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Abstract: Tuberculosis is an infectious disease that usually affects the lungs. World Health Organization has declared that tuber-

culosis Disease can cause global warming. So, TB must be solved especially in prediction and vaccination. In this model

the infected population is divided into two groups, namely infectious infected and noninfectious infected population. This
paper explains about the equilibrium point, and analyzing the stability model.
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1. Introduction

Tuberculosis is an infectious disease caused by bacteria called Mycobacterium tuberculosis. The bacteria usually attacks the

lungs, but it can also affect organs in the central nervous system, lymphatic system, and circulatory system among others

[4]. World Health Organization declared TB as global epidemic in 1993. TB is a contagious disease that spread like the

common cold [8]. If a person got the tuberculosis, then it couldn’t only seen by the main caution of factors which is causing

tuberculosis disease, but also the possibility of exogenous re-infection happening [9].

This paper will discuss about the forming and analyzing mathematical model of to Tuberculosis virus infection. We modify

and analyze a tuberculosis spread model with two groups of infected population that was introduced by Blower et al. [10].

And has been developed by Ozcaglar et al. [3]. Modifications are done by considering the assumption that exposed individual

can move naturally into recovered population and it is assumed that individual who has been recovered cannot be re-infected

by tuberculosis. Modifications of the model are also done by adding V compartment [1], namely vaccinated population.

The way of model forming takes a focus about the infection by exogenous re-infection or there are more contact to active

tuberculosis one. From the model forming, will be analyzed the behavior of solution around equilibrium point, so that it can

analyze the equilibrium point is stable or not. Finally we will know how to solve this tuberculosis disease, and then it would

give back. Susilo Nugroho in his essay discussed about the modeling of disease spread by the vaccination influences using

SIR model [6]. This essay decrease back SIR model by taking care the birth and death factors. Mathematical modeling is a

powerful tool extensively used by researchers in epidemiology to have a better understanding of the transmission dynamics

of the infectious diseases. Several authors in [2, 5, 6, 10] have studied the dynamics of TB using mathematical modeling
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approach with the view to investigate the role played by one or more control measure in curtailing the prevalence in both

developing and developed countries.

2. Model Formulation

We introduced the modification of tuberculosis spread model with two groups of infected population. Total population is

divided into six compartments: the vaccinated population (V ), the exposed population (E), the infectious infected population

(I1), the noninfectious infected population (In), the threaded population (T), and the recovered population (R) it is assumed

that the rate of incoming individuals into vaccinated population is constant nα. Vaccinated individual can move into exposed

population with fraction (1−f), 0 < f < 1, exposed individual can moved into infectious infected population with rate ν. A

fraction q, 0 < q < 1, of exposed population progresses to infectious infected population, and the remaining (1− q) fraction

progresses to non infectious infected population. The natural mortality rate for the six compartments is and the mortality

rare due to tuberculosis for infectious and non infectious infected population is µT . The dynamical transfer among the six

compartments is depicted in the following transfer diagram.

Based on our assumption and the transfer diagram, the model can be described by six ordinary differential equations as

follow

dV

dt
= nα− (1− f)βV I1 − µV

dE

dt
= (1− f)βV I1 − υE − µE

dI1
dt

= qυE − rI1 − µI1 − µT I1

dIn
dt

= (1− q)υE − (µ+ µT + δ)In

dT

dt
= rI1 − (µ+ π)T

dR

dt
= πT + δIn − µR

3. The Basic Reproduction Number

System has the disease free equilibrium E =
(
nα
µ
, 0, 0, 0, 0, 0

)
. And the endemic equilibrium E∗ = (V ∗, E∗, I∗1 , I

∗
n, T

∗, R∗).

Where

V ∗ =
nα

(1− f)βI1 − µ

E∗ =
(1− f)βV I1

(υ + µ)

I∗1 =
qυE

r + µ+ µT
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I∗n =
(1− q)υE
µ+ µT + δ

T ∗ =
rI1
µ+ π

R∗ =
πT + δIn

µ

From the system, the matrices of F and V at the diseases free equilibrium are

F =


0 (1− f)βnα

µ
0

0 0 0

0 0 0



V =


υ + µ 0 0

−qυ r + µ+ µT 0

−(1− q)υ 0 µ+ µT + δ


|V | = (υ + µ)(r + µ+ µT )(µ+ µT + δ)

adj v =


(r + µ+ µT )(µ+ µT + δ) 0 0

qυ(µ+ µT + δ) (υ + µ)(µ+ µT + δ) 0

(1− q)υ(r + µ+ µT ) 0 (υ + µ)(r + µ+ µT )



V −1 =


1

υ+µ
0 0

qυ
(υ+µ)(r+µ+µT )

1
(r+µ+µT )

0

(1−q)υ
(υ+µ)(µ+µT+δ)

0 1
(µ+µT+δ)



FV −1 =


0 (1−f)βnα

µ
0

0 0 0

0 0 0




1
(υ+µ)

0 0

qυ
(υ+µ)(r+µ+µT )

1
(r+µ+µT )

0

(1−q)υ
(υ+µ)(µ+µT+δ)

0 1
µ+µT+δ



=


(1−f)βnα

µ
qυ

(υ+µ)(r+µ+µT )
(1−f)βnα

µ
1

(r+µ+µT )
0

0 0 0

0 0 0


RO = ρ(FV −1) =

(1− f)βnαqυ

µ(υ + µ)(r + µ+ µT )

4. Stability Analysis

4.1. Local stability for disease free equilibrium point

J =



−µ 0 − (1−f)βnα
µ

0 0 0

0 −(υ + µ) (1− f)βnα
µ

0 0 0

0 qυ −(r + µ+ µT ) 0 0 0

0 (1− q)υ 0 −(µ+ µT + δ) 0 0

0 0 r 0 −(µ+ π) 0

0 0 o δ π −µ


λ1 = −µ
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λ2 = −(µ+ µT + δ)

λ3 = −(µ+ π)

λ4 = −µ

And λ5, λ6 given by

λ2 + (υ + µ+ r + µ+ µT )λ+ (υ + µ)(r + µ+ µT )− qυ(1− f)
βnα

µ
= 0

So that all the eigen values are negative if and only if

(υ + µ)(r + µ+ µT )− qυ(1− f)
βnα

µ
> 0

(υ + µ)(r + µ+ µT ) > qυ(1− f)
βnα

µ

1 >
(1− f)βnαqυ

µ(υ + µ)(r + µ+ µT )

1 > R0

R0 < 1

So the system is locally asymptotically stable if R0 < 1.

4.2. Local stability for endemic



−(1− f)βI∗1 − µ 0 −(1− f)βV ∗ 0 0 0

(1− f)βI∗1 −(υ + µ) (1− f)βV ∗ 0 0 0

0 qυ −(r + µ+ µT ) 0 0 0

0 (1− q)υ 0 −(µ+ µT + δ) 0 0

0 0 r 0 −(µ+ π) 0

0 0 0 δ π −µ


The Eigen values are

λ1 = −µ

λ2 = −(µ+ π)

λ3 = −(µ+ µT + δ)

And other Eigen values are given by

λ3 + a2λ2 + a1λ+ a0 = 0

So by Routh Hurwitz criteria the system is asymptotically stable if a0 > 0, a2 > 0 and a2a1 > a0. Where

a0 = ((1− f)βI∗1 + µ))(r + µ)(r + µ+ µT )− qυ(1− f)βV ∗((1− f)βI∗1 + µ)) + (1− f)βV ∗(1− f)βI∗1 qυ

a1 = ((1− f)βI∗1 + µ))(υ + µ) + ((1− f)βI∗1 + µ))(r + µ+ µT ) + (υ + µ)(r + µ+ µT )− qυ(1− f)βV ∗ + (1− f)βI∗1 qυ

a2 = ((1− f)βI∗1 + µ) + (µ+ υ) + (r + µ+ µT )
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5. Conclusion

In this paper, we propose an Model of vaccinated tuberculosis spread within two groups of infected population .The local

stability of the model was determined by considering the basic reproduction number. We prove that if R0 < 1 then the

disease free equilibrium is asymptotically stable and a unique endemic equilibrium exists and asymptotically stable under

some conditions.
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