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1. Introduction

The concept of fuzzy metric space was introduced in different ways by various authors (see [5, 9]) and the fixed point theory

in these spaces has been intensively studied . The notion of fuzzy metric space, introduced by Kramosil and Michálek [9] was

modified by George and Veeramani [3] and that obtained a Hausdorff topology for this section of fuzzy metric spaces. Gregori

and Sapena [5] have introduced a kind of contractive mappings in fuzzy metric spaces in the sense of George and Veeramani

and proved a fuzzy Banach contraction theorem using a strong condition for completeness, which is Completeness in the

sense of Grabiec, or G-completeness. Subsequently, deeper and significant research in fuzzy metric spaces was undertaken by

various researchers (see [1, 14, 15]). In 2010, Gregori et al. [11] introduced Strong fuzzy metric space and proved a fixed point

theorem. Motivated from Azizollah et al. [2], we have developed this paper. In this paper, we first introduce generalized

contractive conditions of maps and also prove some fixed point theorems for generalized (ψ, φ)-contractive mapping in strong

fuzzy metric spaces.

2. Preliminaries

We begin with some basic definitions and results which will be used in the main part of our paper.

Definition 2.1 ([16]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm if it satisfies the

following conditions :

(T1) ∗ is associative and commutative,
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(T2) ∗ is continuous,

(T3) a ∗ 1 = a for all a ∈ [0, 1],

(T4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Remark 2.2. A t-norm ∗ is called positive, if a ∗ b > 0 for all a, b ∈ (0, 1).

The Lukasievicz t-norm, i.e, a ∗L b = max{a + b − 1, 0}, product t-norm, i.e, a ∗ b = ab and minimum t-norm, i.e.,

a ∗M b = min{a, b}, for a, b ∈ [0, 1] are some examples of t-norms. The concept of fuzzy metric space as defined by George

and Veeramani [3] is as follows.

Definition 2.3 ([3]). Let X be a nonempty set, ∗ be a continuous t-norm. Assume that a fuzzy set M : X×X×(0,∞)→ [0, 1]

satisfies the following conditions, for each x, y, z ∈ X and t, s > 0,

(M1) M(x, y, t) > 0,

(M2) M(x, y, t) = 1 if and only if x = y,

(M3) M(x, y, t) = M(y, x, t),

(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(M5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous,

then we call M a fuzzy metric on X, and we call the 3-tuple (X,M, ∗) a fuzzy metric space.

Definition 2.4 ([6]). Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric M is said to be strong (non-Archimedean) if

it satisfies

(M4
′
) : M(x, z, t) ≥M(x, y, t) ∗M(y, z, t), for each x, y, z ∈ X and each t > 0.

Remark 2.5. Axiom (M4
′
) can not replace axiom (M4) in the above definition of fuzzy metric, since in that case, M could

not be a fuzzy metric on X (See Example 8 in [13]).

Note that it is possible to define a strong fuzzy metric by replacing (M4) by (M4
′
) and demanding in (M5) that the

function M(x, y, ·) be an increasing continuous function on t, for each x, y ∈ X. (In fact, in such a case we have that

M(x, z, t+ s) ≥M(x, y, t+ s) ∗M(y, z, t+ s) ≥M(x, y, t) ∗M(y, z, s)).

Remark 2.6. Not every fuzzy metric space is a strong fuzzy metric space.

The following example shows that there exists non -strong fuzzy metric spaces.

Example 2.7 ([8]). Let X = {x, y, z}, ∗ = · and M : X × X × (0,∞) → [0, 1] be defined for each t > 0 as M(x, x, t) =

M(y, y, t) = M(z, z, t) = 1, M(x, z, t) = M(z, x, t) = M(y, z, t) = M(z, y, t) = t
t+1

, M(x, y, t) = M(y, x, t) = t2

(t+2)2
. Then

(X,M, ∗) is non-strong fuzzy metric space.

Lemma 2.8 ([4]). Let (X,M, ∗) be a fuzzy metric space. For all x, y ∈ X, M(x, y, ·) is a non-decreasing function on (0,∞).

Remark 2.9. We observe that 0 < M(x, y, t) < 1, provided x 6= y, for all t > 0 (see [10]). Let (X,M, ∗) be a fuzzy

metric space. For t > 0, the open ball B(x, r, t) with a center x ∈ X and radius 0 < r < 1 is defined by B(x, r, t) = {y ∈

X : M(x, y, t) > 1 − r}. A subset A ⊂ X is called open, if for each x ∈ A, there exists t > 0 and 0 < r < 1 such that

B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is a topology on X, called the topology induced by

the fuzzy metric M . This topology is metrizable (see [7]).
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Definition 2.10 ([3]). Let (X,M, ∗) be a fuzzy metric space.

1. A sequence{xn} in X is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, t) = 1 for all t > 0.

2. A sequence{xn} in X is called a Cauchy sequence if, for each 0 < ε < 1 and t > 0, there exits n0 ∈ N such that

M(xn, xm, t) > 1− ε for each n,m ≥ n0.

3. A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

4. A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Remark 2.11. In a fuzzy metric space the limit of a convergent sequence is unique.

Definition 2.12 ([17]). Let (X,M, ∗) be a fuzzy metric space. Then the mapping M is said to be continuous on X×X×(0,∞)

if

lim
n→∞

M(xn, yn, tn) = M(x, y, t),

when {(xn, yn, tn)} is a sequence in X ×X × (0,∞) which converges to a point (x, y, t) ∈ X ×X × (0,∞), i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 2.13 ([12]). If (X,M, ∗) is a fuzzy metric space, then M is a continuous function on X ×X × (0,∞).

In section 3, we prove the existence of fixed points to generalized (ψ, φ)− contractive mappings of a complete strong fuzzy

metric space.

3. Main results

We begin our main results with the following definition

Definition 3.1. Let ψ : (0, 1]→ [1,∞) be a function which satisfies the following conditions.

(1). ψ is continuous and non-increasing, and

(2). ψ(x) = 1 if and only if x = 1.

We denote by Ψ the class of all functions which satisfies the above conditions. Note that Ψ 6= ∅, in fact the map ψ : (0, 1]→

[1,∞) defined by ψ(t) = 1
t

is in Ψ.

Definition 3.2. Let φ : (0, 1]× (0, 1]→ (0, 1] be a function which satisfies the following conditions.

(1). φ is upper semi continuous and non-decreasing, and

(2). φ(s, t) = 1 if and only if s = t = 1.

We denote by Φ the class of all functions which satisfies the above conditions. Note that Φ 6= ∅, in fact the map φ :

(0, 1]× (0, 1]→ (0, 1] defined by φ(s, t) = st is in Φ.

Now, we introduce generalized (ψ, φ) contractive mapping in fuzzy metric space.
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Definition 3.3. Let (X,M, ∗) be a fuzzy metric space. We say that a mapping T : X → X is a generalized (ψ, φ)- contractive

mapping if there exists (ψ, φ) ∈ Ψ× Φ such that,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)), (1)

for all x, y ∈ X, and for all t > 0, where

N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)},

N
′
(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(x, Ty, t)},

N
′′

(x, y, t) = min{M(x, y, t),M(y, Ty, t),M(y, Tx, t)}.

Definition 3.4. Let (X,M, ∗) be a fuzzy metric space and let f, g be two self mappings on X. A mapping f is said to be

generalized (ψ, φ)- contractive with respect to g if there exist (ψ, φ) ∈ Ψ× Φ such that,

ψ(M(fx, gy, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)), (2)

for all x, y ∈ X, and for all t > 0, where

N(x, y, t) = min{M(x, y, t),M(x, fx, t),M(y, gy, t)},

N
′
(x, y, t) = min{M(x, y, t),M(x, fx, t),M(x, gy, t)},

N
′′

(x, y, t) = min{M(x, y, t),M(y, Ty, t),M(y, Tx, t)}.

The following propositions are useful to prove our main results.

Proposition 3.5. Let (X,M, ∗) be a strong fuzzy metric space. Let T : X → X be a generalized (ψ, φ)- contractive mapping.

Fix x0 ∈ X. Define a sequence {xn} in X by xn+1 = Txn for n = 0, 1, 2, · · · . If lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0 then

{xn} is a Cauchy sequence.

Proof. Since the mapping T is generalized (ψ, φ)- contractive there exists (ψ, φ) ∈ Ψ× Φ such that

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)) ∀x, y ∈ X.

Suppose that sequence {xn} is not a Cauchy sequence. Then there exist ε ∈ (0, 1) and t0 > 0 such that for all k ≥ 1, there

are positive integers m(k), n(k) ∈ N with m(k) > n(k) ≥ k and

M(xn(k), xm(k), t0) ≤ 1− ε. (3)

We assume that m(k) is the least integer exceeding n(k) and satisfying the above inequality, that is equivalently,

M(xn(k), xm(k)−1, t0) > 1− ε and M(xn(k), xm(k), t0) ≤ 1− ε.

Now, we have

1− ε ≥M(xn(k), xm(k), t0) ≥ M(xn(k), xm(k)−1, t0) ∗M(xm(k)−1, xm(k), t0)

> (1− ε) ∗M(xm(k)−1, xm(k), t0).

lim
k→∞

(1− ε) ∗M(xm(k)−1, xm(k), t0) = 1− ε. It follows that lim
k→∞

M(xn(k), xm(k), t0) exists and equal to 1− ε. First we prove

that
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(i). lim
k→∞

M(xm(k)−1, xn(k)−1, t0) = 1− ε,

(ii). lim
k→∞

M(xm(k)−1, xn(k), t0) = 1− ε,

(iii). lim
k→∞

M(xn(k)−1, xm(k), t0) = 1− ε.

We have

M(xm(k), xn(k), t0) ≥M(xm(k), xm(k)−1, t0) ∗M(xm(k)−1, xn(k)−1, t0) ∗M(xn(k)−1, xn(k), t0), (4)

M(xm(k)−1, xn(k)−1, t0) ≥M(xm(k)−1, xm(k), t0) ∗M(xm(k), xn(k), t0) ∗M(xn(k), xn(k)−1, t0). (5)

Taking limit superior in (4) and limit inferior in (5) we get,

1− ε ≥ lim sup
k→∞

M(xm(k)−1, xn(k)−1, t0) (6)

and

lim inf
k→∞

M(xm(k)−1, xn(k)−1, t0) ≥ 1− ε. (7)

Since limit superior is always greater than or equal to limit inferior, from (6) and (7), we obtain

lim sup
k→∞

M(xm(k)−1, xn(k)−1, t0) = 1− ε

and

lim inf
k→∞

M(xm(k)−1, xn(k)−1, t0) = 1− ε.

Thus, lim
k→∞

M(xm(k)−1, xn(k)−1, t0) exists and equal to 1− ε. Thus (i) holds.

We now prove (ii). By condition (M4
′
) of strong fuzzy metric space, we have

M(xm(k)−1, xn(k), t0) ≥M(xm(k)−1, xm(k), t0) ∗M(xm(k), xn(k), t0), (8)

and

M(xm(k), xn(k), t0) ≥M(xm(k), xm(k)−1, t0) ∗M(xm(k)−1, xn(k), t0). (9)

Taking limit inferior in (8) and limit superior in (9) as n→∞, we have

lim inf
k→∞

M(xm(k)−1, xn(k), t0) ≥ 1− ε,

and

1− ε ≥ lim sup
k→∞

M(xm(k)−1, xn(k), t0).

This implies that

1− ε ≥ lim sup
k→∞

M(xm(k)−1, xn(k), t0) ≥ lim inf
k→∞

M(xm(k)−1, xn(k), t0) ≥ 1− ε.

Thus,

lim sup
k→∞

M(xm(k)−1, xn(k), t0) = lim inf
k→∞

M(xm(k)−1, xn(k), t0) = 1− ε.

Hence lim
k→∞

M(xm(k)−1, xn(k), t0) exists and lim
k→∞

M(xm(k)−1, xn(k), t0) = 1− ε. Thus (ii) holds.
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We now prove (iii). By Condition (M
′
4) in a strong fuzzy metric space, we have

M(xn(k)−1, xm(k), t0) ≥M(xn(k)−1, xn(k), t0) ∗M(xn(k), xm(k), t0), (10)

and

M(xn(k), xm(k), t0) ≥M(xn(k), xn(k)−1, t0) ∗M(xn(k)−1, xm(k), t0). (11)

Taking limit inferior in (10) and limit superior in (11) as n→∞, we obtain

lim inf
k→∞

M(xn(k)−1, xm(k), t0) ≥ 1− ε,

and

1− ε ≥ lim sup
k→∞

M(xn(k)−1, xm(k), t0).

This implies that

1− ε ≥ lim sup
k→∞

M(xn(k)−1, xm(k), t0) ≥ lim inf
k→∞

M(xn(k)−1, xm(k), t0) ≥ 1− ε.

Thus,

lim sup
k→∞

M(xn(k)−1, xm(k), t0) = lim inf
k→∞

M(xn(k)−1, xm(k), t0) = 1− ε.

Hence lim
k→∞

M(xn(k)−1, xm(k), t0) exists and lim
k→∞

M(xn(k)−1, xm(k), t0) = 1− ε. Hence (iii) holds. Now, from the inequality

(1), we have

ψ(M(xm(k), xn(k), t0)) = ψ(M(Txm(k)−1, Txn(k)−1, t0))

≤ ψ(N(xm(k)−1, xn(k)−1, t0))φ(N
′
(xm(k)−1, xn(k)−1, t0), N

′′
(xm(k)−1, xn(k)−1), t0))

where

N(xm(k)−1, xn(k)−1, t0) = min{M(xm(k)−1, xn(k)−1, t0),M(xm(k)−1, xm(k), t0),M(xn(k)−1, xn(k), t0)},

N
′
(xm(k)−1, xn(k)−1, t0) = min{M(xm(k)−1, xn(k)−1, t0),M(xm(k)−1, xm(k), t0),M(xm(k)−1, xm(k), t0)},

N
′′

(xm(k)−1, xn(k)−1, t0) = min{M(xm(k)−1, xn(k)−1, t0),M(xn(k)−1, xn(k), t0),M(xn(k)−1, xm(k), t0)}.

Hence, it follows that

lim
k→∞

N(xm(k)−1, xn(k)−1, t0) = 1− ε, (12)

lim
k→∞

N
′
(xm(k)−1, xn(k)−1, t0) = 1− ε, (13)

lim
k→∞

N
′′

(xm(k)−1, xn(k)−1, t0) = 1− ε. (14)

Since ψ is continuous and φ is upper semi continuous with respect to both components, by taking limit superior as k →∞

in (12), and by using (12), (13) and (14), we get

ψ(1− ε) ≤ ψ(1− ε)φ(1− ε, 1− ε).

it follows that, φ(1− ε, 1− ε) = 1. Hence from the property of φ, we have ε = 0, which contradicts that 0 < ε < 1. Therefore,

{xn} is a Cauchy sequence in X.
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Proposition 3.6. Let (X,M, ∗) be a strong fuzzy metric space. Let f, g be two self maps on X and let f be a generalized

(ψ, φ)- contractive mapping with respect to g. Fix x0 ∈ X. Define a sequence {xn} in X by x2n = fx2n−1 and x2n+1 = gx2n

for all n = 0, 1, 2, · · · . If lim
n→∞

M(xn, xn+1, t) = 1, ∀t > 0. Then {xn} is a Cauchy sequence.

Proof. Suppose that the sequence {xn} is not a Cauchy sequence. Since lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0, the sequence

{x2n} is not Cauchy. Then there exist ε ∈ (0, 1) and t0 > 0 such that for all k ≥ 1, there are positive integers m(k), n(k) ∈ N

with n(k) > m(k) ≥ k and

M(x2n(k), x2m(k), t0) ≤ 1− ε. (15)

We assume that 2n(k) is the least positive even integer exceeding 2m(k) and satisfying the above inequality, that is equiva-

lently,

M(x2n(k), x2m(k), t0) ≤ 1− ε, and M(x2m(k), x2n(k)−2, t0) > 1− ε.

By condition (M4′) in a strong fuzzy metric space, we have

1− ε ≥M(x2n(k), x2m(k), t0) ≥ M(x2n(k), x2n(k)−2, t0) ∗M(x2n(k)−2, x2m(k), t0)

≥ M(x2n(k)−2, x2n(k), t0) ∗ (1− ε) ∀k ∈ N. (16)

Since {M(x2n(k), x2n(k), t)} is a sub sequence of {M(xn, xn+1, t)} by taking limit as k →∞ on both sides of (16) we get ,

lim
k→∞

M(x2n(k), x2m(k), t0) = 1− ε. (17)

From the condition (M
′
4) of strong fuzzy metric space, we have

M(x2m(k), x2n(k), t0) ≥ M(x2m(k), x2m(k)+1, t0) ∗ M(x2m(k)+1, x2n(k), t0) ≥ M(x2m(k), x2m(k)+1, t0) ∗

M(x2m(k)+1, x2n(k)+1, t0) ∗ M(x2n(k)+1, x2n(k), t0) ≥ M(x2m(k), x2m(k)+1, t0) ∗ M(x2m(k)+1, x2m(k)+2, t0) ∗

M(x2m(k)+2, x2n(k)+1, t0) ∗ M(x2n(k)+1, x2n(k), t0) ≥ M(x2m(k), x2m(k)+1, t0) ∗ M(x2m(k)+1, x2m(k)+2, t0) ∗

M(x2m(k)+2, x2n(k), t0) ∗ M(x2n(k), x2n(k)+1, t0) ∗ M(x2n(k), x2n(k)+1, t0) ≥ M(x2m(k), x2m(k)+1, t0) ∗

M(x2m(k)+1, x2m(k)+2, t0)∗M(x2m(k)+2, x2m(k)+1, t0)∗M(x2m(k)+1, x2m(k), t0)∗M(x2m(k), x2n(k), t0)∗M(x2n(k), x2n(k)+1, t0)∗

M(x2n(k), x2n(k)+1, t0). By taking limits on both sides of the above inequality we obtain, lim
k→∞

M(x2n(k), x2m(k)+1, t0) = 1−ε,

limk→∞M(x2m(k)+2, x2n(k), t0) = 1−ε and lim
k→∞

M(x2m(k)+1, x2n(k)+1, t0) = 1−ε. Since f is a generalized (ψ, φ)- contractive

mapping with respect to g by substituting x with x2m(k)+1 and y with x2n(k) in (2), we get that

ψ(M(x2m(k)+2, x2n(k)+1, t0)) = ψ(M(fx2m(k)+1), gx2n(k), t0)

≤ ψ(N(x2m(k)+1, x2n(k), t0))φ(N
′
(x2m(k)+1, x2n(k), t0), N

′′
(x2m(k)+1, x2n(k), t0)),

where

N(x2m(k)+1, x2n(k), t0) = min{M(x2m(k)+1, x2n(k), t0),M(x2m(k)+1, fx2m(k)+1, t0),M(x2n(k), gx2n(k), t0)}, (18)

N
′
(x2m(k)+1, x2n(k), t0) = min{M(x2m(k)+1, x2n(k), t0),M(x2m(k)+1, fx2m(k)+1, t0),M(x2m(k), gx2n(k), t0)} (19)

and

N
′′

(x2m(k)+1, x2n(k), t0) = min{M(x2m(k)+1, x2n(k), t0),M(x2n(k), gx2n(k), t0),M(x2n(k), fx2m(k)+1, t0)}. (20)
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Thus, letting as k →∞ in (18), (19) and (20), it follows that

lim
k→∞

N(x2m(k)+1, x2n(k), t0) = 1− ε, (21)

lim
k→∞

N
′
(x2m(k)+1, x2n(k), t0) = 1− ε, (22)

lim
k→∞

N(x2m(k)+1, x2n(k), t0) = 1− ε. (23)

On taking limit as k →∞ in (18) and by using (21), (22) and (23), it follows that

ψ(1− ε) ≤ ψ(1− ε)φ(1− ε, 1− ε). (24)

Which implies ε = 0, a contradiction. Therefore {xn} is a Cauchy Sequence.

We now prove our main theorems and draw some corollaries.

Theorem 3.7. Let (X,M, ∗) be a strong fuzzy metric space and T : X → X be continuous and generalized (ψ, φ)-contractive

mapping. Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary element of X. We define a sequence xn+1 = Txn for n = 0, 1, 2, · · · . If there exist

n0 ∈ N∪ {0} such that xn0 = xn0+1 = Txn0 , then x0 is the fixed point of T . Assume that xn 6= xn+1, for all n = 1, 2, 3, . . . .

Since T is a generalized (ψ, φ)-contractive mapping there exists (ψ, φ) ∈ Ψ× Φ such that

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)) for all x, y ∈ X and for each t > 0.

Thus, for xn−1 6= xn and t > 0, we have

ψ(M(Txn−1, Txn, t)) ≤ ψ(N(xn−1, xn, t))φ(N
′
(xn−1, xn, t), N

′′
(xn−1, xn, t)).

This implies,

ψ(M(xn, xn+1, t)) ≤ ψ(N(xn−1, xn, t))φ(N
′
(xn−1, xn, t), N

′′
(xn−1, xn, t)),

where

N(xn−1, xn, t) = min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn, xn+1, t)},

N
′
(xn−1, xn, t) = min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn−1, xn+1, t)},

N
′′

(xn−1, xn, t) = min{M(xn−1, xn, t),M(xn, xn+1, t),M(xn, xn, t)}.

Since φ(N
′
(xn−1, xn, t), N

′′
(xn−1, xn, t)) < 1, we conclude that

ψ(M(xn, xn+1, t)) < ψ(min{M(xn−1, xn, t),M(xn−1, xn, t)})

Again ψ is non-increasing imply that

M(xn, xn+1, t) > min{M(xn, xn+1, t),M(xn−1, xn, t)}.
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This implies,

min{M(xn, xn+1, t),M(xn−1, xn, t)} = M(xn−1, xn, t).

Thus, M(xn, xn+1, t) > M(xn−1, xn, t). Therefore, for every t > 0, {M(xn, xn+1, t)} is an increasing sequence of real

numbers in (0, 1]. Since every bounded and monotone sequence is convergent, the sequence {M(xn, xn+1, t)} converges to

some number in (0, 1]. Let lim
n→∞

M(xn, xn+1, t) = lt.

Claim: lt = 1, ∀t > 0. We have that T is a generalized contractive mapping, so for all n ∈ N and t > 0

ψ(M(Txn−1, Txn, t)) ≤ ψ(N(xn−1, xn, t))φ(N
′
(xn−1, xn, t), N

′′
(xn−1, xn, t)).

Since φ is non-decreasing with respect to both variables, we get that

ψ(M(xn, xn+1, t)) ≤ ψ(N(xn−1, xn, t))φ(M(xn−1, xn, t0),min{M(xn−1, xn, t0),M(xn, xn+1, t0))}. (25)

Taking limit superior as k → ∞ in the inequality (25), the continuity of ψ and the upper semi continuity of φ, shows

ψ(lt) ≤ ψ(lt)φ(lt, lt). Which implies φ(lt, lt) = 1. Hence lt = 1. Now by Proposition (3.5) the sequence {xn} is Cauchy.

Since X is a complete strong fuzzy metric space there exists x ∈ X such that xn → x as n→∞. The continuity of T implies

that Txn → Tx as n→∞. Since the limit of a convergent sequence in fuzzy metric space is unique, we have that Tx = x.

Therefore x is a fixed point of T . We show the uniqueness of fixed points of T . Let u and v be two fixed points of T . Then

Tu = u and Tv = v. Since T is a generalized (ψ, φ)-contractive map, for u, v ∈ X, and t > 0 we have

ψ(M(u, v, t)) = ψ(M(Tu, Tv, t)) (26)

≤ ψ(N(u, v, t))φ(N
′
(u, v, t), N

′′
(u, v, t)),

where

N(u, v, t) = min{M(u, v, t),M(u, Tu, t),M(v, Tv, t)}

= min{M(u, v, t), 1, 1} (27)

= M(u, v, t),

N
′
(u, v, t) = min{M(u, v, t),M(u, Tu, t),M(u, Tv, t)}

= min{M(u, v, t), 1,M(u, v, t)} = M(u, v, t), (28)

N
′′

(u, v, t) = min{M(u, v, t),M(v, Tv, t),M(v, Tu, t)}

= min{M(u, v, t), 1,M(v, u, t)} = M(u, v, t). (29)

From (26)-(29) we have observed that

ψ(M(u, v, t)) ≤ ψ(M(u, v, t))φ((M(u, v, t),M(u, v, t))).

This implies, φ((M(u, v, t),M(u, v, t))) = 1, thus M(u, v, t) = 1, which implies u = v. Therefore, the fixed point of T is

unique.

If we take ψ(t) = 1
t

and φ(s, t) = st in Theorem 3.7 we get the following corollary.
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Corollary 3.8. Let (X,M, ∗) be a strong fuzzy metric space and T be a self map of X which satisfies

N(x, y, t) ≤M(Tx, Ty, t)N
′
(x, y, t)N

′′
(x, y, t),

where

N(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)},

N
′
(x, y, t) = min{M(x, y, t),M(x, Tx, t),M(x, Ty, t)},

N
′′

(x, y, t) = min{M(x, y, t),M(y, Ty, t),M(y, Tx, t)}.

Then T has a unique fixed point.

For the next result we use the following notation: Let f : X → X, g : X → X be maps, we denote the set of all fixed points

of f by F (f) = {x ∈ X|f(x) = x} and the set of all common fixed points of f and g by F (f, g) = {x ∈ X|f(x) = g(x) = x}.

Theorem 3.9. Let (X,M, ∗) be a strong complete fuzzy metric space. Let f, g : X → X be two mappings and f is generalized

(ψ, φ)- contractive mapping with respect g then F (f) = F (g). Further if either f or g is continuous then f and g have a

unique common fixed point.

Proof. By our assumption there exists (ψ, φ) ∈ Ψ× Φ , for all x, y in X and t > 0 such that

ψ(M(fx, gy, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)), (30)

where

N(x, y, t) = min{M(x, y, t),M(x, fx, t),M(y, gy, t)},

N
′
(x, y, t) = min{M(x, y, t),M(x, fx, t),M(x, gy, t)},

N
′′

(x, y, t) = min{M(x, y, t),M(y, gy, t),M(y, fx, t)}.

We now show that F (f) = F (g) = F (f, g). Let z ∈ F (f), so fz = z. Thus, for x = y = z, we have

ψ(M(z, gz, t)) ≤ ψ(N(z, z, t))φ(N
′
(z, z, t), N

′′
(z, z, t)) for all t > 0, (31)

where

N(z, z, t) = M(z, gz, t), N
′
(z, z, t) = M(z, gz, t) and N

′′
(z, z, t) = M(z, gz, t).

Thus from (31) and the above result we get the following inequality;

ψ(M(z, gz, t)) ≤ ψ(M(z, gz, t))φ(M(z, gz, t),M(z, gz, t)), for all t > 0. (32)

Which yields φ(M(z, gz, t),M(z, gz, t)) = 1, for all t > 0. Since φ ∈ Φ, we obtain M(z, gz, t) = 1, ∀t > 0. Hence gz = z,

that is z ∈ F (g). Thus F (f) ⊂ F (g). Similarly we can show that F (g) ⊂ F (f). Therefore, we have F (f, g) = F (f) = F (g).

Now let x0 ∈ X, we define a sequence {xn} by x1 = x0 and

x2n = fx2n−1, x2n+1 = gx2n for n = 1, 2, 3, · · · . (33)
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If there exist m ∈ N such that either x2m = x2m−1 or x2m+1 = x2m holds then F (f) is nonempty. Since if x2m = x2m−1,

then fx2m−1 = x2m = x2m−1, so x2m−1 ∈ F (f). Hence x2m ∈ F (g) = F (f). Therefore we may suppose that xn 6= xn+1, for

all n ∈ N. Suppose n arbitrary. For each t > 0, we have

ψ(M(x2n, x2n+1, t)) = ψ(M(fx2n−1, gx2n, t))

≤ ψ(N(x2n−1, x2n, t))φ(N
′
(x2n−1, x2n, t), N

′′
(x2n−1, x2n, t), (34)

where

N(x2n−1, x2n, t) = min{M(x2n−1, x2n, t),M(x2n−1, fx2n−1, t),M(x2n, gx2n, t)}, (35)

N
′
(x2n−1, x2n, t) = min{M(x2n−1, x2n, t),M(x2n−1, fx2n−1, t),M(x2n−1, gx2n, t)}, (36)

N
′′

(x2n−1, x2n, t) = min{M(x2n−1, x2n, t),M(x2n, gx2n, t),M(x2n, fx2n−1, t)}. (37)

From (34), (35), (36) and (37) we have

ψ(M(x2n, x2n+1, t)) ≤ ψ(min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)})

× φ(min{M(x2n−1, x2n, t),M(x2n−1, x2n+1, t)},min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}.

Since φ is non-decreasing with respect to both components it follows that

ψ(M(x2n, x2n+1, t)) ≤ ψ(min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)})φ(M(x2n−1, x2n, t),

min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}). (38)

If φ(M(x2n−1, x2n, t),min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}) = 1 then

M(x2n−1, x2n, t) = min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)},

which implies M(x2n−1, x2n, t) ≤M(x2n, x2n+1, t). On the hand, if

φ(M(x2n−1, x2n, t),min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}) < 1

then from (38) we have

ψ(M(x2n, x2n+1, t)) < ψ(min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}). (39)

Combining (39) with the non-increasing property of ψ, we get

M(x2n, x2n+1, t) > min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)}.

Which implies min{M(x2n−1, x2n, t),M(x2n, x2n+1, t)} = M(x2n−1, x2n, t). Thus, M(x2n, x2n+1, t) > M(x2n−1, x2n, t).

Hence {M(x2n, x2n+1, t)} is an increasing sequence in (0, 1]. Consequently there exist lt ∈ (0, 1] such that

limn→∞M(x2n, x2n+1, t) = lt, ∀t > 0. We now prove that lt = 1 for all t > 0. Let t > 0, from (38) we have

ψ(M(x2n, x2n+1, t)) = ψ(M(fx2n−1, gx2n, t)) ≤ ψ(N(x2n−1, x2n, t))φ(M(x2n−1, x2n, t), N
′′

(x2n−1, x2n, t)). (40)
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Since ψ is continuous and φ is upper semi continuous with respect to both variables on taking limit superior in (40) we get

ψ(lt) ≤ ψ(lt)φ(lt, lt). (41)

Which implies φ(lt, lt) = 1. By property of φ, lt = 1. Hence by Proposition 2 it follows that {xn} is a Cauchy sequence.

Since (X,M, ∗) is a complete strong fuzzy metric space there exist u ∈ X such that xn → u. Without loss of generality we

assume that f is Continuous. As x2n−1 → u as n → ∞, the continuity of f implies that fx2n−1 = x2n → fu as n → ∞,

by uniqueness of the limit , we obtain fu = u. Therefore u ∈ F (f) = F (g). We will show u is unique. Suppose that

v ∈ F (f, g) = F (f) = F (g). For each t > 0, we have

ψ(M(u, v, t)) = ψ(M(fu, gv, t)) (42)

≤ ψ(N(u, v, t))φ(N
′
(u, v, t), N

′′
(u, v, t)),

where

N(u, v, t) = min{M(u, v, t),M(u, fu, t),M(v, gv, t)} = min{M(u, v, t), 1, 1} = M(u, v, t), (43)

N
′
(u, v, t) = min{M(u, v, t),M(u, fu, t),M(u, gv, t)} = min{M(u, v, t), 1,M(u, v, t)} = M(u, v, t), (44)

N
′′

(u, v, t) = min{M(u, v, t),M(v, gv, t),M(v, fu, t)} = min{M(u, v, t), 1,M(u, v, t)} = M(u, v, t). (45)

From (42), (43), (44) and (45), we have

ψ(M(u, v, t)) = ψ(M(fu, gv, t)) ≤ ψ(M(u, v, t))φ(M(u, v, t),M(u, v, t)).

Thus, φ(M(u, v, t),M(u, v, t)) = 1. Which implies M(u, v, t) = 1. Therefore u = v.

By taking ψ(t) = 1
t

and φ(s, t) = st in Theorem 3.9 we draw the following corollary:

Corollary 3.10. Let (X,M, ∗) be a strong complete fuzzy metric space. Let f, g : X → X be two mappings such that for

each x, y ∈ X and t > 0

M(x, y, z)

M(fx, gy, t)
≤ N

′
(x, y, t)N

′′
(x, y, t),

where

N
′
(x, y, t) = min{M(x, y, t),M(x, fx, t),M(x, gy, t)}

N
′′

(x, y, t) = min{M(x, y, t),M(y, gy, t),M(y, fx, t)}.

Then F (f) = F (g). Further if either f or g is continuous then f and g have a unique common fixed point.

4. Examples

In this section we provide examples in support of the main results of section 3. The following example is in support of

Theorem 3.7.
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Example 4.1. Let X = [0,∞) and M(x, y, t) = ( t
t+1

)d(x,y), where d(x, y) = |x− y|, ∗ be product continuous t-norm. Here

(X,M, ∗) is complete strong fuzzy metric space. Let T : X → X be a map defined by

Tx =


x
2
, if x ∈ [0, 1)

1
2
, if x ∈ [1,∞)

Claim . T is a generalized (ψ, φ)-contractive map for ψ(t) = 1
t6

and φ(s, t) =
√
st. clearly (ψ, φ) ∈ Ψ×Φ. Now we wish to

show for all x, y in X and t > 0

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)). (46)

Case 1: Let x, y ∈ [0, 1], Tx = x
2
, T y = y

2
and let a = t

t+1
.

Sub case 1; if x ≥ y then M(Tx, Ty, t) = a
x−y
2 ,M(x, y, t) = ax−y,M(x, Tx, t) = a

x
2 ,M(y, Ty, t) = a

y
2 ,M(x, Ty, t) = ax−

y
2

and

M(y, Tx, t) =

 ay−
x
2 , if y ≥ x

2

a
x
2
−y, if y < x

2

When y ≥ x
2

,

N(x, y, t) = min{ax−y, a
x
2 , a

y
2 } = a

x
2 , N

′
(x, y, t) = min{ax−y, a

x
2 , ax−

y
2 } = ax−

y
2 and

N
′′

(x, y, t) = min{ax−y, a
y
2 , ay−

x
2 } =

 ax−y, if x ≥ 3y
2
,

a
y
2 , if x < 3y

2
.

For x ≥ 3y
2

, we have ψ(M(Tx, Ty, t)) = a−3x+3y, ψ(N(x, y, t)) = a−3x, φ(N
′
(x, y, t), N

′′
(x, y, t)) = ax−

3y
4 . Since −3x+3y ≥

−3x+ x− 3y
4
, ∀ y ≥ x

2
, we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

If x < 3y
2

, then φ(N
′
(x, y, t), N

′′
(x, y, t)) = a

x
2 . Again since −3x+ 3y ≥ −3x+ x

2
, ∀y ≥ x

2
, we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

If y < x
2

then N(x, y, t) = ax−y, N
′
(x, y, t) = ax−

y
2 , and N

′′
(x, y, t) = ax−y. Thus we have

ψ(M(Tx, Ty, t)) = a−3x+3y, ψ(N(x, y, t)) = a−6x+6y and φ(N
′
(x, y, t), N

′′
(x, y, t)) = ax−

3y
4 .

Here, −3x+ 3y ≥ −6x+ 6y + x− 3y
4
, ∀y < x

2
, so ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N

′
(x, y, t), N

′′
(x, y, t)).

Sub case 2: if y > x then M(Tx, Ty, t) = a
y−x
2 , M(x, y, t) = ay−x,M(x, Tx, t) = a

x
2 , M(y, Ty, t) = a

y
2 , M(y, Tx, t) =

ay−
x
2 , and

M(x, Ty, t) =

 ax−
y
2 , if x ≥ y

2
,

a
y
2
−x, if x < y

2
.

When x ≥ y
2

we have N(x, y, t) = a
y
2 , N

′′
(x, y, t) = ay−

x
2 and N

′
(x, y, t) =

 a
x
2 , if y ≤ 3x

2

ay−x, if y > 3x
2

If y ≤ 3x
2

then

ψ(M(Tx, Ty, t)) = a−3y+3x, ψ(N(x, y, t)) = a−3y, φ(N
′
(x, y, t), N

′′
(x, y, t)) = a

y
2 . Since −3y+3x ≥ −3y+y− y

2
, ∀ y ≤ 3x

2
,

we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).
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If y > 3x
2

, φ(N
′
(x, y, t), N

′′
(x, y, t)) = ay−

3x
4 . Again since −3y + 3x ≥ −3y + y − 3x

4
, ∀ x ≥ y

2
, so we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)),∀t > 0.

If x < y
2

then N(x, y, t) = ay−x, N
′
(x, y, t) = ay−x, N

′′
(x, y, t) = ay−

x
2 .

ψ(M(Tx, Ty, t)) = a−3y+3x, ψ(N(x, y, t)) = a−6x+6y, φ(N
′
(x, y, t) and N

′′
(x, y, t)) = ay−

3x
4 .

Here −3y + 3x ≥ −6y + 6x+ y − 3x
4
, ∀y > 2x, imply that

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)), t > 0.

Thus, for all x, y ∈ [0, 1)

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

Case 2: x ∈ [0, 1) and y ∈ [1,∞)

Sub case 1: y
2
≤ x < y; M(Tx, Ty, t) = a

1
2
− x

2 , M(x, y, t) = ay−x,M(x, Tx, t) = a
x
2 , M(y, Ty, t) = ay−

1
2 , M(y, Tx, t) =

ay−
x
2 , M(x, Ty, t) = ax−

1
2 . We observe that

N(x, y, t) = ay−
1
2

N
′
(x, y, t) =

 ay−x, if y ≤ 3x
2

a
x
2 , if y > 3x

2

N
′′

(x, y, t) = ay−
x
2

When y ≤ 3x
2

, we get that ψ(M(Tx, Ty, t)) = a−3+3x, ψ(N(x, y, t)) = a−6y+3, φ(N
′
(x, y, t), N

′′
(x, y, t)) = ay−

3x
4 . It can

easily be observed that −3 + 3x ≥ −6y + 3 + y − 3x
4
, ∀x ≥ y

2
. Thus, for y ≤ 3x

2

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

When y > 3x
2

, φ(N
′
(x, y, t), N

′′
(x, y, t)) = a

y
2 . Similarly, we observe that, −3 + 3x ≥ −6y + 3 + y

2
. Thus, ∀ y > 3x

2
,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

Sub case 2 If x < y
2

then

M(Tx, Ty, t) = a
1
2
− x

2 , M(x, y, t) = ay−x, M(x, Tx, t) = a
x
2 , M(y, Ty, t) = ay−

1
2 , M(y, Tx, t) = ay−

x
2 and

M(x, Ty, t) =

 ax−
1
2 , if x ≥ 1

2

a
1
2
−x, if x < 1

2
.

When x ≥ 1
2

, we get that

N(x, y, t) = ay−
1
2 .

N
′
(x, y, t) = ay−x.

N
′′

(x, y, t) = ay−
x
2 .
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Hence

ψ(M(Tx, Ty, t)) = a−3+3x, ψ(N(x, y, t)) = a−6y+3 and φ(N
′
(x, y, t), N

′′
(x, y, t)) = ay−

3x
4 .

Since −3 + 3x ≥ −6y + 3 + y − 3x
4
, ∀x ≥ 1

2
and y > 1, we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

When x < 1
2

, we get that N(x, y, t) = ay−x, N
′
(x, y, t) = ay−x and N

′′
(x, y, t) = ay−

x
2 . Here we can easily observe that

ψ(M(Tx, Ty, t)) = a−3+3x, ψ(N(x, y, t)) = a−6y+6x, φ(N
′
(x, y, t), N

′′
(x, y, t)) = ay−

3x
4 . Since −3 + 3x ≥ −6y + 6x + y −

3x
4
, ∀ x < 1

2
and y > 1, we get that

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

Therefore, for all x ∈ [0, 1) , y ∈ [1,∞) and t > 0,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

In a similar way, we can show that ∀y ∈ [0, 1),∀x ∈ [1,∞) and t > 0,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

Case 3. Let x, y ∈ [1,∞) and x ≥ y.

Sub case 1: if x > 2y then M(Tx, Ty, t) = 1, M(x, y, t) = ax−y, M(x, Tx, t) = ax−
1
2 , M(y, Ty, t) = ay−

1
2 , M(y, Tx, t) =

ay−
1
2 and M(x, Ty, t) = ax−

1
2 . Now, we have N(x, y, t) = ax−

1
2 , N

′
(x, y, t) = ax−

1
2 and

N
′′

(x, y, t) = min{ay−x, ay−
1
2 } =

 ax−y, if x ≥ 2y − 1
2

ay−
1
2 , if x < 2y − 1

2

.

When x < 2y − 1
2

, we get that

ψ(M(Tx, Ty, t)) = 1, ψ(N(x, y, t)) = a−6x+3, φ(N
′
(x, y, t) and N

′′
(x, y, t)) = a

x
2
+ y

2
− 1

2 .

Since −6x+ 3 + x
2

+ y
2
− 1

2
≤ 0, ∀ x ≥ y and y > 1, we have

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

When x ≥ 2y − 1
2

, we get that

ψ(M(Tx, Ty, t)) = 1, ψ(N(x, y, t)) = a−6x+3 and φ(N
′
(x, y, t), N

′′
(x, y, t)) = ax−

y
2
− 1

4

Since −6x+ 3 + x− y
2
− 1

4
≤ 0, ∀x ≥ 1 and y ≥ 1,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)).

In a similar way we Show that (46) is true when x, y ∈ [1,∞) and y ≥ x. Hence, from all the cases we conclude that,

ψ(M(Tx, Ty, t)) ≤ ψ(N(x, y, t))φ(N
′
(x, y, t), N

′′
(x, y, t)), ∀ x, y ∈ [0,∞)

and t > 0. Therefore, T is generalized (ψ, φ) contractive mapping. By theorem (3.7) T has a unique fixed point. Indeed, 0

is the unique fixed point of T .
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The following example is in support of Theorem 3.9.

Example 4.2. Let X = [0,∞) and f, g : X → X defined by fx = x
2

and g(x) = x
3

. Let M be a strong fuzzy metric space

define by M(x, y, t) = ( t
t+1

)d(x,y), where d(x, y) = |x − y|. Let ψ : (0, 1] → [1,∞) and φ : (0, 1] × (0, 1] → (0, 1] define by

ψ(t) = 1
t8

and φ(s, t) = st. we prove that f is (ψ, φ)− generalized contractive mapping with respect to g. Thus, by Theorem

3.9 we conclude that f and g have a unique common fixed point in X, in fact 0 is a common fixed point for f and g in X.
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