

International Journal of Mathematics And its Applications

Vizing's Weaker Conjecture $(\delta, \Delta) = (7, 15)$

P. Anitha^{1,*}

1 Department of Mathematics, Hajee Karutha Rowther Howdia College, Uthamapalayam, Tamilnadu, India.

Abstract: Vizing conjectured that G is a simple and Δ -critical graph with m edges then $2m \ge \Delta^2$. In this paper, we prove, the conjecture for graphs with $\delta = 7$ and $\Delta = 15$.

Keywords: Critical graphs, degree sequence. © JS Publication.

1. Introduction

Throughout this paper, G = (V, E) is a graph with n vertices, m edges, maximum degree of a vertex v in G. Let n_j be the number of vertices of degree j in G. We use $\pi(G)$ to denote the valence list of G. Note $n_j = 0$, then the factor j^{n_j} customary omitted $\pi(G)$. If S, T denotes the set of major and minor vertices G respectively, and ||[S, T]|| denotes the sets of edges in G with one end in S and the other end in T. Also ||[T]|| denotes the number of edges in T. s(G) denotes the sum of degrees of minor vertices in G. Let c(G) denotes the closure of G, then C denotes the Hamilton cycle of G. A well known theorem of Vizing [8] states that: if G is a simple graph with maximum degree Δ , then the edge chromatic number X'(G) of G is Δ or $\Delta + 1$. A graph G is said to be of Class 1 if $X'(G) = \Delta$ and it is said to be of Class 2 if $X'(G) = \Delta + 1$. G is said to be (edge chromatic) critical if it is connected, class 2 and X'(G - e) < X'(G) for every edge e. A critical graph G with maximum degree Δ is called Δ -critical.

Conjecture [7]: If G is a Δ -critical graph with n vertices m edges and maximum degree Δ then $m > \frac{1}{2}(n(\Delta - 1) + 3)$. Recognizing that conjecture is probably difficult to settle, Vizing remarks that he is enable to settle the simple problem.

Is it true if G is simple and Δ -critical then $m \ge frac\Delta^2 2$?. We refer this problem as the Vizings weaker conjecture. K. Kayathri [3] proved this conjecture for graphs with $2 \le \delta \le 5$. M. Santhi [6] proved this conjecture for graphs with $\delta = 6$. In the following results we study the structure of 14-critical graphs with $\delta = 7$ and $2m < \Delta^2$.

2. Known Results

To prove our result, we require the following preliminary results and their consequences.

R1 [7]: Vizings Adjacency Lemma (VAL). In a Δ -critical graph G, if vw is an edge and d(v) = k, then w is adjacent with at least $\Delta - k + 1$ other vertices of degree Δ .

[`] E-mail: santhian and han @yahoo.co.in

- R2 [2]: A graph G with order 2s + 1 and maximum degree 2s 1 is in class 2 if and only if it has size at least $2s^2 s + 1$.
- R3 [1]: A graph G with order 2s + 2 and maximum degree 2s 1 is in class 2 if and only if $q(G) \delta(G) \ge 2s^2 s + 1$, where q(G) denotes the size of G.
- R4 [4]: If G has order 2s and maximum degree 2s 1 then G is in class 2. If G has order 2s + 1 and maximum degree 2s then G4 is in class 2 if and only if the size of G is at least $2s^2 + 1$.
- R5 [5]: There are no critical graphs with order 2s + 2 and maximum degree 2s.
- R6 [6]: Let G be Δ -critical graphs with $n = \Delta + 1$ or $\Delta + 2$. Then $2m \ge \Delta^2$.
- R7 [6]: Let G be Δ -critical graphs with $n = \Delta + 3$ and Δ odd. Then $2m \ge \Delta^2$.
- R8 [6]: Let G be graph with $n_{\Delta} \leq \Delta + 1$. If $s(G) = n_{\Delta}(\Delta n_{\Delta} + 1) + 2k$, then $||[T]|| \leq k$ and $d(v) \leq n_{\Delta} + k$ for all $v \in T$.
- R9 [6]: Let G be graph with $n_{\Delta} \leq \Delta + 1$. If $s(G) = n_{\Delta}(\Delta n_{\Delta} + 1)$ then
 - (i) ||[T]|| = 0
 - (ii) $||[S,T]|| = n_{\Delta}(\Delta n_{\Delta} + 1)$ and
 - (iii) Every vertex in S has exactly $\Delta n_{\Delta} + 1$ neighbours in T.
- R10 [6]: Let G be Δ -critical graphs with $n_{\delta} \ge n \delta + 2$ and $s(G) = n_{\Delta}(\Delta n_{\Delta} + 1) + 2k$. Then [T] = k and $d(V) \le n_{\Delta} + k$ for all $v \in T$.
- R11 [6]: Let G be Δ -critical graphs with $n_{\Delta} = \Delta 4$ and $2m < \Delta^2$, then
 - (i) $5\Delta 20 \le s(G) < 4\Delta$.
 - (ii) $0 \le ||[T]|| \le 2$ and
 - (iii) s(G) and Δ are of same parity.

R12 [3]: Let G be Δ -critical graphs with $n_{\Delta} = (\Delta - \delta + 2) + l$, where $1 \ge 0$. If $\Delta \ge (\delta - 1 - l)(\delta - 2 - l)$ then $2m \ge \Delta^2$. If G is a Δ -critical graphs with $\delta = 7$, then by VAL $n_{\Delta} \ge (\Delta - \delta + 2) = \Delta - 5$.

3. Theorems

Lemma 3.1. Let G be a 15-critical graph with $\delta = 7$ and $n_{\Delta} = \Delta - 3$. Then $2m \ge \Delta^2$.

Proof. By R6 and R7 it is enough to verify the result when $n_{\Delta} = \Delta - 4$. By VAL $n_{\Delta} = \Delta - \delta + 2$. Let $n_{\Delta} = \Delta - \delta + 2 + l$ where $l \ge 0$. Now $n_{\Delta} = \Delta - 3$ and $\delta = 7$ implies that $l \ge 2$. When $l \ge 3$,

$$(\delta - 1 - l)(\delta - 2 - l) = (6 - l)(5 - l)$$
$$\geq 3 \times 2 = 6$$
$$< \Delta$$

and hence by R12, $2m \ge \Delta^2$. When l = 2, $(\delta - 1 - l)(\delta - 2 - l) = 4 \times 2 = 8 < \Delta$ and by R7, $2m \ge \Delta^2$ if $\Delta \ge 12$. Since $n_{\Delta} = \Delta - 3$, $n_{\Delta} \ge \Delta + 3$ and

$$2m \ge (\Delta - \delta)n_\Delta + \delta_n$$

 $\geq (\Delta - 7)(\Delta + 3) + 7(\Delta + 4)$ $\geq \Delta^2 - 3\Delta + 49$ $\geq \Delta^2 \quad if \quad \Delta \le 16$

Hence the Result

Lemma 3.2. Let G be a Δ -critical graph with $\delta = 7$, $n_{\Delta} = \Delta - 4$, $n = \Delta + r$, $r \ge 3$. Then $2m \ge \Delta^2$ if $4\Delta \le 28 + 7r$. Proof.

$$2m \ge \Delta n_{\Delta} + 7(n - n_{\Delta})$$
$$\ge \Delta(\Delta - 4) + 7(\Delta + r - \Delta + 4)$$
$$> \Delta^2 - 4\Delta + 28 + 7r$$

Thus, $2m \ge \Delta^2$ if $4\Delta \le 28 + 7r$.

Lemma 3.3. let G be a Δ -critical graph with $\delta = 7$, $n_{\Delta} = \Delta - 5$, $n = \Delta + r$ and $r \geq 3$. Then $2m \geq \Delta^2$. Then if $5\Delta \leq 35 + 7r$.

Proof.

$$2m \ge \Delta n_{\Delta} + 7(n - n_{\Delta})$$
$$\ge \Delta(\Delta - 5) + 7(\Delta + r - \Delta + 4)$$
$$> \Delta^{2} - 5\Delta + 35 + 7r$$

Thus, $2m \ge \Delta^2$ if $4\Delta \le 35 + 7r$.

Lemma 3.4. *let* G *be a 15-critical graph with* $\delta = 7$, $\Delta = 15$ *and* $2m \ge \Delta$ *. Then*

- (1) $n_{\Delta} = \Delta 4$ and $\Delta 5$.
- (2) $n_{\Delta} = \Delta + r, r = 3, 4$
- (3) $0 \le ||[T]|| \le 2$
- (4) s(G) = 55 or 57 or 59.

Proof.

- (1) By VAL $n_{\Delta} \ge \Delta \delta + 2 \ge \Delta 5$. Also by lemma 1, when $n_{\Delta} = \Delta 4$ and $\Delta 5$, $n_{\Delta} < \Delta 3$. Hence $n_{\Delta} = \Delta 4$ and $\Delta 5$.
- (2) Let $n = \Delta + r$, r = 3. By lemma 2, $2m \ge \Delta^2$ if $4\Delta \le 28 + 7r$. Hence for 15, if $r \ge 5$ we have $2m \ge \Delta^2$. Also by R6 and R7 $2m \ge \Delta^2$ if $n = \Delta + 1$ and $\Delta + 2$.
- (3) By R11, $0 \le ||[T]|| \le \frac{20-5}{2}$ and so $0 \le ||[T]|| \le 2$.
- (4) By R11, s(G) is odd. Also $6\Delta 20 \le s(G) < 4s$ and so $55 \le s(G) < 60$.

Lemma 3.5. If G is a Δ -critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 4$ and $n_{\Delta} = \Delta - 4$ then $2m \geq \Delta^2$.

Proof. If possible let G be a Δ -critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 4$, $n_{\Delta} = \Delta - 4$ and $2m \ge \Delta^2$. Then by R11 $55 \le s(G) < 60$ and s(G) is odd and so s(G) is 55, 57 or 59. Now

$$s(G) \ge \delta n_{\delta} + (\delta + 1(n - n_{\Delta} - n_{\delta})\Delta$$
$$\ge (\delta + 1)(n - n_{\Delta}) - n_{\delta}$$

For $1 \le n_7 \le 4$, $s(G) \ge (7+1) + (19-11) - 4 \ge 60$, a contradiction. Now for $5 \le n_7 \le 8$, the possible degree sequences of G are as follows:

i)	7^5	8^3	15^{11}	
ii)	7^6	8	9	15^{11}
iii)	7^7	8	15^{11}	
iv)	7^7	10	15^{11}	

In all the cases, we get a contradiction in the following Lemmas (Lemma 3.5 and Lemma 3.6). Hence the Lemma. \Box

Lemma 3.6. If G is a Δ -critical graph with $\Delta = 15$, $\Delta = 7$, $n = \Delta + 4$, $b_{\Delta} = \Delta + 4$, s(G) = 57, then $2m \ge \Delta^2$.

Proof. Assume the contrary that $2m < \Delta^2$. Then the only possible degree sequence is $\pi(G) = 7^7 \ 8 \ 15^{11}$, given in Lemma 3.4. But by $\|[T]\| \le 1$. But by VAL, $\|[T]\| = 0$. Now, $\|[S,T]\| = 57$ if $\|[T]\| = 0$. Then in G, one of the following two cases arises:

- (i) ||[T]|| = 0, two major vertices have 6 minor neighbours and 9 major vertices have 5 minor neighbours.
- (ii) ||[T]|| = 0, one major vertex has 7 minor neighbours and 10 major vertices have 5 minor neighbours.

Now $\pi(G) = 7^5 \ 8 \ 5^{11}$. Let v_1 be a vertex of degree 7. Let D be a subset of $T\{v_1\}$ with ||D|| = 7. Let D' = T/D. Then ||D'|| = 1 and $v_1 \in D'$. Let $D = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$ and $D' = \{v_1\}$. We shall fix the degrees of u_i s and v_i s accordingly. Let $G_1 = G/D$. Now $||v(G_1)|| = 13$. Then $\Delta(G_1) \leq 12$. The number of vertices of degree is in G_1 . Since we have deleted 6 vertices from G and $\Delta(G) = 15$, the major vertices in G are of degree ≥ 9 in G_1 . Hence

$$n'_8 + n'_9 + n'_{10} + n'_{11} + n'_{12} \ge n_\Delta(G) = 11$$
$$\|V_1\| = n'_8 + n'_9 + n'_{10} + n'_{11} + n'_{12} \ge n_\Delta(G) = 11$$

Moreover $v_1 \in G_1$ and $d_{G_1}(v_1) = 7$. Let $v_1 = \{v \in V(G_1) : d_{G_1}(v) \ge 8\}$ and $v_2 = \{v \in V(G_1) : d_{G_1}(v) < 8\}$. Then $\|V_1\| = n'_8 + n'_9 + n'_{10} + n'_{11} + n'_{12} \ge n_{\Delta}(G) = 11$. Let $v \in V_1$. Now for all $w \in V(G_1)$; $d_{G_1}(v) + d_{G_1}(w) \ge 8 + 6 = 14 \ge \|V(G_1)\|$. So in the closure of $c(G_1)$, every $v \in V_1$ is adjacent with every other vertex in G_1 . Moreover for all $u \in V_2$, $d_{c(G_1)}(u) \ge \|V_1\| \ge n_{\Delta}(G) = 1$. So, for every pair of vertices u and w in V_2 , $d_{c(G_1)}(u) + d_{c(G_1)}(w) \ge 11 + 11 = 22 > \|V(G_1)\|$. So, $c(G_1)$ is complete and hence G_1 is Hamiltonian. Let C be a Hamiltonian cycle of G_1 . Let G' = G/E(C). Since G is of class 2, G' is also of class 2. Also

$$d_g(U) = d_G(u) \text{ for } u \in D \text{ and}$$

$$d_{G'}(v) = d_g(v)2$$

$$(1)$$

In particular $d_{G'}(V_1) = 5$ and so $\delta(G_1) = 5$. Also $\Delta(G') = \Delta(G) - 2 = 13$. Let H be a 13-critical subgraph of G'. Let h''_i denote the number of vertices of degree is in H. Let *Sprime*, T' respectively denote the set of major and minor vertices in H. We have $||S' \leq n_{\Delta}(G) = 11$. By VAL, $n_{\Delta} \geq \Delta S + 2$. We have

$$\delta(H) \ge \Delta(H) - ||S'|| + 2$$
$$\ge 13 - 11 + 2$$
$$\ge 4$$
$$\delta(H) = 5$$

Now ||S'|| = 11. Note that $d_H(v_i) = 5$ and so v_1 has 5 major neighbourhood in Cases (i) and (ii). Then in

(i)
$$||[S', T']|| \le (5 \times 4) + (4 \times 5) + (2 \times 6) = 52$$

(ii) $||[S', T']|| \le (5 \times 4) + (5 \times 5) + (1 \times 7) = 52$ (2)

Since $\delta(H) = 5$, it follows that $H = G'/E_1$, where $E_1 \subseteq [T]_{G'}$, and no edge in E1 is incident with vertices of degree 13 or 4. While removing C from G, we have removed only two edges from [T, S] (two edges incident with one minor vertex in D'). So,

$$s(G') = s(G)(1 \times 2)$$

= 57 - 2 = 55

Then $s(H) \ge s(G')2||E_1|$. Now,

$$\|[S', T']\| = s(H) - 2\|[T']\|$$

= 55 - 2($\|E_1\| + \|[T']\|$)
 $\geq 55 - 2 \geq 53 \ contradicting \ (2)$
 $\delta \geq 6$

Now $n_5(H) = 0$

$$n_{5}(H) = 0 \Rightarrow H \subseteq G'/v_{1} \qquad (where \ d(v_{i}) = 5)$$

$$\Rightarrow ||S'|| \le 11 - 4 = 7 \qquad (since \ v_{1} \ has \ at least \ 4 \ major \ neighbours \ in \ G')$$

$$\Rightarrow \ \delta(H) \ge \qquad (using \ VAL)$$

$$(3)$$

Let u_1 be a vertex of degree 7 that has only major neighbours in G. Then $d_{G'}(u_1) = 7$. Now by (3), $\delta(H) \ge 8$

$$\begin{split} \delta(H) &\geq 8 \Rightarrow H \subseteq G'/u_1 \\ &\Rightarrow \|S'\| \leq 11 - 7 = 4 \\ &\Rightarrow 11 \end{split}$$

We note that $n_{10} + n_{11} = 0$ in G. Hence $n_8'' + n_9'' \le n_{11} + n_{12} + n_{13} + n_{14} + n_{15} = 11$. So, $||V(H)|| \le 11n_{11}$ is a contradiction. This completes the proof.

`

Lemma 3.7. If G is an Δ -critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 45$, $n_{\Delta} = \Delta - 4$ and s(G) = 59 then $2m \geq \Delta^2$.

Proof. Assume the contrary that $2m < \Delta^2$. Then the possible degree sequences are

i) 7^5 8^3 15^{11} ii) 7^6 8 9 15^{11} iii) 7^7 10 15^{11} given in Lemma 3.4.

By R8, $||[T]|| \le 2$. But by VAL, $||[T]|| \le 1$. Now

$$\|[S,T]\| = \begin{cases} 59, if \|[T]\| = 0\\ 57, if \|[T]\| = 1 \end{cases}$$

Then in G, one of the following five cases arises:

- (i) |||T|| = 0, four major vertices have 6 minor neighbours and seven major vertices have 5 minor neighbours.
- (ii) ||[T]|| = 0, two major vertices have 6 minor neighbours and one major vertex have seven minor neighbours and 8 major vertices have 5 minor neighbours.
- (iii) ||[T]|| = 0, two major vertices have 7 minor neighbours and nine major vertices have 5 minor neighbours.
- (iv) ||[T]|| = 1, two major vertices have 6 minor neighbours and nine major vertices have 5 minor neighbours.
- (v) ||[T]|| = 0, one major vertex has 7 minor neighbours and two major vertices have 5 minor neighbours and 8 major vertices have 5 minor neighbours.

Also $d(v) \leq n_{\Delta} + 1 = 12$ for all $v \in T$. Let

$$\|[S,T]\| = \begin{cases} 7^5 & 8^3 & 15^{11} \\ 7^6 & 8^3 & 9 & 15^{11} \\ 7^7 & 10 & 15^{11} \end{cases}$$

Let v_1 be a vertex of degree 7. Let D be a subset of $T/\{v_1\}$ with ||D|| = 6. Let D' = T/D. Then ||D'|| = 2 and $v_1 \in D'$. Let $D = \{u_1, u_2, u_3, u_4, u_5, u_6\}$ and $D' = \{v_1, v_2\}$. We shall fix the degree of u_i s, v_i s accordingly. Let $G_1 = /G/D$. Now $||V(G_1)|| = 13$. Then $\Delta(G_1) \leq 12$. Since $\delta(G) = 7$ and $||[T]|| \leq 1$, we have $\delta(G_1) = 6$. Let $V_1 = \{v \in V(G_1) : d_{G_1}(v) \geq 9\}$, $V_2 = \{v \in V(G_1) : d_{G_1})(v) < 9\}$. As in Lemma 3.6, we can check that G_1 is hamiltonian. Let c be a hamitonian cycle of G_1 . Let G' = G/E(C). Since G is of class 2, G' is of class 2. Let S', T' be defined as in Lemma 3.6. Then $||S'|| \leq 11$ and $\delta(H) \geq 4 \Rightarrow \delta(H) = 5$. Now ||S'|| = 11. Then V(H) = V(G') and $d_H(v_1) = 5$. Now we consider the Cases (i) to (v). Note that $d_H(v_1) = 5$. And so in H, V_1 has 4 major neighbourhood in Case (i) and (iii) and has at least 3 major neighbourhood in Cases (iv) and (v). Then in

$$(i) ||[S',T']|| \le (4 \times 3) + (4 \times 6) + (3 \times 5) = 51$$

$$(ii) ||[S',T']|| \le (4 \times 3) + (2 \times 6) + (1 \times 7) + (4 \times 5) = 51$$

$$(iii) ||[S',T']|| \le (4 \times 3) + (2 \times 7) + (5 \times 5) = 51$$

$$(iv) ||[S',T']|| \le (3 \times 3) + (2 \times 6) + (6 \times 5) = 51$$

$$(v) ||[S',T']|| \le (4 \times 3) + (2 \times 7) + (5 \times 5) = 51$$

$$(4)$$

But in all cases,

$$s(G') = s(G) - (2x2)$$

= 59 - 4
= 55

Also $\delta(H) = 5$ and so H = G'/E, where $E_1 \subseteq [T]_{G'}$, and no edge in E_1 is incident with vertices of degree 13 or 5 (Then $||E_1|| \leq 1$). Now in $||[T']|| = ||[T]_{G'}|| \leq 1$. Then

$$s(H) = s(G')2||E_1||$$

= 55 - 2||E_1||

Now in (i)-(iii), H = G' and ||[T', S']|| = 55. In (iv) and (v) $||[T', S']|| \ge 55 - 2 = 53$ contradicting to (1), $\delta(H) \ge 6$. Then $H \subseteq G'/v_1$ where $d(v_1) = 5$. Now

$$n_5(H) = 0 \implies ||S'|| \le 11 - 3 = (since v_1 has at least 3 major neighbours in G).$$

 $\implies \delta(H) \ge 7 \qquad (using VAL)$

Now we have three possible degree sequences:

i)
$$7^{6}$$
 8 9 15^{11}
ii) 7^{5} 8⁴ 5^{11}
iii) 7^{7} 10 15^{11}

 Let

$$d(v_2) = \begin{cases} 8 & in \ (i) \ and \ (ii) \\ 10 & in \ (iii) \end{cases}$$

Then

$$d_{G'}(v_2) = \begin{cases} 6 & in \ (i) & and \ (ii) \\ 8 & in \ (iii) \end{cases}$$

Also by VAL, v_2 has at most one minor neighbours in G.

$$\begin{split} \delta(H) &\geq 7 \Rightarrow & H \subseteq G'/v_2 \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 - 7 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 - 7 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 6 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 9 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 9 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S'\| \leq \begin{cases} 11 - 5 \ in \ (i) \ and \ (ii) \\ 11 \ in \ (iii) \end{cases} \\ &\Rightarrow \|S(H)\| \leq 11, \ a \ contradiction. \end{cases} \end{cases}$$

This completes the proof.

Theorem 3.8. If G is a 15-critical graph with $\delta = 7$ and $n_{\Delta} = \Delta 4$, then $2m \ge \Delta^2$.

Proof. By Lemma 3.5 and Lemma 3.6, we get the result.

Theorem 3.9. If G is a 15-critical graph with $\delta = 7$ and $n_{\Delta} = \Delta 5$, then $2m \ge \Delta^2$.

Proof. By R11, $55 \le s(G) \le 60$ and s(G) is odd and so s(G) is 55 or 57 or 59. Since $n_{\Delta} = (\Delta - 5, n_{\Delta} = 11)$ is odd and also s(G) is odd, in the possible degree sequences the number of odd vertices is odd. It is impossible. Hence the theorem.

Proof of the Main Theorem:

Theorem 3.10. If G is a 15-critical graph with $\delta = 7$ then $2m \ge \Delta^2$.

Proof. By VAL, $n_{\Delta} \ge \Delta 5 + 2 \ge \Delta - 5$. By R6, R7 and Lemma 3.1, it is enough to verify the result when $n_{\Delta} \ge \Delta + 4$ and $n_{\Delta} = \Delta 4$ and $\Delta - 5$. By Theorem 3.8 and 3.9, the main theorem follows.

References

- A. G. Chetwynd and A. J. W. Hilton, The chromatic index of even order with many edges, J. Graph Theory, 8(1984), 463-470.
- [2] A. G. Chetwynd and A. J. W. Hilton, Partial edge Colourings of graphs which are nearly complete, Graph Theory and combinatorics (Ed. B.Ballobas), Academic Press, London, (1984), 81-97.
- [3] K. Kayathri, Chromatic numbers of Graphs, Ph.D., Thesis, Madurai Kamaraj University, (1996).
- [4] M. Plantholt, The Chromatic index of Graph with a spanning star, J. Graph Theory, 5(1981), 5-13.
- [5] M. Plantholt, The Chromatic index of Graph with large maximum degree, Discrete Math., 47(1983), 91-96.
- [6] M. Santhi, Colouring of Graphs, Ph.D., Thesis, Madurai Kamaraj University, (2008).
- [7] V. G. Vizing, Critical graphs with given chromatic class, (Russian), Diskret-Analiz, 5(1965), 9-17.
- [8] V. G. Vizing, Some unsolved problems in Graph Theory, Uaspekhi Mat., Nauk, 23(1968), 117-134, Russian Math. Surveys, 23(1968), 125-142.

