International Journal of Mathematics And its Applications

Equitable Edge Coloring of Some Join Graphs

Research Article

K. Kaliraj ${ }^{1 *}$

1 Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai, Tamil Nadu, India.

Abstract

The notion of equitable coloring was introduced by Meyer in 1973. Let $G(V, E)$ be a graph. For k-proper edge coloring f of graph G, if $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1, i, j=0,1,2, \cdots k-1$, where $E_{i}(G)$ is the set of edges of color i in G, then f is called a k-equitable edge coloring of graph G, and $\chi_{e}^{\prime}(G)=\min \{k \mid$ there is a k equitable edge-coloring of graph G$\}$ is called the equitable edge chromatic number of G. In this paper, we obtain the equitable edge chromatic number of the join graph of $P_{l} \vee K_{m, n}$ and $P_{m} \vee K_{1, n, n}$. MSC: Primary 05C15; Secondary 05C76.

Keywords: Equitable edge coloring, Join graph, Path, Complete bipartite and double star graph.
(C) JS Publication.

1. Introduction

Graph coloring is an important research problem [2, 6, 11]. In this paper we only consider simple graphs. We will use the standard notation of graph theory and definitions not given here may be found in [8]. The proper edge coloring that uses colors from a set of k colors is a k-edge coloring. Thus a k-coloring of a graph G can be described as a function $c: E(G) \rightarrow\{1,2, \cdots, k\}$ such that $c(e) \neq e(f)$ for every two adjacent edges e and f in G. A graph G is k-edge colorable if there exists a k-edge coloring of G. We are often interested in edge coloring of graphs using a minimum number of colors. The chromatic number (or chromatic index) $\chi^{\prime}(G)$ of a graph G is the minimum positive integer k for which G is $k-$ edge colorable. Since every edge coloring of a graph G must assign distinct colors to adjacent edges, for which vertex v of G it follows that $\operatorname{deg} v$ colors must be used to color the edges incident with v in G. Therefore,

$$
\chi^{\prime}(G) \geq \Delta(G)
$$

for every nonempty graph G. While $\Delta(G)$ is a rather obvious lower bound for the chromatic index of a nonempty graph G, the Russian graph theorist Vadim G. Vizing [9] established a remarkable upper bound for the chromatic index of a graph. Vizing's theorem, published in 1964, must be considered the major theorem in the area of edge colorings. Vizing's theorem was rediscovered in 1966 by Ram Prakash Gupta[4].

Definition 1.1. For k-proper edge coloring f of graph G, if $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1, i, j=0,1,2, \cdots k-1$, where $E_{i}(G)$ is the set of edges of color i in G, then f is called a k-equitable edge coloring of graph G, and

$$
\chi_{e}^{\prime}(G)=\min \{k \mid \text { there is a } k \text {-equitable edge-coloring of graph } G\}
$$

[^0]is called the equitable edge chromatic number of G.

Definition 1.2 ([1]). The join graph $G \vee H$ of disjoint graphs G and H is defined as follows:

$$
\begin{aligned}
& V(G \vee H)=V(G) \cup V(H) \\
& E(G \vee H)=E(G) \cup E(H) \cup\{u v \mid u \in V(G), v \in V(H)\}
\end{aligned}
$$

Lemma $1.3([1])$. For any simple graph $G(V, E) ; \chi_{e}^{\prime} \geq \Delta(G)$. For any simple graph G and $H, \chi_{e}^{\prime}(G)=\chi^{\prime}(G)$ [7], and if $H \subseteq G$, then $\chi^{\prime}(H) \leq \chi^{\prime}(G)[1,12]$, where $\chi_{e}^{\prime}(G)$ is the proper edge chromatc number of G. So Lemma 1.4 and Lemma 1.5 are obtained

Lemma 1.4. For any simple graph G and H, if H is a subgraph of G, then $\chi_{e}^{\prime}(H) \leq \chi_{e}^{\prime}(G)$.

Lemma 1.5. For any complete graph K_{p} with order p,

$$
\chi_{e}^{\prime}\left(K_{p}\right)= \begin{cases}p, & p \equiv 1(\bmod 2) \\ p-1, & p \equiv 0(\bmod 2)\end{cases}
$$

Lemma $1.6([1,10])$. Let G be a simple graph, if $G\left[V_{\Delta}\right]$ does not contain cycle, then $\chi_{e}^{\prime}(G)=\Delta(G)$. Where $V\left(G\left[V_{\Delta}\right]\right)=$ $V_{\Delta}=\{v \mid d(v)=\Delta(G), v \in V(G)\}, E\left(G\left[V_{\Delta}\right]\right)=\left\{u v \mid u, v \in V_{\Delta}, u v \in E(G)\right\}$,

Lemma 1.7 ([5]). For a finite simple graph $G, \chi_{e}^{\prime}(G)=\chi^{\prime}(G)$.

2. Main Results

Theorem 2.1. For any positive integer l, m and n, then

$$
\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right)=\Delta\left(P_{l} \vee K_{m, n}\right)= \begin{cases}3 & \text { if } l=m=n=1 \\ m+n & \text { if } l=m=1, n>1 \\ m+n & \text { if } l=1, m>1, n>1, n>m \\ m+n+2 & \text { if } l, m, n>1, n>m, m+n>l \\ l+n & \text { if } l, m, n>1, n>m, l \geq m+n\end{cases}
$$

Proof. Let $V\left(P_{l}\right)=\left\{w_{k} \mid k=1,2, \cdots, l\right\}$ and $V\left(K_{m, n}\right)=\left\{u_{i} \mid i=1,2, \cdots, m\right\} \cup\left\{v_{j} \mid j=1,2, \cdots, n\right\}$. Let $E\left(P_{l}\right)=$ $\left\{w_{k} w_{k+1} \mid k=1,2, \cdots, l-1\right\}$ and $E\left(K_{m, n}\right)=\bigcup_{i=1}^{m}\left\{u_{i} v_{j} \mid j=1,2, \cdots, n\right\}$. By the definition of join graph,

$$
\begin{aligned}
& V\left(P_{l} \vee K_{m, n}\right)=V\left(P_{l}\right) \cup V\left(K_{m, n}\right) \text { and } \\
& E\left(P_{l} \vee K_{m, n}\right)=E\left(P_{l}\right) \cup E\left(K_{m, n}\right) \cup \bigcup_{k=1}^{l}\left\{w_{k} u_{i}: 1 \leq i \leq m\right\} \cup \bigcup_{k=1}^{l}\left\{w_{k} v_{j}: 1 \leq j \leq n\right\}
\end{aligned}
$$

Let f be a mapping from $E\left(P_{l} \vee K_{m, n}\right)$ as follows:

Case 1: If $l=m=n=1, f\left(w_{1} u_{1}\right)=1 ; f\left(w_{1} v_{1}\right)=2 ; f\left(u_{1} v_{1}\right)=3$. Obviously, the f is 3 -EEC of $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right)$, for

$$
l=m=n=1
$$

Case 2: If $l=m=1, n>1, f\left(w_{1} u_{1}\right)=1 ; f\left(w_{1} v_{j}\right)=j+1,1 \leq j \leq n ; f\left(u_{1} v_{j}\right)=j+2,1 \leq j \leq n-1 ; f\left(u_{1} v_{n}\right)=2$.

Case 3: If $l=1, m>1, n>1, f\left(u_{2 i-1} v_{j}\right)=j+i-1,1 \leq j \leq n, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil$. For $1 \leq j \leq n, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$

$$
\begin{aligned}
f\left(u_{2 i} v_{j}\right) & =\left\{\begin{array}{l}
n+j+i-1(\bmod m+n) \text { if } n+j+i-1 \not \equiv 0(\bmod m+n) \\
m+n(\bmod m+n) \text { if } n+j+i-1 \equiv 0(\bmod m+n) ;
\end{array}\right. \\
f\left(w_{1} u_{2 i}\right) & =i+1,1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor ; \\
f\left(w_{1} u_{2 i-1}\right) & =n+i, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil ; \\
f\left(w_{1} v_{j}\right) & =m+j-1,1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil ; \\
f\left(w_{1} v_{\left\lceil\frac{n}{2}\right\rceil+j+1}\right) & =n+\left\lceil\frac{m}{2}\right\rceil+j, 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor-1 ; \\
f\left(w_{1} v_{\left\lceil\frac{n}{2}\right\rceil+1}\right) & =1 ;
\end{aligned}
$$

To prove Case (ii) and Case (iii), $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \leq m+n$. We have $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq \Delta\left(P_{l} \vee K_{m, n}\right) \geq m+n$, $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq m+n$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right)=m+n$. The conclusion is true.

Case 4: If $l, m, n>1, n>m, m+n>l, f\left(w_{k} u_{i}\right)=j+k-1,1 \leq i \leq m, 1 \leq k \leq l$. For $1 \leq j \leq n, 1 \leq k \leq l$,

$$
f\left(w_{k} v_{j}\right)=\left\{\begin{array}{l}
m+j+k-1(\bmod m+n) \text { if } m+j+k-1 \not \equiv 0(\bmod m+n) \\
m+n(\bmod m+n) \text { if } m+j+k-1 \equiv 0(\bmod m+n)
\end{array}\right.
$$

For $1 \leq i \leq m-1,3 \leq j \leq n$,

$$
\begin{aligned}
f\left(w_{k} v_{j}\right) & =\left\{\begin{array}{l}
m+j+i(n-2)-5(\bmod m+n) \text { if } m+j+i(n-2)-5 \not \equiv 0(\bmod m+n) \\
m+n(\bmod m+n) \text { if } m+j+i(n-2)-5 \equiv 0(\bmod m+n) ;
\end{array}\right. \\
f\left(u_{m} v_{j}\right) & =m+j, 1 \leq j \leq n-3 ; \\
f\left(u_{m} v_{n}\right) & =2 ; \\
f\left(u_{i} v_{j}\right) & =m+n+1, i=j, 1 \leq i \leq m, 1 \leq j \leq n ; \\
f\left(u_{i} v_{j+1}\right) & =m+n+2, i=j, 1 \leq i \leq m, 1 \leq j \leq n ; \\
f\left(w_{2 k-1} w_{2 k}\right) & =m+n+1,1 \leq k \leq\left\lceil\frac{l}{2}\right\rceil ; \\
f\left(w_{2 k} w_{2 k+1}\right) & =m+n+2,1 \leq k \leq\left\lfloor\frac{l}{2}\right\rfloor ;
\end{aligned}
$$

To prove $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \leq m+n+2$. We have $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq \Delta\left(P_{l} \vee K_{m, n}\right) \geq m+n+2, \chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq m+n+2$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right)=m+n+2$. The conclusion is true.

Case 5: If $l, m, n>1, n>m, l \geq m+n$. For $1 \leq k \leq l-1$,

$$
f\left(w_{k} w_{k+1}\right)=\left\{\begin{array}{l}
k(\bmod n) \text { if } k \not \equiv 0(\bmod n) \\
n(\bmod n) \text { if } k \equiv 0(\bmod n)
\end{array}\right.
$$

For $1 \leq i \leq m, 1 \leq k \leq l$,

$$
f\left(w_{k} u_{i}\right)=\left\{\begin{array}{l}
i+k+2(\bmod l+n) \text { if } i+k+2 \not \equiv 0(\bmod l+n) \\
l+n(\bmod l+n) \text { if } i+k+2 \equiv 0(\bmod l+n)
\end{array}\right.
$$

For $1 \leq k \leq l, 1 \leq j \leq n$,

$$
f\left(w_{k} v_{j}\right)=\left\{\begin{array}{l}
m+k+j+2(\bmod l+n) \text { if } m+k+j+2 \not \equiv 0(\bmod l+n) \\
l+n(\bmod l+n) \text { if } m+k+j+2 \equiv 0(\bmod l+n)
\end{array}\right.
$$

For $1 \leq i \leq m, 1 \leq j \leq n$,

$$
f\left(u_{i} v_{j}\right)=\left\{\begin{array}{l}
i+j-1(\bmod n) \text { if } i+j-1 \not \equiv 0(\bmod n) \\
n(\bmod l+n) \text { if } i+j-1 \equiv 0(\bmod l+n)
\end{array}\right.
$$

To prove $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \leq l+n$. We have $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq \Delta\left(P_{l} \vee K_{m, n}\right) \geq l+n, \chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right) \geq l+n$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{l} \vee K_{m, n}\right)=l+n$. The conclusion is true.

Theorem 2.2. For any positive integer m and n, then

$$
\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right)=\Delta\left(P_{m} \vee K_{1, n, n}\right)= \begin{cases}2 n+1 & \text { if } m=1 \\ 2 n+2 & \text { if } m=2 \\ 2 n+3 & \text { if } 2<m \leq n+3 \\ m+n & \text { if } m>n+3\end{cases}
$$

Proof. Let $V\left(P_{m}\right)=\left\{u_{i} \mid i=1,2, \cdots, m\right\}$ and $V\left(K_{1, n, n}\right)=\left\{v_{0}\right\} \cup\left\{v_{2 j-1} \mid j=1,2, \cdots, n\right\} \cup\left\{v_{2 j} \mid j=1,2, \cdots, n\right\}$. Let $E\left(P_{m}\right)=\left\{u_{i} u_{i+1} \mid i=1,2, \cdots, m-1\right\}$ and $E\left(K_{1, n, n}\right)=\left\{v_{0} v_{2 j-1} \mid j=1,2, \cdots, n\right\} \cup\left\{v_{2 j-1} v_{2 j} \mid j=1,2, \cdots, n\right\} . \quad$ By the definition of join graph,

$$
\begin{aligned}
& V\left(P_{m} \vee K_{1, n, n}\right)=V\left(P_{m}\right) \cup V\left(K_{1, n, n}\right) \text { and } \\
& E\left(P_{m} \vee K_{1, n, n}\right)=E\left(P_{m}\right) \cup E\left(K_{1, n, n}\right) \cup \bigcup_{i=1}^{m}\left\{u_{i} v_{j}: 0 \leq j \leq 2 n\right\}
\end{aligned}
$$

Let f be a mapping from $E\left(P_{m} \circ K_{1, n, n}\right)$ as follows:

Case 1: For $m=1$,
$f\left(u_{1} v_{j}\right)=j, 0 \leq j \leq 2 n ; f\left(v_{0} v_{2 j-1}\right)=2 n+2 j+1(\bmod 2 n+1), 1 \leq j \leq n ; f\left(v_{2 j-1} v_{2 j}\right)=2 n+2 j+$ $2(\bmod 2 n+1), 1 \leq j \leq n$; Obviously, the f is $2 n+1$-EEC of $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right)$.

Case 2: For $m=2$,
$f\left(u_{i} v_{j}\right)=i+j-1(\bmod 2 n), i=1,2,0 \leq j \leq 2 n ; f\left(u_{1} u_{2}\right)=2 n+1 ; f\left(v_{0} v_{2 j-1}\right)=2 n+2 j+3(\bmod 2 n+2), 1 \leq j \leq n ;$ $f\left(v_{2 j-1} v_{2 j}\right)=2 n+2 j+4(\bmod 2 n+2), 1 \leq j \leq n$; To prove $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \leq 2 n+2$. We have $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq$ $\Delta\left(P_{m} \vee K_{1, n, n}\right) \geq 2 n+2, \chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq 2 n+2$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right)=2 n+2$.

Case 3: For $2<m \leq n+3$,
$f\left(u_{i} v_{j}\right)=i+j-1(\bmod 2 n+3), 1 \leq i \leq m, 0 \leq j \leq 2 n ; f\left(u_{i} u_{i+1}\right)=2 n+i+1(\bmod 2 n+3), 1 \leq i \leq m-1 ;$ $f\left(v_{0} v_{2 j-1}\right)=2 n+2 j(\bmod 2 n+3), 1 \leq j \leq n ; f\left(v_{2 j-1} v_{2 j}\right)=2 n+2 j-1(\bmod 2 n+3), 1 \leq j \leq n$; To prove $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \leq 2 n+3$. We have $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq \Delta\left(P_{m} \vee K_{1, n, n}\right) \geq 2 n+3, \chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq 2 n+3$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right)=2 n+3$.

Case 4: For $m>n+3$,

$$
\begin{aligned}
& f\left(u_{i} v_{j}\right)=i+j-1(\bmod m+n), 1 \leq i \leq m, 0 \leq j \leq 2 n ; f\left(u_{i} u_{i+1}\right)=2 n+i+1(\bmod m+n), 1 \leq i \leq m-1 ; \\
& f\left(v_{0} v_{2 j-1}\right)=m+2 j-1(\bmod m+n), 1 \leq j \leq n ; f\left(v_{2 j-1} v_{2 j}\right)=m+2 j(\bmod m+n), 1 \leq j \leq n ;
\end{aligned}
$$

To prove $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \leq m+n$. We have $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq \Delta\left(P_{m} \vee K_{1, n, n}\right) \geq m+n, \chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right) \geq m+n$ by Lemma 1.3. Hence $\chi_{e}^{\prime}\left(P_{m} \vee K_{1, n, n}\right)=m+n$. The conclusion is true.

References

[1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, New York; The Macmillan Press Ltd, (1976).
[2] X.E.Chen and Z.F.Zhang, AVDTC number of generlized Halin graphs with maximum degree at least 6 , Acte Mathematicae Application Sinica, 24(1)(2008), 55-58.
[3] Frank Harary, Graph Theory, Narosa Publishing home, (1969).
[4] R.P.Gupta, The chromatic index and the degree of a graph, Notices Amer. Math. Soc., 13(1966), 719.
[5] Kun Gong, Zhong-fu Zhang and Jian-fang Wang, Equitable total coloring of $F_{n} \vee W_{n}$, Acta Mathematicae Applicatae Sinica, English Series, 25(1)(2009), 83-86.
[6] J.W.Li, Z.F.Zhang, X.E.Chen and Y.R.Sun, A Note on adjacent strong edge coloring of $K(n, m)$, Acte Mathematicae Application Sinica, 22(2)(2006), 273-276.
[7] Ma Gang and Zhang Zhong-fu, On the Equitable Total Coloring of Multiple Join-graph, Journal of Mathematical Research and Expostion, 27(2)(2007), 351-354.
[8] W.Meyer, Equitable Coloring, Amer. Math. Monthly, 80(1973), 920-922.
[9] V.G.Vizing, Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17.
[10] Zhang Zhong-fu and Zhang Jian-xun, On Some Sufficient Conditions of First Kind Graph, Journal of Mathematics, $5(2)(1985), 161-165$.
[11] Z.F.Zhang, J.X.Zhang and J.F.Wang, The total chromatic number of some graph, Sciences Sinica (Series A), 31(12)(1988), 1434-1441.
[12] H.P.Yap, Total Colorings of Graphs, Berlin: Lecture Notes in Mathematics, 1623, Springer, (1996).

[^0]: * E-mail: sk.kaliraj@mail.com

