International Journal of Mathematics And its Applications

On Ternary Quadratic Diophantine Equation $z^{2}=40 x^{2}+y^{2}$

R.Anbuselvi ${ }^{1}$ and K.Usha ${ }^{2 *}$
1 Department of Mathematics, ADM College for women (Autonomous), Nagapattinam, Tamilnadu, India.
2 Department of Mathematics, E.G.S.Pillay Engineering College, Nagapattinam, Tamilnadu, India.

Abstract

The Ternary Quadratic Diophantine equation $z^{2}=40 x^{2}+y^{2}$ is analyzed for its non-zero distinct integral points on it. A few interesting properties among the solutions are presented.

Keywords: Integral points, Ternary quadratic, Polygonal numbers, Pyramidal numbers and special numbers. (C) JS Publication.

1. Introduction

Diophantine equations is an interesting concept, as it can be seen from [1-2]. For an extensive review of various problems one may refer [3-11]. In this context one may also see [12-23]. This communication concerns with yet another interesting ternary quadratic Diophantine equation $z^{2}=40 x^{2}+y^{2}$ for determining its infinitely many non-zero integral solutions. Also a few interesting properties among the solutions are presented.

Notation:

$t_{m, n}$	$:$ Polygonal number of rank n with sides m.
p_{n}^{m}	$:$ Pyramidal number of rank n with sides m.
$c t_{m, n}$	$:$ Centered Polygonal number of rank n with sides m.
P_{n}	$:$ Pronic number
g_{n}	$:$ Gnomonic number

2. Method of Analysis

The ternary quadratic equation to be solved for its non-zero. Integral solution is

$$
\begin{equation*}
z^{2}=40 x^{2}+y^{2} \tag{1}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=z(a, b)=a^{2}+40 b^{2} \tag{2}
\end{equation*}
$$

[^0]Where a, b are non-zero integer. Different patterns of solutions for (1) are given below.
Pattern I: Using equation (2) in (1), we get,

$$
\begin{equation*}
40 x^{2}+y^{2}=\left(a^{2}+40 b^{2}\right)^{2} \tag{3}
\end{equation*}
$$

Employing the method of factorization and comparing rational and irrational parts, we get

$$
(y+i \sqrt{40} x)(y-i \sqrt{40} x)=(a+i \sqrt{40} b)^{2}(a-i \sqrt{40} b)^{2}
$$

Comparing the real and imaginary parts on the above equation, we get

$$
\left.\begin{array}{l}
x=x(a, b)=2 a b \tag{4}\\
y=y(a, b)=a^{2}-40 b^{2}
\end{array}\right\}
$$

Thus (2) and (4) represents the non-zero distinct integral solutions of (1).

Properties:

(1). $x(1, n)+y(1, n)+z(1, n)+78 t_{3, n} \equiv 0(\bmod 41)$
(2). $x(2, n)+y(n, 2)+z(2, n)-8 t_{3, n} \equiv-8(\bmod 37)$
(3). $x(1, n)+y(n, 1)+z(1, n)-4 t_{3, n} \equiv 0(\bmod 39)$
(4). $x(n, 2)+y(2, n)+z(n, 2)+78 t_{3, n} \equiv 35(\bmod 43)$
(5). $x(3, n)+y(3, n)+z(n, 3)-6 n(n+1) \equiv-9(\bmod 45)$

Pattern II: Equation (1) can be written as

$$
\begin{equation*}
40 x^{2}+y^{2}=z^{2} * 1 \tag{5}
\end{equation*}
$$

Assume,

$$
\begin{equation*}
z=z(a, b)=a^{2}+40 b^{2} \tag{6}
\end{equation*}
$$

Where a, b are non-zero distinct integers. Write 1 as,

$$
\begin{equation*}
1=\frac{(3+i \sqrt{40})(3-i \sqrt{40})}{49} \tag{7}
\end{equation*}
$$

using (6) and (7) in (5), we get

$$
40 x^{2}+y^{2}=\frac{(3+i \sqrt{40})(3-i \sqrt{40})}{49}\left(a^{2}+40 b^{2}\right)^{2}
$$

By the method of factorization and comparing the rational and irrational parts from the above equation, we get

$$
\left.\begin{array}{l}
x=x(a, b)=\frac{1}{7}\left[a^{2}-40 b^{2}+6 a b\right] \tag{8}\\
y=y(a, b)=\frac{1}{7}\left[3 a^{2}-120 b^{2}-80 a b\right]
\end{array}\right\}
$$

As our interest is to find only integer solution, it is seen x and y are integer for suitable choices of a and b. Let us assume, $a=7 A$ and $b=7 B$ the corresponding non-zero distinct integer solution of (1) are found to be,

$$
\begin{aligned}
& x=x(A, B)=7 A^{2}-280 B^{2}+42 A B \\
& y=y(A, B)=21 A^{2}-840 B^{2}-560 A B \\
& z=z(A, B)=49 A^{2}+1960 B^{2}
\end{aligned}
$$

Properties:

(1). $3 x(A, A+1)-y(A, A+1)-1372 t_{3, a} \equiv 0$.
(2). $3 x(A,(A+1)(A+2))-y(A,(A+1)(A+2))-4116 P_{a}{ }^{3} \equiv 0$.
(3). $3 x(A, A(A+1))-y(A, A(A+1))-1372 P_{a}{ }^{5} \equiv 0$.
(4). $z(3 A, A)-2401 t_{4, a} \equiv 0$.
(5). $6 x(A,(A+1)(A+2))-2 y(A,(A+1)(A+2))-8232 P_{a}{ }^{3} \equiv 0$.

Pattern III: Write (1) as,

$$
(z+y)(z-y)=40 x^{2}
$$

Case 1: $\frac{z+y}{40 x}=\frac{x}{z-y}=\frac{P}{Q}$. This is equivalent to the following two equations

$$
\begin{array}{r}
-P 40 x+Q y+Q z=0 \\
Q x+P y-P z=0 \tag{10}
\end{array}
$$

Solving the equations (9) \& (10), we obtain

$$
\left.\begin{array}{l}
x=x(P, Q)=-2 P Q \tag{11}\\
y=y(P, Q)=40 P^{2}-Q^{2} \\
z=z(P, Q)=-40 P^{2}-Q^{2}
\end{array}\right\}
$$

Thus (11) represents non-zero distinct integral solutions which satisfy equation (1).

Properties:

(1). $y(A, A)+z(A, A)+2 t_{4, a} \equiv 0$.
(2). $x(A, A+1)+4 t_{3, a} \equiv 0$.
(3). $x(A, A(A+1))+4 P_{a}{ }^{5} \equiv 0$.
(4). $x(A,(A+1)(A+2))+12 P_{a}{ }^{3} \equiv 0$.
(5). $y(A, A)-z(A, A)-80 t_{4, a} \equiv 0$.

Case 2: Equation (11) can also be rewritten as

$$
\frac{z+y}{x}=\frac{40 x}{z-y}=\frac{P}{Q}
$$

On following the procedure as in case (1) the non-zero distinct solutions of (1) are given by

$$
\left.\begin{array}{l}
x=x(P, Q)=-2 P Q \\
y=y(P, Q)=P^{2}-40 Q^{2} \tag{12}\\
z=z(P, Q)=-P^{2}-40 Q^{2}
\end{array}\right\}
$$

Thus (12) represents non-zero distinct integral solutions which satisfy equation (1).

Properties:

(1). $y(A, B)-z(A, B)-2 t_{4, a} \equiv 0$.
(2). $y(A, B)+z(A, B)+80 t_{4, a} \equiv 0$.
(3). $x(A,(A+1)(2 A+1))+12 P_{a}{ }^{4} \equiv 0$.
(4). $x(A, A(A+1))+4 P_{a}{ }^{5} \equiv 0$.
(5). $x(A, 2 A-1)+2 t_{6, a} \equiv 0$.

Case 3: Equation (11) can also be rewritten as

$$
\frac{z-y}{40 x}=\frac{x}{z+y}=\frac{P}{Q}
$$

On following the procedure as in case (2) the non-zero distinct solutions of (1) are given by

$$
\left.\begin{array}{l}
x=x(P, Q)=2 P Q \tag{13}\\
y=y(P, Q)=40 P^{2}-Q^{2} \\
z=z(P, Q)=40 P^{2}+Q^{2}
\end{array}\right\}
$$

Thus (13) represents non-zero distinct integral solutions which satisfy equation (1).

Properties:

(1). $x(A,(A+1)(A+2))-12 P_{a}{ }^{3} \equiv 0$.
(2). $y(A, B)+z(A, B)-80 t_{4, a} \equiv 0$.
(3). $x(A, A(A+1))-4 P_{a}{ }^{5} \equiv 0$.
(4). $x(A,(A+1))-4 t_{3, a} \equiv 0$.
(5). $y(A, 2 A)-z(A, 2 A)+8 t_{4, a} \equiv 0$.

Case 4: Equation (11) can also be rewritten as

$$
\frac{z-y}{x}=\frac{40 x}{z+y}=\frac{P}{Q}
$$

On following the procedure as in case (3) the non-zero distinct solutions of (1) are given by

$$
\left.\begin{array}{l}
x=x(P, Q)=2 P Q \tag{14}\\
y=y(P, Q)=P^{2}-40 Q^{2} \\
z=z(P, Q)=P^{2}+40 Q^{2}
\end{array}\right\}
$$

Thus (14) represents non-zero distinct integral solutions which satisfy equation (1).

Properties:

(1). $x(A, A+1)-z(A, A+1)+78 t_{3, a} \equiv 0(\bmod 2)$.
(2). $X(A,(A+1)(2 A+1))-12 P_{a}^{4} \equiv 0$.
(3). $x(A, A+2)-z(A, A+2)+78 t_{3, a} \equiv 0(\bmod 4)$.
(4). $x(A, 2 A)+y(A, 2 A)-155 t_{4, a} \equiv 0$.
(5). $x(A, 3 A)-z(A, 3 A)+355 t_{4, a} \equiv 0$.

Pattern IV: Equation (1) can be written as,

$$
\begin{equation*}
z^{2}-40 x^{2}=y^{2} * 1 \tag{15}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(\sqrt{40}+2)(\sqrt{40}-2)}{36} \tag{16}
\end{equation*}
$$

Assume,

$$
\begin{equation*}
y=a^{2}-40 b^{2} \tag{17}
\end{equation*}
$$

Using (16) and (17) and in (15), We get

$$
(z+\sqrt{40} x)(z-\sqrt{40} x)=\frac{(\sqrt{40}+2)(\sqrt{40}-2)}{36}\left(a^{2}-40 b^{2}\right)^{2}
$$

Applying the method of cross multiplication, on employing the method of factorization and equating the positive and negative factors, we get

$$
\begin{aligned}
& x=x(a, b)=6 a^{2}+240 b^{2}+24 a b \\
& y=y(a, b)=36 a^{2}-1440 b^{2} \\
& z=z(a, b)=12 a^{2}+480 b^{2}+480 a b
\end{aligned}
$$

Properties:

(1). $2 x(A, 2 A-1)-z(A, 2 A-1)+432 t_{6, a} \equiv 0$.
(2). $2 x(A,(A+1)(A+2))-z(A,(A+1)(A+2))+2592 P_{a}{ }^{3} \equiv 0$.
(3). $2 x\left(A, A(A+1)-z\left(A, A(A+1)+864 P_{a}{ }^{5} \equiv 0\right.\right.$.
(4). $y(6 A, A)-144 t_{6, a} \equiv 0$.
(5). $4 x(A, A(A+1))-2 z(A, A(A+1))+1728 P_{a}{ }^{5} \equiv 0$.

Note: In equation (16), 1 can be rewritten as the following different ways
(1). $1=\frac{(9+i \sqrt{40})(9-i \sqrt{40})}{121}$.
(2). $1=\frac{(1+i \sqrt{35})(1-i \sqrt{35})}{36}$.
(3). $1=\frac{(4+i \sqrt{33})(4-i \sqrt{33})}{49}$.

3. Conclusion

One may search for other patterns of solution and their corresponding properties.

References

[1] L.E.Dickson, History of Theory of Numbers, Vol. 2 Chelsea Publishing Company, New York. (1952).
[2] L.J.Mordell, Diophantine Equations, Academic press, New York, (1969).
[3] M.A.Gopalan and V.Pandichelvi, Integral Solution of ternary quadratic equation $z(x+y)=4 x y$, Acta Ciencia Indica, XXXIVM(3)(2008), 1353-1358.
[4] M.A.Gopalan and J.Kalinga Rani, Observation on the Diophantine equation $y^{2}=D X^{2}+Z^{2}$, Impact J. Sci. Tech., 2(2)(2008), 91-95.
[5] M.A.Gopalan and V.Pandichelvi, On ternary quadratic equation $X^{2}+Y^{2}=Z^{2}+1$, Impact J. Sci. Tech., 2(2)(2008), 55-58.
[6] M.A.Gopalan, Manju Somanath and N.Vanith, Integral solutions of ternary quadratic Diophantine equation $x^{2}+y^{2}=$ $\left(k^{2}+1\right)^{2} z^{2}$, Impact J.Sci. Tech., 2(4)(2008), 175-178.
[7] M.A.Gopalan and Manju Somanath, Integral solution of ternary quadratic Diophantine equation $x y+y z=z x$, Antartica J. Math., 5(1)(2008), 1-5.
[8] M.A.Gopalan and A.Gnanam, Pythagorean triangles and special polygonal numbers, International J. Math. Sci., 9(12)(2010), 211-215.
[9] M.A.Gopalan and V.Pandichelvi, Integral solution of ternary quadratic equation $z(x-y)=4 x y$, Impact J. Sci. Tech., 5(1)(2011), 1-6.
[10] M.A.Gopalan and Vijaya Sankar, Observation on a Pythagorean problem, Acta Ciencia Indica, XXXVIM(4)(2010), 517-520.
[11] M.A.Gopalan and J.Kalinga Rani, On ternary quadratic equation $X^{2}+Y^{2}=Z^{2}+8$, Impact J. Sci. Tech., 5(1)(2011), 39-43.
[12] M.A.Gopalan and D.Geetha, Lattice points on the Hyperboloid of two sheets $X^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J. Sci. Tech., 4(1)(2011), 23-32.
[13] M.A.Gopalan, S.Vidyalakshmi and A.Kavitha, Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, Diophantus J. Math., 1(5)(2012), 127-136.
[14] M.A.Gopalan, S.Vidyalakshmi and G.Sumati, Lattice points on the hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantus J. Math., 1(2)(2012), 109-115.
[15] M.A.Gopalan, S.Vidyalakshmi and K.Lakshmi, Lattice points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.Math., 1(2)(2012), 99-107.
[16] M.A.Gopalan, S.Vidyalakshmi, T.R.Usha Rani and S.Malika, Observations on $6 z^{2}=2 x^{2}-3 y^{2}$, Impact J. Sci. Tech., 6(1)(2012), 7-13.
[17] M.A.Gopalan, S.Vidyalakshmi and T.R.Usha Rani, Integral points on the non-homogeneous cone $2 z+4 x y+8 x-4 z+2=$ 0, Global J. Math. Sci., 2(1)(2012), 61-67.
[18] M.A.Gopalan and K.Geetha, Integral points on the Homogeneous cone $x^{2}=26 z^{2}-4 y^{2}$, Asian Academic Research Journal of Multidisciplinary, 1(4)(2012), 62-71.
[19] M.A.Gopalan and K.Geetha, Integral solution of ternary quadratic Diophantine equation $z^{2}=a^{2}\left(x^{2}+y^{2}+b x y\right)$, Indian Journal of Science, 2(4)(2013), 82-85.
[20] M.A.Gopalan and K.Geetha, Observations on the hyperbola $y^{2}=18 x^{2}+1$, RETELL, 13(1)(2012), 81-83.
[21] M.A.Gopalan, K.Geetha and Manju Somanath, Integral solutions of quadratic equation with four unknowns $x y+z(x+$
$y)=w^{2}$, Impact Journal of science and Technology, $7(1)(2013)$, 1-8.
[22] M.A.Gopalan, K.Geetha and Manju Somanath, A ternary quadratic Diophantine Equation $8\left(x^{2}+y^{2}\right)-15 x y+(x+$ $y)+1=32 z^{2}$, Proceedings of the International conference on Mathematical methods and computation, Feb 13 th and 14th, (2014), 246-251.
[23] M.A.Gopalan, K.Geetha and Manju Somanath, A ternary quadratic Diophantine Equation $7 x^{2}+9 y^{2}=z^{2}$, Bulletin of Mathematics and Statistics Research, 2(1)(2014), 1-8.

[^0]: * E-mail: usharakshana@gmail.com

