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1. Introduction

Throughout we shall deal with n×n quaternion matrices: Let A∗denote thje conjugate transpose of A. Any matrix A ∈ Hn×n

is called q-EP. If R(A) = R(A∗) and is called q − Epr, if A is q-EP and rk(A) = r, where N(A), R(A) and rk(A) denote

the null space, range space and rank of A respectively. It is well known that sum and product of q-EP, Generalized Inverse

Group Inverse and Reverse order law for q-EP and Bicomplex representation methods and application of q-EP matrices. In

this section, Schur complements in a q-EP matrices.

Lemma 1.1. If X and Y are generalized inverse of A, then CXB = CY B if and only if N(A) ⊆M(C) and N(A∗) ⊆ N(B∗)

or, equivalently if and only if

C = CA−A and B = AA−B for every A− (1)

Throughout this paper, we are concerned with n× n quaternion matrices M partitioned in the form

M =

 A B

C D

 (2)

Where A and D are square matrices with respect to this partitioning a Schur complements of A in M is a matrix at the

form (M/A) = D − CA−B. For entries of Schur complements one may refer to [2, 3, 5]. On account of Lemma 1.1 it is

obvious that under certain conditions (M/A) is independent of the choice of A−. However in the sequel we shall always

assume that (M/A) is given in terms of specific choice of A−.
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In [9] necessary and sufficient conditions are derived for a matrix of the (2) with B = 0 and C = 0 to be q-EP. The results are

here extended for general matrices of the form (2). If a partitioned matrix of the form (2) is q-EP, then in general (M/A) is

not q-EP. Here we determine necessary and sufficient conditions for M/A to be q-EP. In particular, when rk(M) = rk(A)our

results include as special cases the results of paper [13]. In [5] we have given conditions for a sum of q-EP matrices to be

q-EP.

Theorem 1.2. Let M be a matrix of the form (2) with N(A) ⊆ N(C) and N(M/A) ⊆ N(B), then the following are

equivalent.

(1). M is a q-EP matrix

(2). A and M/A are q-EP, N(A∗) ⊆ N(B∗) and N((M/A)∗) ⊆M(C∗);

(3). Both the matrices

 A 0

C M/A

 and

 A B

0 M/A

 are q-EP.

Proof.

(1)⇒(2) Let us consider the matrices

p =

 I 0

CA− I

 , Q =

 I B(M
/
A)−

0 I

 , L =

 A 0

0 M/A


Clearly P and Q are non-singular. By assumption N(A) ⊆ N(C) and N(M/A) ⊆ N(B) and by using Lemma 1.1 it

is obvious that M can be factorized as M = PQL. Hence rk(M) = rk(L) and N(M) = N(L). But M is q-EP, e.g.

N(M∗) = N(M) = N(L). Therefore by using Lemma 1.1 again M∗ = M∗L−L holds for every L−. One choice of L− is

L− =

 A− 0

0 (M/A)−

 ,

which gives

M∗ =

 A∗ C∗

B∗ D∗

 =

 A∗ C∗

B∗ D∗


 A−A 0

0 (M/A)−(M/A)


A∗ = A∗A−A implies N(A∗) ⊇ N(A), and since rk(A∗) = rk(A) these imply N(A∗) = N(A). Hence A is q-EP. From B∗ =

B∗A−A it follows that N(B) ⊇ N(A) = N(A∗). After substituting D = M
/
A + BA−Cand using C∗ = C∗(M/A)−M/A

in D∗ = D∗(M/A)−M/A we get (M/A)∗ = (M/A)∗(M/A)−M/A. This implies that N((M/A)∗) ⊇ N(M/A) and since

rk((M/A)∗) = rk(M/A)

we get N((M/A)∗) = N(M/A). Thus M/A is q-EP. Further

N(C∗) ⊇ N(M/A) = N((M/A)∗)

Hence (2) holds.

(1)⇒(2) Since N(A) ⊆ N(C), N(A∗) ⊆ N(B∗), N(M/A) ⊆ N(B) and N((M/A)∗) ⊆ N(C∗) hold according to the assump-

tion. So M† is given buy the formula

M† =

 A† + A†B(M
/
A)†CA† −A†B(M

/
A)†

−(M
/
A)†CA† (M

/
A)†
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According to Lemma 1.1 the assumptions N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗) imply that M/A is invariant for every choice

of A−. Hence M
/
A = D − CA†B. Further, using C = M

/
A(M

/
A)†C and B = AA†B, MM† is reduced to the form

M†M =

 AA† 0

0 (M/A)(M/A)†



The relations AA† = A†A and (M
/
A)(M

/
A)† = (M/A)

†
(M/A) result MM† = M†M , e.g., M is q-EP. Thus (1) holds.

(2)⇒(3) By Corollary 8 in [9]  A 0

C M/A


is q-EP, iff A and (M/A) are q-EP, further N(A) ⊆ N(C) and N((M/A)∗) ⊆ N(C∗)

 A B

0 M/A


Is q-EP iff A and M/A are q-EP, further N(A∗) ⊆ N(B∗) and N(M/A) ⊆ N(B). This proves the equivalence of (2) and

(3). The proof is complete.

M =



1 1 1 0

1 1 1 0

1 1 1 1

0 0 0 0



Theorem 1.3. Let M be a matrix of the form (2) with N(A∗) ⊆ N(B∗) and N((M/A)∗) ⊆ N(C∗), then the following are

equivalent.

(1). M is an q-EP matrix

(2). A and (M/A) are q-EP, further N(A) ⊆ N(C) and N(M/A) ⊆ N(B);

(3). Both the matrices

 A 0

C M/A

 and

 A B

0 M/A

 are q-EP.

Proof. Theorem 1.3 follows immediately from Theorem 1.2 and from the fact that M is q-EP iff M∗ is q-EP. If and only

if M∗ is q-EP.

In this special case when B = C∗ we get the following.

Corollary 1.4. Let M =

 A C∗

C D

 with N(A) ⊆ N(C) and N(M/A) ⊆ N(C∗), then the following are equivalent.

(1). M is an q-EP matrix

(2). A and (M/A) are q-EP matrices.

(3). the matrix

 A 0

C M/A

 is q-EP.
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Remark 1.5. The conditions that taken on M in the previous theorems are essential. This is illustrated in the following

example. Let

M =



1 1 1 1 + i + j + k

1 1 1− i− j − k 1

1 1 + i + j + k 1 1

1− i− j − k 1 1 0


M is symmetric and

B = C =

 1 1 + i + j + k

1− i− j − k 1


(M/A) = D − CA†B =

 0 0

0 1


Clearly A and (M/A) are q-EP, N(A) ⊆ N(C)and N(A∗) ⊆ N(B∗), but N(M/A) ⊆ N(B) and N((M/A)∗) 6⊂ N(C∗),

further

 A 0

C M/A

 and

 A B

0 M/A

 Or not q-EP. Thus Theorem 1.2 and 1.3 as well as Corollary 1.4 fail.

Remark 1.6. We conclude from Theorem 1.2 and Theorem 1.3 that for an q-EP matrix M of the form equation (2) the

following are equivalent

N(A) ⊆ N(C), N(M/A) ⊆ N(B) (3)

N(A∗) ⊆ N(B∗), N((M/A)∗) ⊆ N(C∗) (4)

However this fails if we omit the condition that M is q-EP. For example Let

M =



1 1 1 0

1 1 1 0

1 1 1 1

0 0 0 0


M is not q-EP. Here

A =

 1 1

1 1

 , B = C∗ =

 1 0

1 0


A is q-EP, N(A) ⊆ N(C)and N(A∗) ⊆ N(B∗). Hence (M/A) is independent of the choice of A− and so

(M/A) = D − CA†B =

 0 1

0 0


(M/A) is not q-EP, N((M/A)∗) ⊆ N(C∗), but N(A) ⊆ N(B). Thus Equation (4) holds, while Equation (4) fails.

Remark 1.7. It has been proved is [2] that for any matrix Aits Moore-Penrose inverse. M† is given by the formula Equation

(??) iff both Equation (3) and Equation (4) holds. However it is clear by the previous Remark 1.6 that for an q-EP matrix

formula (??) gives M† iff either (3) or (4) holds.
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Theorem 1.8. Let M be of the form Equation (2) with rk(M) = rk(A) = r. Then M is an q-EPr, matrix if and only if A

is q-EP, and CA† = (A†B)∗.

Proof. Since rk(M) = rk(A) = r, we have by reason of the corollary of Theorem 1 in [3] that N(A) ⊆ N(C), N(A∗) ⊆

N(B∗), and M
/
A = D − CA†B = 0. According to Theorem 1.1 these relation are equivalent C = CA†A, B = AA†B and

D = CA†B. Let us consider the matrices

P =

 I 0

CA† I

 , Q =

 I A†B

0 I

 , L =

 A 0

0 0

 .

P and Q are non-singular and by assumption CA† = (A†B)∗ it holds P = Q∗. Therefore M can be factorized as M = PLP ∗.

Since A is q-EPr consequently L is as well q-EPr. Hence N(L) = N(L∗) and so we have according to Lemma 3 of [1] that

N(M) = N(PLP ∗) = N(PL∗P ∗) = N(M∗). This shows that M is q-EPr .

Conversely, let us assume that M is q-EPr. Since M = PLQ, one choice of A− is

M− = Q−1

 A† 0

0 0

P−1

We know that N(M) = N(M∗), therefore by Lemma 1.1 M∗ = M∗M−M holds, e.g

M∗ =

 A∗ C∗

B∗ D∗

 =

 A∗ C∗

B∗ D∗


 A†A A†B

0 0


or equivalently, A∗ = A∗A†Aand C∗ = C∗A†B. From A∗ = A∗A†A it follows N(A∗) = N(A), i.e., A is q-EPr and therefore

AA† = A†A taking into account C∗ = C∗A†B, we have

CA† = B∗(A†)∗(A†A)

= B∗(A†AA†)∗

= B∗(A†)∗

= (A†B)∗

Corollary 1.9. Let M of the form (2) with A non-singular matrix and rk(M) = rk(A). Then M is q-EP if and only if

CA† = (A†B)∗.

Corollary 1.10. Let M be an n× n matrix f rank r. Then M is q-EPr if and only if every principal sub matrix of rank r

is q-EPr.

Proof. Suppose M is an q-EPr matrix. Let A be any principal submatrix of M such that rk(M) = rk(A) = r. Then there

exists a permutation matrix such that M̂ = PMPT =

 A B

C D

 and rk(A) = r. According to Lemma 3 in [1], is q-EPr.

Now, we conclude from Theorem 1.3 that A q-EPr as well. Since A was arbitrary, it follows that very principal submatrix

of rank r is q-EPr. The converse is obvious.

Remark 1.11. Theorem 1.8 fails if we relax the condition on rank of M .
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2. Application

We give conditions under which a partitioned matrix is decomposed into complementary summands of q-EP matrices. M1

and M2 are called complementary summand of M if M = M1 + M2 and rk(M) = rk(M1) + rk(M2).

Theorem 2.1. Let M of the form (2) with rk(M) = rk(A) = rk(M/A), where (M/A) = D − CA†B. If Aand (M/A)

are q-EP matrices such that CA† = (A + B)∗and B(M/A)† = ((M/A)†C∗) then M can be decomposed into complementary

summands of q-EP matrices.

Proof. Let us consider the matrices

M1 =

 A AA†B

CA†A CA†B

 and M2 =

 0 (I −AA†)B

C(I −A†A) M/A


Taking into account that N(A) ⊆ N(CA†A) , N(A∗) ⊆ N(AA†B)∗ and

M1/A = CA†B − ((CA†A)A− (AA†B) = CA†B − CA†B = 0

we obtain by the corollary after Theorem 1 in [5], that rk(M1) = rk(A). Since A is q-EP and (CA†A)A† = CA† =

(A†B)∗ = (A†AA†B)∗. We have from Theorem 1.8 that M1 is q-EP. Since rk(M) = rk(A) + rk(M/A), Theorem 1 of

[5] gives N(M
/
A) ⊆ N(I −AA†)B, N(M

/
A) ⊆ N((I −A†)C)∗ and (I − AA†)M(M

/
A)†C(I −A†A) = 0. Thus by the

corollary of the just applied Theorem 1.1 in [5], we have rk(M2) = rk(M/A). Further, using AA† = A†A, we obtain

(I −AA†)B(M/A)† = (I −AA†)((M/A)†)∗

= ((M/A)†C(I −AA))∗

= ((M/A)†C(I −A†A))∗

Thus by Theorem 1.8, M2 is also q-EP. Clearly M = M1 + M2, where both M1 and M2 are q-EP matrices and

rk(M) = rk(A) + rk(M/A) = rk(M1) + rk(M2).

Hence M1 and M2 are complementary summands of q-EP matrices.

Remark 2.2. Any matrix that is represented as the sum of complementary summands of q-EP matrices is itself q-EP. For

if M =
∑k

i=1 Mi such that each Mi is q-EP and rk(M) =
∑

rk(Mi), then

N(M) =

k⋂
i=1

N(Mi) =

k⋂
i=1

N(M∗i ) = N(M∗i ).
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