International Journal of Mathematics And its Applications

On Schur Complements in Range Quaternion Hermitian Matrices

Research Article

S. Sridevi ${ }^{1 *}$ and K. Gunasekaran ${ }^{1}$
1 PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

```
Abstract: It is established that under contain conditions a schur complement in a q-EP matrix is as well as q-EP matrix. As an
    application a decomposition of a partitioned matrix into a sum of q-EP matrices is given.
MSC: 15A57, 15A15, 15A09.
```

Keywords: q-EP matrix, Schur Complement in q-EP, Complementary summands of q-EP.
(c) JS Publication.

1. Introduction

Throughout we shall deal with $n \times n$ quaternion matrices: Let A^{*} denote thje conjugate transpose of A. Any matrix $A \in H_{n \times n}$ is called q-EP. If $R(A)=R\left(A^{*}\right)$ and is called $q-E p_{r}$, if A is q-EP and $r k(A)=r$, where $N(A), R(A)$ and $r k(A)$ denote the null space, range space and rank of A respectively. It is well known that sum and product of q -EP, Generalized Inverse Group Inverse and Reverse order law for q-EP and Bicomplex representation methods and application of q-EP matrices. In this section, Schur complements in a q-EP matrices.

Lemma 1.1. If X and Y are generalized inverse of A, then $C X B=C Y B$ if and only if $N(A) \subseteq M(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ or, equivalently if and only if

$$
\begin{equation*}
C=C A^{-} A \text { and } B=A A^{-} B \text { for every } A^{-} \tag{1}
\end{equation*}
$$

Throughout this paper, we are concerned with $n \times n$ quaternion matrices M partitioned in the form

$$
M=\left(\begin{array}{ll}
A & B \tag{2}\\
C & D
\end{array}\right)
$$

Where A and D are square matrices with respect to this partitioning a Schur complements of A in M is a matrix at the form $(M / A)=D-C A^{-} B$. For entries of Schur complements one may refer to [2, 3, 5]. On account of Lemma 1.1 it is obvious that under certain conditions (M / A) is independent of the choice of A^{-}. However in the sequel we shall always assume that (M / A) is given in terms of specific choice of A^{-}.

[^0]In [9] necessary and sufficient conditions are derived for a matrix of the (2) with $B=0$ and $C=0$ to be q-EP. The results are here extended for general matrices of the form (2). If a partitioned matrix of the form (2) is q -EP, then in general (M / A) is not q-EP. Here we determine necessary and sufficient conditions for M / A to be q-EP. In particular, when $r k(M)=r k(A)$ our results include as special cases the results of paper [13]. In [5] we have given conditions for a sum of q -EP matrices to be q-EP.

Theorem 1.2. Let M be a matrix of the form (2) with $N(A) \subseteq N(C)$ and $N(M / A) \subseteq N(B)$, then the following are equivalent.
(1). M is a q-EP matrix
(2). A and M / A are $q-E P, N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $N\left((M / A)^{*}\right) \subseteq M\left(C^{*}\right)$;
(3). Both the matrices $\left(\begin{array}{cc}A & 0 \\ C & M / A\end{array}\right)$ and $\left(\begin{array}{cc}A & B \\ 0 & M / A\end{array}\right)$ are $q-E P$.

Proof.
$(1) \Rightarrow(2)$ Let us consider the matrices

$$
p=\left(\begin{array}{cc}
I & 0 \\
C A^{-} & I
\end{array}\right), Q=\left(\begin{array}{cc}
I & B(M / A)^{-} \\
0 & I
\end{array}\right), L=\left(\begin{array}{cc}
A & 0 \\
0 & M / A
\end{array}\right)
$$

Clearly P and Q are non-singular. By assumption $N(A) \subseteq N(C)$ and $N(M / A) \subseteq N(B)$ and by using Lemma 1.1 it is obvious that M can be factorized as $M=P Q L$. Hence $r k(M)=r k(L)$ and $N(M)=N(L)$. But M is q-EP, e.g. $N\left(M^{*}\right)=N(M)=N(L)$. Therefore by using Lemma 1.1 again $M^{*}=M^{*} L^{-} L$ holds for every L^{-}. One choice of L^{-}is

$$
L^{-}=\left(\begin{array}{cc}
A^{-} & 0 \\
0 & (M / A)^{-}
\end{array}\right)
$$

which gives

$$
M^{*}=\left(\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)=\left(\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)\left(\begin{array}{cc}
A^{-} A & 0 \\
0 & (M / A)^{-}(M / A)
\end{array}\right)
$$

$A^{*}=A^{*} A^{-} A$ implies $N\left(A^{*}\right) \supseteq N(A)$, and since $r k\left(A^{*}\right)=r k(A)$ these imply $N\left(A^{*}\right)=N(A)$. Hence A is q-EP. From $B^{*}=$ $B^{*} A^{-} A$ it follows that $N(B) \supseteq N(A)=N\left(A^{*}\right)$. After substituting $D=M / A+B A^{-} C$ and using $C^{*}=C^{*}(M / A)^{-} M / A$ in $D^{*}=D^{*}(M / A)^{-} M / A$ we get $(M / A)^{*}=(M / A)^{*}(M / A)^{-} M / A$. This implies that $N\left((M / A)^{*}\right) \supseteq N(M / A)$ and since

$$
r k\left((M / A)^{*}\right)=\operatorname{rk}(M / A)
$$

we get $N\left((M / A)^{*}\right)=N(M / A)$. Thus M / A is q-EP. Further

$$
N\left(C^{*}\right) \supseteq N(M / A)=N\left((M / A)^{*}\right)
$$

Hence (2) holds.
$(1) \Rightarrow(2)$ Since $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N(M / A) \subseteq N(B)$ and $N\left((M / A)^{*}\right) \subseteq N\left(C^{*}\right)$ hold according to the assumption. So M^{\dagger} is given buy the formula

$$
M^{\dagger}=\left(\begin{array}{cc}
A^{\dagger}+A^{\dagger} B(M / A)^{\dagger} C A^{\dagger} & -A^{\dagger} B(M / A)^{\dagger} \\
-(M / A)^{\dagger} C A^{\dagger} & (M / A)^{\dagger}
\end{array}\right)
$$

According to Lemma 1.1 the assumptions $N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ imply that M / A is invariant for every choice of A^{-}. Hence $M / A=D-C A^{\dagger} B$. Further, using $C=M / A(M / A)^{\dagger} C$ and $B=A A^{\dagger} B, M M^{\dagger}$ is reduced to the form

$$
M^{\dagger} M=\left(\begin{array}{cc}
A A^{\dagger} & 0 \\
0 & (M / A)(M / A)^{\dagger}
\end{array}\right)
$$

The relations $A A^{\dagger}=A^{\dagger} A$ and $(M / A)(M / A)^{\dagger}=(M / A)^{\dagger}(M / A)$ result $M M^{\dagger}=M^{\dagger} M$, e.g., M is q-EP. Thus (1) holds. $(2) \Rightarrow(3)$ By Corollary 8 in [9]

$$
\left(\begin{array}{cc}
A & 0 \\
C & M / A
\end{array}\right)
$$

is q-EP, iff A and (M / A) are q-EP, further $N(A) \subseteq N(C)$ and $N\left((M / A)^{*}\right) \subseteq N\left(C^{*}\right)$

$$
\left(\begin{array}{cc}
A & B \\
0 & M / A
\end{array}\right)
$$

Is q-EP iff A and M / A are q-EP, further $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $N(M / A) \subseteq N(B)$. This proves the equivalence of (2) and (3). The proof is complete.

$$
M=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem 1.3. Let M be a matrix of the form (2) with $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $N\left((M / A)^{*}\right) \subseteq N\left(C^{*}\right)$, then the following are equivalent.
(1). M is an $q-E P$ matrix
(2). A and (M / A) are q-EP, further $N(A) \subseteq N(C)$ and $N(M / A) \subseteq N(B)$;
(3). Both the matrices $\left(\begin{array}{cc}A & 0 \\ C & M / A\end{array}\right)$ and $\left(\begin{array}{cc}A & B \\ 0 & M / A\end{array}\right)$ are $q-E P$.

Proof. Theorem 1.3 follows immediately from Theorem 1.2 and from the fact that M is q-EP iff M^{*} is q-EP. If and only if M^{*} is q-EP.

In this special case when $B=C^{*}$ we get the following.
Corollary 1.4. Let $M=\left(\begin{array}{cc}A & C^{*} \\ C & D\end{array}\right)$ with $N(A) \subseteq N(C)$ and $N(M / A) \subseteq N\left(C^{*}\right)$, then the following are equivalent.
(1). M is an q-EP matrix
(2). A and (M / A) are q-EP matrices.
(3). the matrix $\left(\begin{array}{cc}A & 0 \\ C & M / A\end{array}\right)$ is $q-E P$.

Remark 1.5. The conditions that taken on M in the previous theorems are essential. This is illustrated in the following example. Let

$$
M=\left[\begin{array}{cccc}
1 & 1 & 1 & 1+i+j+k \\
1 & 1 & 1-i-j-k & 1 \\
1 & 1+i+j+k & 1 & 1 \\
1-i-j-k & 1 & 1 & 0
\end{array}\right]
$$

M is symmetric and

$$
\begin{aligned}
B & =C=\left(\begin{array}{cc}
1 & 1+i+j+k \\
1-i-j-k & 1
\end{array}\right) \\
(M / A) & =D-C A^{\dagger} B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Clearly A and (M / A) are $q-E P, N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$, but $N(M / A) \subseteq N(B)$ and $N\left((M / A)^{*}\right) \not \subset N\left(C^{*}\right)$, further $\left(\begin{array}{cc}A & 0 \\ C & M / A\end{array}\right)$ and $\left(\begin{array}{cc}A & B \\ 0 & M / A\end{array}\right)$ Or not $q-E P$. Thus Theorem 1.2 and 1.3 as well as Corollary 1.4 fail.

Remark 1.6. We conclude from Theorem 1.2 and Theorem 1.3 that for an q-EP matrix M of the form equation (2) the following are equivalent

$$
\begin{align*}
& N(A) \subseteq N(C), N(M / A) \subseteq N(B) \tag{3}\\
& N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N\left((M / A)^{*}\right) \subseteq N\left(C^{*}\right) \tag{4}
\end{align*}
$$

However this fails if we omit the condition that M is $q-E P$. For example Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

M is not q-EP. Here

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad B=C^{*}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
$$

A is $q-E P, N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. Hence (M / A) is independent of the choice of A^{-}and so

$$
(M / A)=D-C A^{\dagger} B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(M / A) is not $q-E P, N\left((M / A)^{*}\right) \subseteq N\left(C^{*}\right)$, but $N(A) \subseteq N(B)$. Thus Equation (4) holds, while Equation (4) fails.
Remark 1.7. It has been proved is [2] that for any matrix Aits Moore-Penrose inverse. M^{\dagger} is given by the formula Equation (??) iff both Equation (3) and Equation (4) holds. However it is clear by the previous Remark 1.6 that for an q-EP matrix formula (??) gives M^{\dagger} iff either (3) or (4) holds.

Theorem 1.8. Let M be of the form Equation (2) with $r k(M)=r k(A)=r$. Then M is an $q-E P_{r}$, matrix if and only if A is $q-E P$, and $C A^{\dagger}=\left(A^{\dagger} B\right)^{*}$.

Proof. Since $r k(M)=r k(A)=r$, we have by reason of the corollary of Theorem 1 in [3] that $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq$ $N\left(B^{*}\right)$, and $M / A=D-C A^{\dagger} B=0$. According to Theorem 1.1 these relation are equivalent $C=C A^{\dagger} A, B=A A^{\dagger} B$ and $D=C A^{\dagger} B$. Let us consider the matrices

$$
P=\left(\begin{array}{cc}
I & 0 \\
C A^{\dagger} & I
\end{array}\right), \quad Q=\left(\begin{array}{cc}
I & A^{\dagger} B \\
0 & I
\end{array}\right), \quad L=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) .
$$

P and Q are non-singular and by assumption $C A^{\dagger}=\left(A^{\dagger} B\right)^{*}$ it holds $P=Q^{*}$. Therefore M can be factorized as $M=P L P^{*}$. Since A is $\mathrm{q}-\mathrm{EP}_{r}$ consequently L is as well $\mathrm{q}-\mathrm{EP}_{r}$. Hence $N(L)=N\left(L^{*}\right)$ and so we have according to Lemma 3 of [1] that $N(M)=N\left(P L P^{*}\right)=N\left(P L^{*} P^{*}\right)=N\left(M^{*}\right)$. This shows that M is $\mathrm{q}-\mathrm{EP}_{r}$.
Conversely, let us assume that M is $\mathrm{q}^{-} \mathrm{EP}_{r}$. Since $M=P L Q$, one choice of A^{-}is

$$
M^{-}=Q^{-1}\left(\begin{array}{cc}
A^{\dagger} & 0 \\
0 & 0
\end{array}\right) P^{-1}
$$

We know that $N(M)=N\left(M^{*}\right)$, therefore by Lemma $1.1 M^{*}=M^{*} M^{-} M$ holds, e.g

$$
M^{*}=\left(\begin{array}{cc}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)=\left(\begin{array}{ll}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right)\left(\begin{array}{cc}
A^{\dagger} A & A^{\dagger} B \\
0 & 0
\end{array}\right)
$$

or equivalently, $A^{*}=A^{*} A^{\dagger} A$ and $C^{*}=C^{*} A^{\dagger} B$. From $A^{*}=A^{*} A^{\dagger} A$ it follows $N\left(A^{*}\right)=N(A)$, i.e., A is q-EP ${ }_{r}$ and therefore $A A^{\dagger}=A^{\dagger} A$ taking into account $C^{*}=C^{*} A^{\dagger} B$, we have

$$
\begin{aligned}
C A^{\dagger} & =B^{*}\left(A^{\dagger}\right)^{*}\left(A^{\dagger} A\right) \\
& =B^{*}\left(A^{\dagger} A A^{\dagger}\right)^{*} \\
& =B^{*}\left(A^{\dagger}\right)^{*} \\
& =\left(A^{\dagger} B\right)^{*}
\end{aligned}
$$

Corollary 1.9. Let M of the form (2) with A non-singular matrix and $\operatorname{rk}(M)=r k(A)$. Then M is q - EP if and only if $C A^{\dagger}=\left(A^{\dagger} B\right)^{*}$.

Corollary 1.10. Let M be an $n \times n$ matrix f rank r. Then M is $q-E P_{r}$ if and only if every principal sub matrix of rank r is $q-E P_{r}$.

Proof. Suppose M is an q-EP ${ }_{r}$ matrix. Let A be any principal submatrix of M such that $r k(M)=r k(A)=r$. Then there exists a permutation matrix such that $\widehat{M}=P M P^{T}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ and $r k(A)=r$. According to Lemma 3 in [1], is $q-\mathrm{EP}_{r}$. Now, we conclude from Theorem 1.3 that A q-EP ${ }_{r}$ as well. Since A was arbitrary, it follows that very principal submatrix of rank r is $q-E P_{r}$. The converse is obvious.

Remark 1.11. Theorem 1.8 fails if we relax the condition on rank of M.

2. Application

We give conditions under which a partitioned matrix is decomposed into complementary summands of q-EP matrices. M_{1} and M_{2} are called complementary summand of M if $M=M_{1}+M_{2}$ and $r k(M)=r k\left(M_{1}\right)+r k\left(M_{2}\right)$.

Theorem 2.1. Let M of the form (2) with $r k(M)=r k(A)=r k(M / A)$, where $(M / A)=D-C A^{\dagger} B$. If Aand (M / A) are q-EP matrices such that $C A^{\dagger}=(A+B)^{*}$ and $B(M / A)^{\dagger}=\left((M / A)^{\dagger} C^{*}\right)$ then M can be decomposed into complementary summands of q-EP matrices.

Proof. Let us consider the matrices

$$
M_{1}=\left(\begin{array}{cc}
A & A A^{\dagger} B \\
C A^{\dagger} A & C A^{\dagger} B
\end{array}\right) \text { and } M_{2}=\left(\begin{array}{cc}
0 & \left(I-A A^{\dagger}\right) B \\
C\left(I-A^{\dagger} A\right) & M / A
\end{array}\right)
$$

Taking into account that $N(A) \subseteq N\left(C A^{\dagger} A\right), N\left(A^{*}\right) \subseteq N\left(A A^{\dagger} B\right)^{*}$ and

$$
M_{1} / A=C A^{\dagger} B-\left(\left(C A^{\dagger} A\right) A-\left(A A^{\dagger} B\right)=C A^{\dagger} B-C A^{\dagger} B=0\right.
$$

we obtain by the corollary after Theorem 1 in [5], that $r k\left(M_{1}\right)=r k(A)$. Since A is q-EP and $\left(C A^{\dagger} A\right) A^{\dagger}=C A^{\dagger}=$ $\left(A^{\dagger} B\right)^{*}=\left(A^{\dagger} A A^{\dagger} B\right)^{*}$. We have from Theorem 1.8 that M_{1} is q -EP. Since $r k(M)=r k(A)+r k(M / A)$, Theorem 1 of [5] gives $N(M / A) \subseteq N\left(I-A A^{\dagger}\right) B, N(M / A) \subseteq N\left(\left(I-A^{\dagger}\right) C\right)^{*}$ and $\left(I-A A^{\dagger}\right) M(M / A)^{\dagger} C\left(I-A^{\dagger} A\right)=0$. Thus by the corollary of the just applied Theorem 1.1 in [5], we have $r k\left(M_{2}\right)=r k(M / A)$. Further, using $A A^{\dagger}=A^{\dagger} A$, we obtain

$$
\begin{aligned}
\left(I-A A^{\dagger}\right) B(M / A)^{\dagger} & =\left(I-A A^{\dagger}\right)\left((M / A)^{\dagger}\right)^{*} \\
& =\left((M / A)^{\dagger} C(I-A A)\right)^{*} \\
& =\left((M / A)^{\dagger} C\left(I-A^{\dagger} A\right)\right)^{*}
\end{aligned}
$$

Thus by Theorem 1.8, M_{2} is also q-EP. Clearly $M=M_{1}+M_{2}$, where both M_{1} and M_{2} are q-EP matrices and

$$
r k(M)=r k(A)+r k(M / A)=r k\left(M_{1}\right)+r k\left(M_{2}\right) .
$$

Hence M_{1} and M_{2} are complementary summands of q-EP matrices.

Remark 2.2. Any matrix that is represented as the sum of complementary summands of q-EP matrices is itself $q-E P$. For if $M=\sum_{i=1}^{k} M_{i}$ such that each M_{i} is $q-E P$ and $r k(M)=\sum r k\left(M_{i}\right)$, then

$$
N(M)=\bigcap_{i=1}^{k} N\left(M_{i}\right)=\bigcap_{i=1}^{k} N\left(M_{i}^{*}\right)=N\left(M_{i}^{*}\right) .
$$

References

[1] T.S.Baskett and I.J.Katz, Theorems on products of EP matrices, Linear Algebra and its Appl., 2(1969), 87-103.
[2] F.Burns, D.Carlson, E.Haynsworth and TH.Markham, Generalized inverse formulas using the Schur Complement, SIAM J. Appl. Math., 26(1974), 254-259.
[3] D.Carlson, E.Haynsworth and T.H.Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math., 26(1974), 169-175.
[4] K.Gunasekaran and S.Sridevi, On Range Quaternion Hermitian Matrices, International Journal of Mathematical Archive, 6(8)(2015), 159-163.
[5] K.Gunasekaran and S.Sridevi, On Sums of Range Quaternion Hermitian Matrices, Int. J. Modern Engineering Research, $5(2015), 44-49$.
[6] K.Gunasekaran and S.Sridevi, On Product of Range Quaternion Hermitian Matrices, Int. Journal of Pure Algebra, $6(6)(2016), 318-321$.
[7] K.Gunasekaran and S.Sridevi, Generalized inverses, Group inverses and Revers order law of range quaternion Hermitian matrices, IOSR-JM, 12(4-II)(2016), 51-55.
[8] K.Gunasekaran and S.Sridevi, On Bicomplex Representation Methods and Application of Range Quaternion Hermitian Matrices (q-Ep), IJMTT, 48(4)(2017), 250-259.
[9] C.D.Meyer, Generalized inverses of block triangular matrices, SIAM J. Appl. Math., 19(1970), 741-750.
[10] M.H.Pearl, On generalized inverses of matrices, Proc. Cambridge Phil. Soc., 62(1966), 673-677.
[11] R.Penrose, A generalizedinverse for matrices, Proc. Cambridge Philos. Soc., 51(1955), 406-415.
[12] C.R.Rao and S.K.Mitra, Generalized inverse of matrices and its applications, Wiley, New York, (1971).
[13] P.Robert, On the group inerse of a linear trandformation, J. Math. Anal. Appl., 22(1968), 658-669.
[14] H.Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Noordhoff, Groningen, (1950).

[^0]: * E-mail: sridevimahendran21@gmail.com

