(g)$. Thus $F(f) \subset F(g)$. Similarly we can show that $F(g) \subset F(f)$. Therefore, we have F(f,g) = F(f) = F(g). Now let $x_0 \in X$, we define a sequence $\{x_n\}$ by $x_1 = x_0$ and

$$x_{2n} = f x_{2n-1}, \quad x_{2n+1} = g x_{2n} \quad for \ n = 1, 2, 3, \cdots.$$
(33)

If there exist $m \in \mathbb{N}$ such that either $x_{2m} = x_{2m-1}$ or $x_{2m+1} = x_{2m}$ holds then F(f) is nonempty. Since if $x_{2m} = x_{2m-1}$, then $fx_{2m-1} = x_{2m} = x_{2m-1}$, so $x_{2m-1} \in F(f)$. Hence $x_{2m} \in F(g) = F(f)$. Therefore we may suppose that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$. Suppose n arbitrary. For each t > 0, we have

$$\psi(M(x_{2n}, x_{2n+1}, t)) = \psi(M(fx_{2n-1}, gx_{2n}, t))$$

$$\leq \psi(N(x_{2n-1}, x_{2n}, t))\phi(N'(x_{2n-1}, x_{2n}, t), N''(x_{2n-1}, x_{2n}, t),$$
(34)

where

$$N(x_{2n-1}, x_{2n}, t) = \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n-1}, fx_{2n-1}, t), M(x_{2n}, gx_{2n}, t)\},$$
(35)

$$N(x_{2n-1}, x_{2n}, t) = \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n-1}, f_{x_{2n-1}}, t), M(x_{2n-1}, g_{x_{2n}}, t)\},$$
(36)

$$N''(x_{2n-1}, x_{2n}, t) = \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, gx_{2n}, t), M(x_{2n}, fx_{2n-1}, t)\}.$$
(37)

From (34), (35), (36) and (37) we have

$$\psi(M(x_{2n}, x_{2n+1}, t)) \le \psi(\min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\})$$

$$\times \phi(\min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n-1}, x_{2n+1}, t)\}, \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}.$$

Since ϕ is non-decreasing with respect to both components it follows that

$$\psi(M(x_{2n}, x_{2n+1}, t)) \le \psi(\min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\})\phi(M(x_{2n-1}, x_{2n}, t), \\ \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}).$$
(38)

If $\phi(M(x_{2n-1}, x_{2n}, t), \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}) = 1$ then

$$M(x_{2n-1}, x_{2n}, t) = \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\},\$$

which implies $M(x_{2n-1}, x_{2n}, t) \leq M(x_{2n}, x_{2n+1}, t)$. On the hand, if

$$\phi(M(x_{2n-1}, x_{2n}, t), \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}) < 1$$

then from (38) we have

$$\psi(M(x_{2n}, x_{2n+1}, t)) < \psi(\min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}).$$
(39)

Combining (39) with the non-increasing property of ψ , we get

$$M(x_{2n}, x_{2n+1}, t) > \min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\}.$$

Which implies $\min\{M(x_{2n-1}, x_{2n}, t), M(x_{2n}, x_{2n+1}, t)\} = M(x_{2n-1}, x_{2n}, t)$. Thus, $M(x_{2n}, x_{2n+1}, t) > M(x_{2n-1}, x_{2n}, t)$. Hence $\{M(x_{2n}, x_{2n+1}, t)\}$ is an increasing sequence in (0, 1]. Consequently there exist $l_t \in (0, 1]$ such that $\lim_{n\to\infty} M(x_{2n}, x_{2n+1}, t) = l_t, \forall t > 0$. We now prove that $l_t = 1$ for all t > 0. Let t > 0, from (38) we have

$$\psi(M(x_{2n}, x_{2n+1}, t)) = \psi(M(fx_{2n-1}, gx_{2n}, t)) \le \psi(N(x_{2n-1}, x_{2n}, t))\phi(M(x_{2n-1}, x_{2n}, t), N''(x_{2n-1}, x_{2n}, t)).$$
(40)

933

Since ψ is continuous and ϕ is upper semi continuous with respect to both variables on taking limit superior in (40) we get

$$\psi(l_t) \le \psi(l_t)\phi(l_t, l_t). \tag{41}$$

Which implies $\phi(l_t, l_t) = 1$. By property of ϕ , $l_t = 1$. Hence by Proposition 2 it follows that $\{x_n\}$ is a Cauchy sequence. Since (X, M, *) is a complete strong fuzzy metric space there exist $u \in X$ such that $x_n \to u$. Without loss of generality we assume that f is Continuous. As $x_{2n-1} \to u$ as $n \to \infty$, the continuity of f implies that $fx_{2n-1} = x_{2n} \to fu$ as $n \to \infty$, by uniqueness of the limit, we obtain fu = u. Therefore $u \in F(f) = F(g)$. We will show u is unique. Suppose that $v \in F(f,g) = F(f) = F(g)$. For each t > 0, we have

$$\psi(M(u, v, t)) = \psi(M(fu, gv, t))$$

$$\leq \psi(N(u, v, t))\phi(N'(u, v, t), N''(u, v, t)),$$
(42)

where

$$N(u, v, t) = \min\{M(u, v, t), M(u, fu, t), M(v, gv, t)\} = \min\{M(u, v, t), 1, 1\} = M(u, v, t),$$
(43)

$$N(u, v, t) = \min\{M(u, v, t), M(u, fu, t), M(u, gv, t)\} = \min\{M(u, v, t), 1, M(u, v, t)\} = M(u, v, t),$$
(44)

$$N^{''}(u,v,t) = \min\{M(u,v,t), M(v,gv,t), M(v,fu,t)\} = \min\{M(u,v,t), 1, M(u,v,t)\} = M(u,v,t).$$
(45)

From (42), (43), (44) and (45), we have

$$\psi(M(u,v,t)) = \psi(M(fu,gv,t)) \le \psi(M(u,v,t))\phi(M(u,v,t),M(u,v,t)).$$

Thus, $\phi(M(u, v, t), M(u, v, t)) = 1$. Which implies M(u, v, t) = 1. Therefore u = v.

By taking $\psi(t) = \frac{1}{t}$ and $\phi(s,t) = st$ in Theorem 3.9 we draw the following corollary:

Corollary 3.10. Let (X, M, *) be a strong complete fuzzy metric space. Let $f, g : X \to X$ be two mappings such that for each $x, y \in X$ and t > 0

$$\frac{M(x,y,z)}{M(fx,gy,t)} \leq N^{'}(x,y,t)N^{''}(x,y,t),$$

where

$$N'(x, y, t) = \min\{M(x, y, t), M(x, fx, t), M(x, gy, t)\}$$
$$N''(x, y, t) = \min\{M(x, y, t), M(y, gy, t), M(y, fx, t)\}.$$

Then F(f) = F(g). Further if either f or g is continuous then f and g have a unique common fixed point.

4. Examples

In this section we provide examples in support of the main results of section 3. The following example is in support of Theorem 3.7.

Example 4.1. Let $X = [0, \infty)$ and $M(x, y, t) = (\frac{t}{t+1})^{d(x,y)}$, where d(x, y) = |x - y|, * be product continuous t-norm. Here (X, M, *) is complete strong fuzzy metric space. Let $T : X \to X$ be a map defined by

$$Tx = \begin{cases} \frac{x}{2}, & if \ x \in [0, 1) \\ \frac{1}{2}, & if \ x \in [1, \infty) \end{cases}$$

Claim. T is a generalized (ψ, ϕ) -contractive map for $\psi(t) = \frac{1}{t^6}$ and $\phi(s, t) = \sqrt{st}$. clearly $(\psi, \phi) \in \Psi \times \Phi$. Now we wish to show for all x, y in X and t > 0

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$
(46)

Case 1: Let $x, y \in [0, 1], Tx = \frac{x}{2}, Ty = \frac{y}{2}$ and let $a = \frac{t}{t+1}$. Sub case 1; if $x \ge y$ then $M(Tx, Ty, t) = a^{\frac{x-y}{2}}, M(x, y, t) = a^{x-y}, M(x, Tx, t) = a^{\frac{x}{2}}, M(y, Ty, t) = a^{\frac{y}{2}}, M(x, Ty, t) = a^{x-\frac{y}{2}}$ and

$$M(y, Tx, t) = \begin{cases} a^{y-\frac{x}{2}}, & \text{if } y \ge \frac{x}{2} \\ a^{\frac{x}{2}-y}, & \text{if } y < \frac{x}{2} \end{cases}$$

When $y \geq \frac{x}{2}$,

$$N(x, y, t) = \min\{a^{x-y}, a^{\frac{x}{2}}, a^{\frac{y}{2}}\} = a^{\frac{x}{2}}, \ N'(x, y, t) = \min\{a^{x-y}, a^{\frac{x}{2}}, a^{x-\frac{y}{2}}\} = a^{x-\frac{y}{2}} \text{ and }$$
$$N''(x, y, t) = \min\{a^{x-y}, a^{\frac{y}{2}}, a^{y-\frac{x}{2}}\} = \begin{cases} a^{x-y}, & \text{if } x \ge \frac{3y}{2}, \\ a^{\frac{y}{2}}, & \text{if } x < \frac{3y}{2}. \end{cases}$$

For $x \ge \frac{3y}{2}$, we have $\psi(M(Tx, Ty, t)) = a^{-3x+3y}$, $\psi(N(x, y, t)) = a^{-3x}$, $\phi(N'(x, y, t), N''(x, y, t)) = a^{x-\frac{3y}{4}}$. Since $-3x+3y \ge -3x + x - \frac{3y}{4}$, $\forall y \ge \frac{x}{2}$, we have

$$\psi(M(Tx,Ty,t)) \le \psi(N(x,y,t))\phi(N'(x,y,t),N''(x,y,t)).$$

If $x < \frac{3y}{2}$, then $\phi(N'(x, y, t), N''(x, y, t)) = a^{\frac{x}{2}}$. Again since $-3x + 3y \ge -3x + \frac{x}{2}, \forall y \ge \frac{x}{2}$, we have

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t))$$

If $y < \frac{x}{2}$ then $N(x, y, t) = a^{x-y}$, $N^{'}(x, y, t) = a^{x-\frac{y}{2}}$, and $N^{''}(x, y, t) = a^{x-y}$. Thus we have

$$\psi(M(Tx,Ty,t)) = a^{-3x+3y}, \quad \psi(N(x,y,t)) = a^{-6x+6y} \text{ and } \phi(N'(x,y,t),N''(x,y,t)) = a^{x-\frac{3y}{4}}.$$

Here, $-3x + 3y \ge -6x + 6y + x - \frac{3y}{4}, \forall y < \frac{x}{2}, \text{ so } \psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N^{'}(x, y, t), N^{''}(x, y, t)).$ **Sub case 2:** if y > x then $M(Tx, Ty, t) = a^{\frac{y-x}{2}}, M(x, y, t) = a^{y-x}, M(x, Tx, t) = a^{\frac{x}{2}}, M(y, Ty, t) = a^{\frac{y}{2}}, M(y, Tx, t) = a^{y-\frac{x}{2}}, and$

$$M(x, Ty, t) = \begin{cases} a^{x - \frac{y}{2}}, & \text{if } x \ge \frac{y}{2}, \\ a^{\frac{y}{2} - x}, & \text{if } x < \frac{y}{2}. \end{cases}$$

 $\begin{aligned} & \text{When } x \ \geq \ \frac{y}{2} \ \text{we have } N(x,y,t) \ = \ a^{\frac{y}{2}}, \ N^{''}(x,y,t) \ = \ a^{y-\frac{x}{2}} \ \text{and } N^{'}(x,y,t) \ = \ \begin{cases} a^{\frac{x}{2}}, & \text{if } y \le \frac{3x}{2} \\ a^{y-x}, & \text{if } y > \frac{3x}{2} \end{cases} \\ & \mu^{y-x}, \text{ if } y > \frac{3x}{2} \end{cases} \end{aligned} \\ & \psi(M(Tx,Ty,t)) = a^{-3y+3x}, \ \psi(N(x,y,t)) = a^{-3y}, \ \phi(N^{'}(x,y,t),N^{''}(x,y,t)) = a^{\frac{y}{2}}. \\ & \text{Since } -3y+3x \ge -3y+y-\frac{y}{2}, \ \forall y \le \frac{3x}{2}, \\ & \text{we have } \end{cases}$

 $\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$

If $y > \frac{3x}{2}$, $\phi(N'(x, y, t), N''(x, y, t)) = a^{y - \frac{3x}{4}}$. Again since $-3y + 3x \ge -3y + y - \frac{3x}{4}$, $\forall x \ge \frac{y}{2}$, so we have

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)), \forall t > 0.$$

If $x < \frac{y}{2}$ then $N(x, y, t) = a^{y-x}$, $N^{'}(x, y, t) = a^{y-x}$, $N^{''}(x, y, t) = a^{y-\frac{x}{2}}$.

$$\psi(M(Tx,Ty,t)) = a^{-3y+3x}, \psi(N(x,y,t)) = a^{-6x+6y}, \phi(N'(x,y,t) \text{ and } N''(x,y,t)) = a^{y-\frac{3x}{4}}$$

Here $-3y + 3x \ge -6y + 6x + y - \frac{3x}{4}, \forall y > 2x$, imply that

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)), \ t > 0.$$

Thus, for all $x, y \in [0, 1)$

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

Case 2: $x \in [0, 1)$ and $y \in [1, \infty)$

Sub case 1: $\frac{y}{2} \le x < y$; $M(Tx, Ty, t) = a^{\frac{1}{2} - \frac{x}{2}}$, $M(x, y, t) = a^{y-x}$, $M(x, Tx, t) = a^{\frac{x}{2}}$, $M(y, Ty, t) = a^{y-\frac{1}{2}}$, $M(y, Tx, t) = a^{y-\frac{x}{2}}$, $M(x, Ty, t) = a^{x-\frac{1}{2}}$. We observe that

$$N(x, y, t) = a^{y - \frac{1}{2}}$$

$$N'(x, y, t) = \begin{cases} a^{y - x}, & \text{if } y \le \frac{3x}{2} \\ a^{\frac{x}{2}}, & \text{if } y > \frac{3x}{2} \end{cases}$$

$$N''(x, y, t) = a^{y - \frac{x}{2}}$$

When $y \leq \frac{3x}{2}$, we get that $\psi(M(Tx, Ty, t)) = a^{-3+3x}$, $\psi(N(x, y, t)) = a^{-6y+3}$, $\phi(N'(x, y, t), N''(x, y, t)) = a^{y-\frac{3x}{4}}$. It can easily be observed that $-3 + 3x \geq -6y + 3 + y - \frac{3x}{4}$, $\forall x \geq \frac{y}{2}$. Thus, for $y \leq \frac{3x}{2}$

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

 $\text{When } y > \frac{3x}{2}, \ \phi(N^{'}(x,y,t),N^{''}(x,y,t)) = a^{\frac{y}{2}}. \ \text{Similarly, we observe that, } -3 + 3x \geq -6y + 3 + \frac{y}{2}. \ \text{Thus, } \forall \ y > \frac{3x}{2}, \ y > \frac{3x}{2}$

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

Sub case 2 If $x < \frac{y}{2}$ then $M(Tx, Ty, t) = a^{\frac{1}{2} - \frac{x}{2}}, M(x, y, t) = a^{y-x}, M(x, Tx, t) = a^{\frac{x}{2}}, M(y, Ty, t) = a^{y-\frac{1}{2}}, M(y, Tx, t) = a^{y-\frac{x}{2}}$ and

$$M(x,Ty,t) = \begin{cases} a^{x-\frac{1}{2}}, & \text{if } x \ge \frac{1}{2} \\ a^{\frac{1}{2}-x}, & \text{if } x < \frac{1}{2} \end{cases}$$

When $x \geq \frac{1}{2}$, we get that

$$\begin{split} N(x,y,t) &= a^{y-\frac{1}{2}}.\\ N^{'}(x,y,t) &= a^{y-x}.\\ N^{''}(x,y,t) &= a^{y-\frac{x}{2}}. \end{split}$$

Hence

$$\psi(M(Tx,Ty,t)) = a^{-3+3x}, \psi(N(x,y,t)) = a^{-6y+3} \text{ and } \phi(N^{'}(x,y,t),N^{''}(x,y,t)) = a^{y-\frac{3x}{4}}$$

Since $-3 + 3x \ge -6y + 3 + y - \frac{3x}{4}, \forall x \ge \frac{1}{2} \text{ and } y > 1$, we have

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

When $x < \frac{1}{2}$, we get that $N(x, y, t) = a^{y-x}$, $N'(x, y, t) = a^{y-x}$ and $N''(x, y, t) = a^{y-\frac{x}{2}}$. Here we can easily observe that $\psi(M(Tx, Ty, t)) = a^{-3+3x}$, $\psi(N(x, y, t)) = a^{-6y+6x}$, $\phi(N'(x, y, t), N''(x, y, t)) = a^{y-\frac{3x}{4}}$. Since $-3 + 3x \ge -6y + 6x + y - \frac{3x}{4}$, $\forall x < \frac{1}{2}$ and y > 1, we get that

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

Therefore, for all $x \in [0,1)$, $y \in [1,\infty)$ and t > 0,

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

In a similar way, we can show that $\forall y \in [0,1), \forall x \in [1,\infty)$ and t > 0,

$$\psi(M(Tx, Ty, t)) \leq \psi(N(x, y, t))\phi(N^{'}(x, y, t), N^{''}(x, y, t))$$

Case 3. Let $x, y \in [1, \infty)$ and $x \ge y$.

Sub case 1: if x > 2y then M(Tx, Ty, t) = 1, $M(x, y, t) = a^{x-y}$, $M(x, Tx, t) = a^{x-\frac{1}{2}}$, $M(y, Ty, t) = a^{y-\frac{1}{2}}$, $M(y, Tx, t) = a^{y$

$$N^{''}(x,y,t) = \min\{a^{y-x}, a^{y-\frac{1}{2}}\} = \begin{cases} a^{x-y}, & \text{if } x \ge 2y - \frac{1}{2} \\ a^{y-\frac{1}{2}}, & \text{if } x < 2y - \frac{1}{2} \end{cases}$$

When $x < 2y - \frac{1}{2}$, we get that

$$\psi(M(Tx,Ty,t)) = 1, \psi(N(x,y,t)) = a^{-6x+3}, \phi(N^{'}(x,y,t) \text{ and } N^{''}(x,y,t)) = a^{\frac{x}{2} + \frac{y}{2} - \frac{1}{2}}.$$

Since $-6x + 3 + \frac{x}{2} + \frac{y}{2} - \frac{1}{2} \leq 0, \forall x \geq y \text{ and } y > 1$, we have

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)).$$

When $x \ge 2y - \frac{1}{2}$, we get that

$$\psi(M(Tx,Ty,t)) = 1, \psi(N(x,y,t)) = a^{-6x+3} \text{ and } \phi(N^{'}(x,y,t),N^{''}(x,y,t)) = a^{x-\frac{y}{2}-\frac{1}{4}}$$

Since $-6x + 3 + x - \frac{y}{2} - \frac{1}{4} \le 0, \forall x \ge 1 \text{ and } y \ge 1$,

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t))$$

In a similar way we Show that (46) is true when $x, y \in [1, \infty)$ and $y \ge x$. Hence, from all the cases we conclude that,

$$\psi(M(Tx, Ty, t)) \le \psi(N(x, y, t))\phi(N'(x, y, t), N''(x, y, t)), \ \forall \ x, y \in [0, \infty)$$

and t > 0. Therefore, T is generalized (ψ, ϕ) contractive mapping. By theorem (3.7) T has a unique fixed point. Indeed, 0 is the unique fixed point of T.

The following example is in support of Theorem 3.9.

Example 4.2. Let $X = [0, \infty)$ and $f, g : X \to X$ defined by $fx = \frac{x}{2}$ and $g(x) = \frac{x}{3}$. Let M be a strong fuzzy metric space define by $M(x, y, t) = (\frac{t}{t+1})^{d(x,y)}$, where d(x, y) = |x - y|. Let $\psi : (0, 1] \to [1, \infty)$ and $\phi : (0, 1] \times (0, 1] \to (0, 1]$ define by $\psi(t) = \frac{1}{t^8}$ and $\phi(s, t) = st$. we prove that f is (ψ, ϕ) - generalized contractive mapping with respect to g. Thus, by Theorem 3.9 we conclude that f and g have a unique common fixed point in X, in fact 0 is a common fixed point for f and g in X.

References

- [1] J.H.Asl, S.Rezapour and N.Shahzad, On fixed points of $\alpha \psi$ contractive multifunctions, Fixed Point Theory and Applications 2012(2012), 212.
- [2] Azizollah Aziz, Mohammed Moosaei and Gita Zare, Fixed point theorems for almost generalized C-contractive mappings in ordered complete metric spaces, fixed point theory and application, springer.
- [3] A.George and P.Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
- [4] M.Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1983), 385-389.
- [5] V.Gregori and A.Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125(2002), 245-252.
- [6] V.Gregoria and A. Sapena, Remarks to On strong intuitionistic fuzzy metrics, J. Nonlinear Sci. Appl., 9(2016), 4016-4038.
- [7] V.Gregori and S.Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, 115(2000), 485-489.
- [8] J.Gutierrez Garcia and S.Romaguera, Examples of non-strong fuzzy metrics, Elsevier B.V, (2010).
- [9] I.Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kyber-netica, 11(1975), 326-334.
- [10] D.Mihet, A class of contractions in fuzzy metric spaces, Fuzzy Sets Systems, 161(2010), 1131-1137.
- [11] V.Gregori, S.Morillas and A.Sapena, On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems, 161(16)(2010), 21932205.
- [12] J.Rodriguez, Lopez and S.Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147(2004), 273-283.
- [13] A.Sapena and S.Morillas, On strong fuzzy metrics, Proceedings of the Workshop in Applied Topology, 135-141.
- [14] K.K.M.Sarma and Yohannes Gebru, Generalization of fixed Point results for (α^{*}, η^{*}, β)-contractive mapping in fuzzy Metric Spaces, Bangmod International J. Math. & Comp. Sci., 3(1-2)(2017), 35-52.
- [15] K.K.M.Sarma and Yohannes Gebru, Generalization of fixed point results for (α^*, η^*, ψ) contractive admissible mappings in fuzzy metric spaces, Journal of the int. mathematical virtual institute, 8(2018), 87-102.
- [16] B.Schweizer and A.Sklar, Statistical metric spaces, Pac J Math., 10(1960), 313-334.
- [17] Supak Phiangsungnoen, Yeol Je Choc and Poom Kumam, Fixed Point Results for Modified Various Contractions in Fuzzy Metric Spaces via α admissible, Filomat, 30(7)(2016), 1869-1881