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Abstract: Let G = (V,E) be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every vertex

is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is called

the resolving number of G and is denoted by r(G). As an extension, the total resolving number was introduced in [5] as
the minimum cardinality taken over all resolving sets in which 〈W 〉 has no isolates and it is denoted by tr(G). In this

paper, we obtain the bounds on the total resolving number of power graphs. Also, we characterize the extremal graphs.
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1. Introduction

Let G = (V,E) be a finite, simple, connected and undirected graph. The degree of a vertex v in a graph G is the number

of edges incident to v and it is denoted by d(v). The maximum degree in a graph G is denoted by ∆(G) and the minimum

degree is denoted by δ(G). The distance d(u, v) between two vertices u and v in G is the length of a shortest u−v path in G.

The maximum value of distance between vertices of G is called its diameter. Pn denote the path on n vertices. Cn denote the

cycle on n vertices. Kn denote the complete graph on n vertices. A graph is acyclic if it has no cycles. A tree is a connected

acyclic graph. A spider is a tree with one vertex of degree at least 3 and all others with degree at most 2. A complete

bipartite graph is denoted by Ks,t. A star is denoted by K1,n−1. A tree obtained by joining the centres of two stars K1,s

and K1,t by an edge is called a bistar and it is denoted by Bs,t. A (k, l)-kite is a graph obtained by identifying any vertex

of a cycle Ck with an end vertex of a path Pl. If W = {w1, w2, ..., wk} ⊆ V (G) is an ordered set, then the ordered k-tuple

(d(v, w1), d(v, w2), ..., d(v, wk)) is called the representation of v with respect to W and it is denoted by r(v|W ). Since the

representation for each wi ∈W contains exactly one 0 in the ith position, all the vertices of W have distinct representations.

W is called a resolving set for G if all the vertices of V \W also have distinct representations. The minimum cardinality of a

resolving set is called the resolving number of G and it is denoted by r(G). In [5] we introduced and studied total resolving

number. If W is a resolving set and the induced subgraph 〈W 〉 has no isolates, then W is called a total resolving set of G.

The minimum cardinality taken over all total resolving sets of G is called the total resolving number of G and is denoted

by tr(G). In this paper, we obtain the bounds on the total resolving number of power graphs. Also, we characterize the

extremal graphs.
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2. Total Resolving Number of Graphs

The following results are used in next section.

Observation 2.1 ([5]). Let {w1, w2} ⊂ V (G) be a total resolving set in G. Then the degrees of w1 and w2 are at most 3.

Theorem 2.2 ([5]). For n ≥ 3, tr(Pn) = 2 and tr(Cn) = 2.

Observation 2.3 ([5]). For any graph G of order n ≥ 3, 2 ≤ tr(G) ≤ n− 1.

Theorem 2.4 ([5]). Let G be a graph of order n ≥ 3. Then tr(G) = n− 1 if and only if G ∼= Kn or K1,n−1.

3. Power Graphs

In this section, we determine the total resolving number of square of cycles, bistar, spider and power of paths. Also, we

obtain the bounds of the total resolving number of power graphs and characterize the extremal graphs.

Definition 3.1. For any integer k ≥ 2, the power Gk of a graph G is a graph whose vertex set is V (G) and two distinct

vertices of Gk are adjacent if their distance in G is at most k.

Theorem 3.2. For n ≥ 3, tr(C2
n) =


4 if n ≡ 1(mod4)

3 otherwise.

Proof. Let V (Cn) = {v1, v2, . . . , vn}. Since C2
n is a 4-regular graph, tr(C2

n) ≥ 3. Let d be the diameter of C2
n. Let x, y be

two distinct vertices of V (C2
n) \W. We consider the following two cases.

Case 1 : n 6≡ 1(mod4).

Let W = {v1, v2, v3}. Then we consider the following two subcases.

Sub case 1.1 : n ≡ 0(mod4) or n ≡ 2(mod4).

If either d(x, v1) 6= d(y, v1) or d(x, v2) 6= d(y, v2), then r(x|W ) 6= r(y|W ). So we may assume that d(x, v1) = d(y, v1) and

d(x, v2) = d(y, v2). If n ≡ 0(mod4), then x = vn
2

and y = vn
2
+1. But d(x, v3) = d(y, v3)−1. It follows that r(x|W ) 6= r(y|W ).

If n ≡ 2(mod4), then n ≥ 8 and x = vn
2

and y = vn
2
+3. But d(x, v3) = d(y, v3)− 2. It follows that r(x|W ) 6= r(y|W ).

Sub case 1.2 : n ≡ 3(mod4).

Let x lie on v1-vdn2 e+2 path of Cn. If either d(x, v1) 6= d(y, v1) or d(x, v2) 6= d(y, v2), then r(x|W ) 6= r(y|W ). So we may

assume that d(x, v1) = d(y, v1) and d(x, v2) = d(y, v2). Then x lies on v4-vbn2 c path in the graph Cn and y lies on vn-vbn2 c
path in the graph Cn. But d(x, v3) = d(y, v3)− 2. It follows that r(x|W ) 6= r(y|W ).

Therefore W is a resolving set of C2
n and hence tr(C2

n) ≤ 3. Thus tr(C2
n) = 3.

Case 2 : n ≡ 1(mod4).

Then n = 4k + 1, k ≥ 1. If k = 1, then C2
n
∼= K5. But tr(K5) = 4. So we consider k ≥ 2. In

this case, we claim that tr(C2
n) = 4. Suppose tr(C2

n) ≤ 3. If 〈W 〉 = P3, then without loss of general-

ity, let W = {v1, v2, v4} or {v1, v3, v5}. If W = {v1, v2, v4}, then r(vdn2 e|W ) = r(vdn2 e+1|W ) = (k, k, k − 1),

which is a contradiction to tr(C2
n) = 3. If W = {v1, v3, v5}, then r(vdn2 e+1|W ) = r(vdn2 e+2|W ) = (k, k, k −

1). If 〈W 〉 = K3, then without loss of generality, let W = {v1, v2, v3}. Then r(vdn2 e+1|W ) = r(vdn2 e+2|W )

= (k, k, k), which is a contradiction. Thus tr(C2
n) ≥ 4. Let W = {v1, v2, v3, v4}. If d(x, vi) 6= d(y, vi) for some i(i = 1, 2, 3),

then r(x|W ) 6= r(y|W ). So we may assume that d(x, v1) = d(y, v1), d(x, v2) = d(y, v2) and d(x, v3) = d(y, v3). Then

x = vdn2 e + 1 and y = vdn2 e + 2. But d(x, v4) = d(y, v4)− 1. It follows that r(x|W ) 6= r(y|W ). Thus W is a resolving set of

C2
n and hence tr(C2

n) ≤ 4. Thus tr(C2
n) = 4.
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Observation 3.3 ([6]). If a connected graph G contains a set S of vertices of G of cardinality p ≥ 2 such that d(u, x) = d(v, x)

∀ u, v ∈ S and x ∈ V (G) \ {u, v}, then every resolving set must contain at least p− 1 vertices of S.

Theorem 3.4. For s, t ≥ 2, tr(B2
s,t) = s+ t− 1.

Proof. Let V (Bs,t) = {u0, u1, . . . , us} ∪ {v0, v1, . . . , vt} and E(Bs,t) = {u0ui / 1 ≤ i ≤ s} ∪ {v0vj / 1 ≤ j ≤ t} ∪ {u0v0}.

Let W be a total resolving set of B2
s,t. By Observation 3.3, every W contain at least one vertex from {u0, v0}, s− 1 vertices

from {u1, u2, . . . , us} and t − 1 vertices from {v1, v2, . . . , vt}. Therefore, tr(B2
s,t) ≥ s + t − 1. Let W = {ui / 0 ≤ i ≤

s − 1} ∪ {vj / 1 ≤ j ≤ t − 1}. Then all the coordinates of the representation of v0 are 1, only the 1st s coordinates of

the representation of us is 1 and only the last r − 1 coordinates of the representation of vt is 1. Since 〈W 〉 has no isolates,

tr(B2
s,t) ≤ s+ t− 1 and hence tr(B2

s,t) = s+ t− 1.

Theorem 3.5. Let T be a spider. Then tr(T 2) = ∆(T ).

Proof. Let V (T ) = {v, vi1, vi2, . . . , viri/1 ≤ i ≤ t}, where d(v) = t ≥ 3 in T and E(T ) =

{vvi1, vi1vi2, vi2vi3, . . . , vi(ri−1)viri / 1 ≤ i ≤ t}, where |V (T )| = r1 + r2 + . . . + rt + 1. Then V (T 2) = V (T )

and E(T 2) = E(T ) ∪ {vvi2, vi1vi3, vi2vi4, vi3vi5, vi4vi6, . . . viri−2viri / 1 ≤ i ≤ t}. Let W be a minimum total re-

solving set of T 2. Then we claim that W contains at least one vertex from the set {vi1, vi2, . . . , viti} for all 1 ≤

i ≤ t with one exception. Suppose no vertex of {v11, v12, . . . , v1t1} and {v21, v22, . . . , v2t2} belongs to W. Then

r(v1i|W ) = r(v2j |W ) for i = j, which is a contradiction. Since W is a minimum total resolving set, t− 1 vertices from the

set {v11, v21, . . . , vt1} belong to W. Without loss of generality, let v11, v21, . . . , v(t−1)1 belongs to W. But each coordinate of

the representation of vt1 and v1 is 1. It follows that r(vt1|W ) = r(v|W ). Therefore v or vt1 belongs to W. Thus tr(T 2) ≥ t.

Let W = {v, v11, v21, . . . , v(t−1)1}. We claim that W is a resolving set of T 2. Let x, y be two distinct vertices of V (T 2) \W.

We consider the following two cases.

Case 1 : x lies on vi1-viri path of T for some 1 ≤ i ≤ t− 1.

Then r(x|W ) 6= r(y|W ) for all x, y ∈ V (T 2) \W with respect to {v, vi1}, 1 ≤ i ≤ t− 1.

Case 2 : x lies on vt1-vtrt path of T.

For 1 ≤ i ≤ t−1, if x lies on vi1-viri path of T, then by case 1, r(x|W ) 6= r(y|W ) for all x, y ∈ V \W. So we may assume that

y lies on vt1-vtrt path of T. If d(x, v) 6= d(y, v), then r(x|W ) 6= r(y|W ). So we may assume that d(x, v) = d(y, v). If x lies on

y-v path of T, then d(y, v11) = d(x, v11)+1 and if y lies on x-v path of T, then d(x, v11) = d(y, v11)+1. So r(x|W ) 6= r(y|W )

for all x, y ∈ V (T 2) \W. Therefore each vertex of V (T 2) \W have distinct representations. Thus tr(T 2) ≤ t and hence

tr(T 2) = t = ∆(T ).

Observation 3.6. Let G be a graph of order n ≥ 3 and diameter d. Then 2 ≤ tr(Gk) ≤ n− 1, 2 ≤ k ≤ d.

Proof. The proof follows from Observation 2.3.

Theorem 3.7. Let G be a graph of order n ≥ 4. Then tr(Gk) = 2 if and only if G ∼= Pn.

Proof. Assume that tr(Gk) = 2. Let W = {w1, w2} be a total resolving set of G2. Then by Observation 2.1, d(w1) ≤ 3

and d(w2) ≤ 3 and hence k = 2. First, we claim that δ(G) = 1. Suppose δ(G) ≥ 2. If n = 4, then tr(G2) = 3. If n ≥ 5,

then δ(G) ≥ 4. By Observation 2.1, tr(G2) ≥ 3, which is a contradiction. Thus δ(G) = 1. Now, we claim that ∆(G) = 2.

Suppose ∆(G) ≥ 3. Suppose G ∼= (3, l)-kite. If l = 1 or 2, then tr(G2) = 3. Let l ≥ 3. Let v1v2v3v1 be the cycle of (3, l)-kite,

u be the pendant and v be its neighbor. Let d(v1) = 3. Then by Observation 2.1, one vertex of W is u and another one

is v. But d(v2, u) = d(v3, u) and d(v2, v) = d(v3, v). It follows that r(v2|W ) = r(v3|W ), which is a contradiction. Suppose

G ∼= (k, l)-kite, k ≥ 4. If l = 1 or 2, then we can easily verify that tr(G2) 6= 2. Let l ≥ 3. Let v1v2v3 . . . vkv1 be the
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cycle Ck of (k, l)-kite and vkvk+1vk+2 . . . vn be the path of (k, l)-kite. Then dG2(vn) = 2, dG2(vn−1) = 3 and d(vi) ≥ 4,

1 ≤ i ≤ n − 2. So W = {vn, vn−1}. But dG2(v1, vn) = dG2(vk−1, vn) and dG2(v1, vn−1) = dG2(vk−1, vn−1). It follows that

r(v1|W ) = r(vk−1|W ), which is a contradiction. If G � (k, l)-kite, then we use the similar argument we get tr(G2) ≥ 3.

Thus ∆(G) = 2. Since δ(G) = 1, G ∼= Pn.

The converse can be easily verified.

Theorem 3.8. Let G be a graph of order n ≥ 3 and diameter d. Then tr(Gk) = n−1, 2 ≤ k ≤ d if and only if diam(G) = k.

Proof. Assume that tr(Gk) = n− 1. Then we claim that diam(G) = k. Suppose diam(G) ≥ k + 1. Then diam(Gk) ≥ 2.

Since δ(Gk) ≥ 2 and diam(Gk) ≥ 2, by Theorem 2.4, tr(Gk) ≤ n − 2, which is a contradiction. Thus diam(G) = k.

Conversely, let diam(G) = k. Then Gk ∼= Kn. By Theorem 2.4, tr(Gk) = n− 1.

Theorem 3.9. For n ≥ 3 and n > k, tr(P k
n ) = k.

Proof. Let V (Pn) = {v1, v2, . . . , vn} . Let v1 and vn be the end vertices of Pn and v2, v3, . . . , vn−1 be the internal vertices of

Pn. Let W be a total resolving set of Pn
k. Let W = {v1, v2, . . . , vk}. Then we can easily verify that each vertex of V (P k

n )\W

have distinct representations. Therefore, tr(P k
n ) ≤ k. Next, we prove that tr(P k

n ) ≥ k. Suppose that tr(P k
n ) ≤ k − 1. If

n = k + 1, then P k
n
∼= Kk+1. We know that tr(Kk+1) = k, which is a contradiction to W. So, we assume that n ≥ k + 2.

Let W = {w1, w2, . . . , wk−1} and U = {v1, v2, . . . , vk, vk+1}. Let W ⊂ U. Since |W | = k − 1, let u, v ∈ U but not in W and

〈U〉 is Kk+1, r(u|W ) = r(v|W ) = (1, 1, . . . , 1), which is a contradiction. Let W 6⊂ U. Then at least one vertex of W must be

in V (P k
n ) \ U. If exactly one vertex of W does not in U, then without loss of generality, let wk−1 /∈ U. Therefore there exist

exactly three vertices of U not in W, say y1, y2, y3. Then there exists a vertex, say vi in U \ {v1} such that d(vi, vi+rk) = r,

where vi+rk = wk−1, r ≥ 1, i 6= 1. Then d(y1, wi) = d(y2, wi) = d(y3, wi) for all 1 ≤ i ≤ k − 2. Let x = vi.

If y1, y2 and y3 do not lie on x − wk−1 path of Pn, then d(y1, wk−1) = d(y2, wk−1) = d(y3, wk−1) = r + 1 in P k
n . Thus

r(y1|W ) = r(y2|W ) = r(y3|W ), which is a contradiction. If y1 and y2 do not lie on x−wk−1 path and y3 lies on x−wk−1 path

of Pn, then d(y1, wk−1) = d(y2, wk−1) = r+ 1 in P k
n . Thus r(y1|W ) = r(y2|W ) which is a contradiction. If y1 does not lie on

x−wk−1 path and y2 and y3 lie on x−wk−1 path of Pn, then d(y2, wk−1) = d(y3, wk−1) = r in P k
n . Thus r(y2|W ) = r(y3|W ),

which is a contradiction. If y1, y2 and y3 lies on x − wk−1 path of Pn, then d(y1, wi) = d(y2, wi) = d(y3, wi) = 1,

1 ≤ i ≤ k − 2. Thus r(y1|W ) = r(y2|W ) = r(y3|W ), which is a contradiction. Therefore at least two vertices of U

have the same representations, which is a contradiction. Similarly, if more than one vertex of W do not in U, then we can

prove that tr(P k
n ) ≥ k. Thus tr(Pn

k) ≥ k and hence tr(Pn
k) = k.

Open Problem 3.10. If G is a connected graph of order n ≥ 3 and d is the diameter of G, then characterize G for which

tr(Gk) = k, 2 ≤ k ≤ d.
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