

International Journal of Mathematics And its Applications

Some Results in Fuzzy Soft β -Continuity

A. Ponselvakumari^{1,*} and R. Selvi²

1 Department of Mathematics, Anna University, Tuticorin Campus, Tuticorin, Tamilnadu, India.

- 2 Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamilnadu, India.
- **Abstract:** β -continuous functions, fuzzy β -continuous functions and soft β -continuous functions have been already investigated by topologists. In this paper the concept of a fuzzy soft β -continuous function is introduced and its relationship with the existing concept in the literature of fuzzy soft topology is discussed.

Keywords: Fuzzy soft sets, Fuzzy soft topology, Fuzzy soft mapping, Fuzzy soft β-continuous.© JS Publication.

1. Introduction

In the year 1998, Thakur S.S and Singh S [12] discussed the concept of fuzzy sets semi-pre open sets and fuzzy semi-pre continuity between fuzzy topological spaces. In 2015, Metin AKDAG and Alkan Ozkan [8] have been introduced the concept of on soft preopen sets and soft pre separation axioms between soft topological spaces. In this paper we introduce the notion of fuzzy soft β -continuity and some results along with examples have been discussed. Throughout this paper X and Y denote the initial sets. E and K denote the parameter spaces.

2. Preliminaries

Definition 2.1. A pair (F, E) is called a soft set [9] over X where F is a mapping given by $F : E \to 2^X$ and 2^X is the power set of X.

Definition 2.2. A fuzzy set [15] of on X is a mapping $f: X \to I^X$ where I = [0, 1].

Definition 2.3. A pair $\tilde{\lambda} = (\lambda, E)$ is called a fuzzy soft set [13] over (X, E) where $\lambda : E \to I^X$ is a mapping, I^X is the collection of all fuzzy subsets of X. FS(X, E) denotes the collection of all fuzzy soft sets over (X, E). We denote $\tilde{\lambda}$ by $\tilde{\lambda} = \{(e, \lambda(e)) : e \in E\}$ where $\lambda(e)$ is a fuzzy subset of X for each e in E.

Definition 2.4 ([13]). For any two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over a common universe X and a common parameter space $E, \tilde{\lambda}$ is a fuzzy soft subset of $\tilde{\mu}$ if $\lambda(e) \leq \mu(e)$ for all $e \in E$. If $\tilde{\lambda}$ is a fuzzy soft subset of $\tilde{\mu}$ then we write $\tilde{\lambda} \subseteq \tilde{\mu}$ and $\tilde{\mu}$ contains $\tilde{\lambda}$. Two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over (X, E) are soft equal if $\tilde{\lambda} \subseteq \tilde{\mu}$ and $\tilde{\mu} \subseteq \tilde{\lambda}$. That is $\tilde{\lambda} = \tilde{\mu}$ if and only if $\lambda(e) = \mu(e)$ for all $e \in E$. We use the following notations: $\overline{0}(x) = 0$, for all x in X and $\overline{1}(x) = 1$, for all x in X.

^{*} E-mail: ponselvakumari.p@gmail.com

Definition 2.5 ([13]). A fuzzy soft set $\tilde{\varphi}_X$ over (X, E) is said to be a null fuzzy soft set if for all $e \in E$, $\varphi_X(e) = \overline{0}$ and $\tilde{\varphi}_X = (\varphi_X, E)$.

Definition 2.6 ([13]). A fuzzy soft set $\tilde{1}_X$ over (X, E) is said to be absolute fuzzy soft set if for all $e \in E$, $1_X(e) = \overline{1}$ and $\tilde{1}_X = (1_X, E)$.

Definition 2.7 ([14]). The union of two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over (X, E) is defined as $\tilde{\lambda} \widetilde{\cup} \tilde{\mu} = (\lambda \widetilde{\cup} \mu, E)$ where $(\lambda \widetilde{\cup} \mu)(e) = \lambda(e) \cup \mu(e) =$ the union of fuzzy sets $\lambda(e)$ and $\mu(e)$ for all $e \in E$.

Definition 2.8 ([14]). The intersection of two fuzzy soft sets $\tilde{\lambda}$ and $\tilde{\mu}$ over (X, E) is defined as $\tilde{\lambda} \cap \tilde{\mu} = (\lambda \cap \mu, E)$ where $(\lambda \cap \mu)(e) = \lambda(e) \cap \mu(e) =$ the intersection of fuzzy sets $\lambda(e)$ and $\mu(e)$ for all $e \in E$.

The arbitrary union and arbitrary intersection of fuzzy soft sets over (X, E) are defined as $\widetilde{\cup} \left\{ \widetilde{\lambda}_{\alpha} : \alpha \in \Delta \right\} = (\widetilde{\cup} \{ \lambda_{\alpha} : \alpha \in \Delta \})$ $\Delta \}, E)$ and $\widetilde{\cap} \left\{ \widetilde{\lambda}_{\alpha} : \alpha \in \Delta \right\} = (\widetilde{\cap} \{ \lambda_{\alpha} : \alpha \in \Delta \}, E)$ where $(\widetilde{\cup} \{ \lambda_{\alpha} : \alpha \in \Delta \}) (e) = \cup \{ \lambda_{\alpha} (e) : \alpha \in \Delta \} = the$ union of fuzzy sets $\lambda_{\alpha}(e), \alpha \in \Delta$ and $(\widetilde{\cap} \{ \lambda_{\alpha} : \alpha \in \Delta \}) (e) = \cap \{ \lambda(e) : \alpha \in \Delta \} = the$ intersection of fuzzy sets $\lambda_{\alpha}(e), \alpha \in \Delta$, for all $e \in E$.

Definition 2.9 ([14]). The complement of a fuzzy soft set (λ, E) over (X, E), denoted by $(\lambda, E)^C$ is defined as $(\lambda, E)^C = (\lambda^C, E)$ where $\lambda^C : E \to I^X$ is a mapping given by $\lambda^C(e) = 1 - \lambda(e)$ for every e in E.

Definition 2.10 ([14]). A fuzzy soft topology $\tilde{\tau}$ on (X, E) is a family of fuzzy soft sets over (X, E) satisfying the following axioms.

- (1). $\tilde{\varphi}_X, \tilde{1}_X$ belong to $\tilde{\tau}$,
- (2). Arbitrary union of fuzzy soft sets in $\tilde{\tau}$, belongs to $\tilde{\tau}$,
- (3). The intersection of any two fuzzy soft sets in $\tilde{\tau}$, belongs to $\tilde{\tau}$.

Members of $\tilde{\tau}$ are called fuzzy soft open sets in $(X, \tilde{\tau}, E)$. A fuzzy soft set $\tilde{\lambda}$ over (X, E) is fuzzy soft closed in $(X, \tilde{\tau}, E)$ if $(\tilde{\lambda})^C \in \tilde{\tau}$. The fuzzy soft interior of $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$ is the union of all fuzzy soft open sets $\tilde{\mu} \subseteq \tilde{\lambda}$ denoted by \tilde{fs} int $(\tilde{\lambda}) = \tilde{\iota}\{\tilde{\mu}: \tilde{\mu} \subseteq \tilde{\lambda}, \tilde{\mu} \in \tilde{\tau}\}$. The fuzzy soft closure of $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$ is the intersection of all fuzzy soft closed sets $\tilde{\eta}, \tilde{\lambda} \subseteq \tilde{\eta}$ denoted by \tilde{fs} cl $(\tilde{\lambda}) = \tilde{\iota}\{\tilde{\eta}: \tilde{\lambda} \subseteq \tilde{\eta}, (\tilde{\eta})^C \in \tilde{\tau}\}$.

Definition 2.11 ([1]). Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft semi-open if $\tilde{\lambda} \subseteq \widetilde{fs} \ cl(\widetilde{fs} \ int(\tilde{\lambda}))$ and fuzzy soft semi closed if $\widetilde{fs} \ int(\widetilde{fs} \ cl(\tilde{\lambda})) \subseteq \tilde{\lambda}$.

Definition 2.12 ([1]). Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft pre-open if $\tilde{\lambda} \subseteq \widetilde{fs}$ int $(\widetilde{fs} cl(\tilde{\lambda}))$ and fuzzy soft pre-closed if $\widetilde{fs} cl(\widetilde{fs} int(\tilde{\lambda})) \subseteq \tilde{\lambda}$.

Definition 2.13 ([1]). Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then $\tilde{\lambda}$ is fuzzy soft α -open if $\tilde{\lambda} \subseteq \widetilde{fs} Int(\widetilde{fs} Cl(\widetilde{fsInt}(\tilde{\lambda})))$ and fuzzy soft α -closed if $\tilde{\lambda} \supseteq \widetilde{fs} Cl(\widetilde{fsInt}(\widetilde{fs} Cl(\tilde{\lambda})))$.

The classes of all fuzzy soft α -open, fuzzy soft pre-open, fuzzy soft semi-open and, fuzzy soft semi-pre-open sets over (X, E)are denoted as $\widetilde{FS}\alpha(X)$, $\widetilde{FSSO}(X)$, $\widetilde{FSPO}(X)$ and $\widetilde{FSSP}(X)$ respectively.

The fuzzy soft pre-interior, fuzzy soft pre-closure, fuzzy soft semi-interior, fuzzy soft semi-closure and fuzzy soft α -interior, fuzzy soft α -closure, fuzzy soft semi-pre-interior, fuzzy soft semi-pre-closure of X are denoted by $\widetilde{fsPCl}(\widetilde{\lambda})$, $\widetilde{fsPInt}(\widetilde{\lambda})$, $\widetilde{fsSInt}(\widetilde{\lambda})$, $\widetilde{fsSCl}(\widetilde{\lambda})$, $\widetilde{fs\alphaCl}(\widetilde{\lambda})$, $\widetilde{fs\alphaCl}(\widetilde{\lambda})$, $\widetilde{fs\alphaInt}(\widetilde{\lambda})$, $\widetilde{fsSPInt}(\widetilde{\lambda})$, $\widetilde{fsSPCl}(\widetilde{\lambda})$ respectively.

Definition 2.14 ([1]). Let $(X, \tilde{\tau}, E)$ be a fuzzy soft topological space and let $\tilde{\lambda}$ be a fuzzy soft set over (X, E). Then its fuzzy soft pre-closure and fuzzy soft pre-interior are defined as:

$$\widetilde{fs}PCl(\widetilde{\lambda}) = \cap \{\widetilde{\mu} | \widetilde{\mu} \supseteq \widetilde{\lambda}, \widetilde{\mu} \in \widetilde{FSPC}(X) \}.$$

$$\widetilde{fs}PInt(\widetilde{\lambda}) = \cup \{ \widetilde{\eta} | \widetilde{\eta} \subseteq \widetilde{\lambda}, \widetilde{\eta} \in \widetilde{FSPO}(X) \}.$$

The definitions for \widetilde{fs} SCl, \widetilde{fs} SInt, $\widetilde{fs\alpha}$ cl and $\widetilde{fs\alpha}$ Int are similar.

The following extension principle is used to define the mapping between the classes of fuzzy soft sets.

Definition 2.15 ([14]). Let X and Y be any two non-empty sets. Let $g: X \to Y$ be a mapping. Let λ be a fuzzy subset of X and $\tilde{\mu}$ be a fuzzy subset of Y. Then $g(\lambda)$ is a fuzzy subset of Y and for y in Y

$$g(\lambda)(y) = \begin{cases} \sup\{\lambda(f(x)) : x \in g^{-1}(y)\}, \ g^{-1}(y) \neq \phi \\ 0, \qquad otherwise \end{cases}$$

 $g^{-1}(\mu)$ is a fuzzy subset of X, defined by $g^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

Definition 2.16 ([13]). Let FS(X, E) and FS(Y, K) be classes of fuzzy soft sets over (X, E) and (Y, K) respectively $\rho: X \to Y$ and $\psi: E \to K$ be any two mappings. Then a fuzzy soft mapping $g = (\rho, \psi): FS(X, E) \to FS(Y, K)$ is defined as follows:

For a fuzzy soft set $\tilde{\lambda}$ in $FS(X, E), g(\tilde{\lambda})$ is a fuzzy soft set in FS(Y, K) obtained as follows:

$$g(\widetilde{\lambda})(k) = \begin{cases} \bigcup_{e \in \psi^{-1}(k)} \rho(\lambda(e)), & \psi^{-1}(k) \neq \phi\\ \overline{0}, & otherwise \end{cases}$$

for every y in Y, where

$$\rho(\lambda(e))(y) = \begin{cases} \sup \left\{ \lambda(e)(x) : x \in \rho^{-1}(y) \right\}, \ \rho^{-1}(y) \neq \phi \\ 0, \qquad otherwise \end{cases}$$

That is

$$g(\widetilde{\lambda})(k)(y) = \begin{cases} \sup_{e \in \psi^{-1}(k)} \left\{ \sup_{x \in \rho^{-1}(y)} \lambda(e)(x) \right\}, \ \rho^{-1}(y) \neq \phi, \psi^{-1}(k) \neq \phi \\ 0, \qquad otherwise \end{cases}$$

 $g(\tilde{\lambda})$ is the image of the fuzzy soft set $\tilde{\lambda}$ under the fuzzy mapping $g = (\rho, \psi)$. For a fuzzy soft set $\tilde{\mu}$ in FS(Y, K), $g^{-1}(\tilde{\mu})$ is a fuzzy soft set in FS(X, E) obtained as follows:

 $g^{-1}(\widetilde{\mu})(e)(x) = \rho^{-1}(\widetilde{\mu}(\psi(e)))(x)$ for every x in X and $g^{-1}(\widetilde{\mu})$ is the inverse image of the fuzzy soft set $\widetilde{\mu}$.

Lemma 2.17 ([10]). Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be fuzzy soft topological spaces. Let $\rho : X \to Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Let $\tilde{\lambda}, \tilde{\lambda}_1, (\tilde{\lambda})_i \in FS(X, E)$ and $\tilde{\mu}, \tilde{\mu}_1, (\tilde{\mu})_i \in FS(Y, K)$, where $i \in J$ is an index set.

- (1). If $\tilde{\lambda}_1 \subseteq \tilde{\lambda}_2$, then $g(\tilde{\lambda}_1) \subseteq g(\tilde{\lambda}_2)$.
- (2). If $\widetilde{\mu}_1 \subseteq \widetilde{\mu}_2$, then $g^{-1}(\widetilde{\mu}_1) \subseteq g^{-1}(\widetilde{\mu}_2)$.
- (3). $\widetilde{\lambda} \subseteq g^{-1}(g(\widetilde{\lambda}))$, the equality holds if g is injective.
- (4). $g(g^{-1}(\tilde{\mu})) \subseteq \tilde{\mu}$, the equality holds if g is surjective.
- (5). $g^{-1}((\widetilde{\mu})^{C}) = [g^{-1}(\widetilde{\mu})]^{C}$.
- (6). $[g(\widetilde{\lambda})]^C \subseteq g((\widetilde{\lambda})^C).$

- (7). $g^{-1}(\tilde{1}_K) = \tilde{1}_E, g^{-1}(\tilde{0}_K) = \tilde{0}_E.$
- (8). $g(\tilde{1}_E) = \tilde{1}_K$ if g is surjective.

(9).
$$g\left(\tilde{0}_E\right) = \tilde{0}_K$$
.

Lemma 2.18 ([10]). Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be the two fuzzy soft topological spaces. Let $\rho : X \to Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Let $\tilde{\lambda}, \tilde{\lambda}_1, (\tilde{\lambda})_i \in FS(X, E)$ and $\tilde{\mu}, \tilde{\mu}_1, (\tilde{\mu})_i \in FS(Y, K)$, where J is an index set.

- (1). $g(\bigcup_{i\in J}\widetilde{\lambda}_i) = \bigcup_{i\in J}g(\widetilde{\lambda}_i).$
- (2). $g(\cap_{i \in J} \widetilde{\lambda}_i) \subseteq \cap_{i \in J} g(\widetilde{\lambda}_i)$, the equality holds if g is injective.
- (3). $g^{-1}(\bigcup_{i\in J}\widetilde{\mu}_i) = \bigcup_{i\in J}g^{-1}(\widetilde{\mu}_i).$

(4).
$$g^{-1}(\bigcap_{i\in J}\widetilde{\mu}_i) = \bigcap_{i\in J}g^{-1}(\widetilde{\mu}_i).$$

Definition 2.19 ([14]). Fix $x \in X$, $0 < \alpha < 1$. Then the fuzzy subset x^{α} of X is called fuzzy point if $x^{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$

Definition 2.20 ([14]). Fix $x \in X$, $0 < \alpha < 1$, $e \in E$. The fuzzy soft set x_e^{α} over (X, E) is called fuzzy soft point if

$$x_e^{\alpha}(e_1) = \begin{cases} x^{\alpha}, \text{ for } e_1 = e\\ \overline{0}, \text{ otherwise} \end{cases}$$
$$x_e^{\alpha}(e_1)(y) = \begin{cases} \alpha, \text{ for } e_1 = e, y = x\\ 0, \text{ otherwise} \end{cases}$$

Definition 2.21 ([3]). Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be the fuzzy soft topological spaces. Let $\rho : X \to Y$ and $\psi : E \to K$ be the two mappings and $g = (\rho, \psi) : FS(X, E) \to FS(Y, K)$ be a fuzzy soft mapping. Then $g = (\rho, \psi)$ is said to be fuzzy soft continuous if the inverse image of every fuzzy soft open set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft open in $(X, \tilde{\tau}, E)$. That is $g^{-1}(\tilde{\mu}) \in \tilde{\tau}$, for all $\tilde{\mu} \in \tilde{\sigma}$.

3. Fuzzy Soft β -continuity

Definition 3.1. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft β -continuous if for each fuzzy soft open set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$, the inverse image $g^{-1}(\tilde{\mu})$ is fuzzy soft semi-pre open set in $(X, \tilde{\tau}, E)$.

Definition 3.2. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft β -irresolute if for each fuzzy soft β -open set $\tilde{\mu}$ in $(Y, \tilde{\sigma}, K)$, the inverse image $g^{-1}(\tilde{\mu})$ is fuzzy soft β -open set in $(X, \tilde{\tau}, E)$.

Definition 3.3. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft β -open if for each fuzzy soft open set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$, the image $g(\tilde{\lambda})$ is fuzzy soft β -open set in $(Y, \tilde{\sigma}, K)$.

Definition 3.4. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be two fuzzy soft topological spaces. A fuzzy soft mapping $g : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be fuzzy soft β -closed if for each fuzzy soft closed set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$, the image $g(\tilde{\lambda})$ is fuzzy soft β -closed set in $(Y, \tilde{\sigma}, K)$.

Proposition 3.5. For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$, the following are equivalent

- (i). g is fuzzy soft β -continuous.
- (ii). The inverse image of every fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft β -closed in $(X, \tilde{\tau}, E)$.

Proof. Suppose (i) holds. Let $\tilde{\mu}$ be a fuzzy soft closed in $(Y, \tilde{\sigma}, K)$. Then $(\tilde{\mu})^C$ is fuzzy soft open in $(Y, \tilde{\sigma}, K)$. Using Definition 3.1, $g^{-1}((\tilde{\mu})^C)$ is fuzzy soft β -open. Since $g^{-1}((\tilde{\mu})^C) = [g^{-1}(\tilde{\mu})]^C$, $g^{-1}(\tilde{\mu})$ is fuzzy soft β -closed. This proves $(i) \Longrightarrow (ii)$.

Conversely we assume that (ii) holds. Let $\tilde{\mu}$ be fuzzy soft open in $(Y, \tilde{\sigma}, K)$. Therefore $(\tilde{\mu})^C$ is fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$. Then by applying (ii), $[g^{-1}(\tilde{\mu})]^C$ is fuzzy soft β -closed in $(X, \tilde{\tau}, E)$. That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft β -open in $(X, \tilde{\tau}, E)$. This proves $(ii) \Longrightarrow (i)$.

Proposition 3.6. For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$. If g is fuzzy soft β -irresolute then it is fuzzy soft β -continuous.

Proof. Suppose g is fuzzy soft β -irresolute. Let $\tilde{\mu}$ be a fuzzy soft open set in $(Y, \tilde{\sigma}, K)$. Since every fuzzy soft open set is fuzzy soft β -open and since g is fuzzy soft irresolute, by using Definition 3.2, $g^{-1}(\tilde{\mu})$ is fuzzy soft β -open. That implies g is fuzzy soft β -continuous.

Proposition 3.7. A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft β -continuous if and only if $g^{-1}\left(\widetilde{fs} int\widetilde{\mu}\right) \subseteq \widetilde{fs}$ SPint $(g^{-1}(\widetilde{\mu}))$ for every fuzzy soft set $\widetilde{\mu}$ in $(Y, \widetilde{\sigma}, K)$.

Proof. Let $g: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft β -continuous. Let $\tilde{\mu}$ be a fuzzy soft set in $(Y, \tilde{\sigma}, K)$. Then \widetilde{fs} $int(\tilde{\mu})$ is fuzzy soft open in Y. Since g is fuzzy soft β -continuous, by using Definition 3.1, $g^{-1}(\widetilde{fs} \ int(\tilde{\mu}))$ is fuzzy soft β -open in $(X, \tilde{\tau}, E)$. Then by using Lemma 2.18, $g^{-1}(\widetilde{fs} \ int(\tilde{\mu})) \subseteq g^{-1}(\tilde{\mu})$. This implies that $\widetilde{fs} \ SPintg^{-1}(\widetilde{fs} \ int(\tilde{\mu})) \subseteq \widetilde{fs} \ SPint(g^{-1}(\tilde{\mu}))$.

Conversely we assume that, $g^{-1}\left(\widetilde{fs}\ int\widetilde{\mu}\right) \subseteq \widetilde{fs}\ SPint(g^{-1}(\widetilde{\mu}))$ for every fuzzy soft set $\widetilde{\mu}$ in $(Y, \widetilde{\sigma}, K)$. In particular the above statement is true for fuzzy soft open sets in $\widetilde{\mu}$. If $\widetilde{\mu}$ is fuzzy soft open sets in Y, $g^{-1}(\widetilde{\mu}) \subseteq \widetilde{fs}\ SPint(g^{-1}(\widetilde{\mu})) \subseteq g^{-1}(\widetilde{\mu})$. That implies $g^{-1}(\widetilde{\mu}) = \widetilde{fs}\ SPint(g^{-1}(\widetilde{\mu}))$ is fuzzy soft β -open. Therefore g is fuzzy soft β -continuous.

Proposition 3.8. A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft β -continuous if and only if $g\left(\widetilde{fs} \ SPcl\tilde{\lambda}\right) \subseteq \widetilde{fs} \ cl(g\left(\widetilde{\lambda}\right))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof. Let $g: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft β -continuous. Let $\tilde{\lambda}$ be fuzzy soft set in $(X, \tilde{\tau}, E)$. Then $g(\tilde{\lambda})$ is fuzzy soft set in $(Y, \tilde{\sigma}, K)$. Since g is fuzzy soft β -continuous, by using Definition 3.1, $g^{-1}(\widetilde{fs} \operatorname{clg}(\tilde{\lambda}))$ is fuzzy soft β -closed in $(X, \tilde{\tau}, E)$. Since $g(\tilde{\lambda}) \subseteq (\widetilde{fs} \operatorname{clg}(\tilde{\lambda})), g^{-1}(g(\tilde{\lambda})) \subseteq g^{-1}(\widetilde{fs} \operatorname{clg}(\tilde{\lambda})), \tilde{\lambda} \subseteq g^{-1}(g(\tilde{\lambda})) \subseteq g^{-1}(\widetilde{fs} \operatorname{clg}(\tilde{\lambda}))$. This implies that $(\widetilde{fs} \operatorname{SPcl}{\tilde{\lambda}}) \subseteq g^{-1}(\widetilde{fs} \operatorname{clg}(\tilde{\lambda}))$. Therefore $g(\widetilde{fs} \operatorname{SPcl}{\tilde{\lambda}}) \subseteq g(g^{-1}(\widetilde{fs} \operatorname{clg}(\tilde{\lambda}))) \subseteq \widetilde{fs} \operatorname{clg}(\tilde{\lambda})$.

Conversely we assume that, $g\left(\widetilde{fs} \ SPcl\widetilde{\lambda}\right) \subseteq \widetilde{fs} \ cl(g\left(\widetilde{\lambda}\right))$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \widetilde{\tau}, E)$. Let $\widetilde{\mu}$ be a fuzzy soft closed in $(Y, \widetilde{\sigma}, K)$. Let $\widetilde{\lambda} = g^{-1}(\widetilde{\mu})$. Since by our assumption,

$$\begin{split} g(\widetilde{fs} \; SPcl\widetilde{\lambda}) &\subseteq \widetilde{fs} \; cl(g\left(\widetilde{\lambda}\right)), g(\widetilde{fs} \; SPclg^{-1}\left(\widetilde{\mu}\right)) \subseteq \widetilde{fs} \; clg\left(g^{-1}(\widetilde{\mu})\right) \subseteq \widetilde{fs}cl\widetilde{\mu}.\\ g\left(\widetilde{fs} \; SPclg^{-1}\left(\widetilde{\mu}\right)\right) &\subseteq \widetilde{fs} \; cl\widetilde{\mu} = \widetilde{\mu}.\\ g^{-1}(g\left(\widetilde{fs} \; SPclg^{-1}\left(\widetilde{\mu}\right)\right) \subseteq g^{-1}(\widetilde{\mu}).\\ \widetilde{fs} \; SPclg^{-1}(\widetilde{\mu}) \subseteq g^{-1}(\widetilde{\mu}). \end{split}$$

This implies that $g^{-1}(\widetilde{\mu}) = \widetilde{fs} SPclg^{-1}(\widetilde{\mu})$. Therefore $g^{-1}(\widetilde{\mu})$ is fuzzy soft β -closed. Hence g is fuzzy soft β -continuous.

41

Proposition 3.9. For a fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$. The following are equivalent.

- (i). g is fuzzy soft β -continuous.
- (ii). $g(\widetilde{fs} \ SPcl(\widetilde{\lambda})) \subseteq \widetilde{fs} \ Pclg(\widetilde{\lambda})$, for every fuzzy soft semi open set $\widetilde{\lambda}$.
- (iii). $g(\widetilde{fs} \ SPcl(\widetilde{\lambda})) \subseteq \widetilde{fs} \ \alpha clg(\widetilde{\lambda})$, for every fuzzy soft β -open set $\widetilde{\lambda}$.

Proof. Assume (i) holds. By Proposition 3.8, $g\left(\widetilde{fs} \ SPcl\tilde{\lambda}\right) \subseteq \widetilde{fs} \ cl(g\left(\widetilde{\lambda}\right))$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \widetilde{\tau}, E)$. Since $\widetilde{fs} \ cl(g\left(\widetilde{\lambda}\right)) = \widetilde{fs} \ Pclg(\widetilde{\lambda})$, for every fuzzy soft semi open set $\widetilde{\lambda}$. This proves $(i) \Longrightarrow (ii)$.

Assume (ii) holds, $g(\widetilde{fs}SPcl(\widetilde{\lambda})) \subseteq \widetilde{fs}Pclg(\widetilde{\lambda})$, for every fuzzy soft semi open set $\widetilde{\lambda}$. Let $\widetilde{\mu}$ be fuzzy soft closed set in $(Y, \widetilde{\sigma}, K)$ and let $\widetilde{\lambda} = g^{-1}(\widetilde{\mu})$.

$$g(\widetilde{fs} \ SPcl\left(g^{-1}(\widetilde{\mu})\right)) \widetilde{\subseteq} \widetilde{fs} \ Pclg(g^{-1}(\widetilde{\mu})) \widetilde{\subseteq} \widetilde{fs} \ Pcl(\widetilde{\mu})$$
$$g\left(\widetilde{fs} \ SPcl\left(g^{-1}(\widetilde{\mu})\right)\right) \widetilde{\subseteq} \widetilde{fs} \ Pcl(\widetilde{\mu}) = \widetilde{\mu},$$
$$g^{-1}(g\left(\widetilde{fs} \ SPcl\left(g^{-1}(\widetilde{\mu})\right)\right) \widetilde{\subseteq} g^{-1}(\widetilde{\mu}),$$
$$g^{-1}(\widetilde{\mu}) = \widetilde{fs} \ SPcl\left(g^{-1}(\widetilde{\mu})\right).$$

That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft β -closed. Therefore g is fuzzy soft β -continuous. This proves $(ii) \Longrightarrow (i)$. Assume (i) holds. By Proposition 3.8, $g(\widetilde{fs} SPcl\tilde{\lambda}) \subseteq \widetilde{fs} cl(g(\tilde{\lambda}))$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$. Since $\widetilde{fs} cl(g(\tilde{\lambda})) = \widetilde{fsaclg}(\tilde{\lambda})$, for every fuzzy soft β -open set $\tilde{\lambda}$. This proves $(i) \Longrightarrow (iii)$.

Assume (iii) holds, $g(\widetilde{fs} SPcl(\widetilde{\lambda})) \subseteq \widetilde{fs} \alpha clg(\widetilde{\lambda})$, for every fuzzy soft β -open set $\widetilde{\lambda}$. Let $\widetilde{\mu}$ be fuzzy soft closed set in $(Y, \widetilde{\sigma}, K)$ and let $\widetilde{\lambda} = g^{-1}(\widetilde{\mu})$.

$$g(\widetilde{fs} \ SPcl(g^{-1}(\widetilde{\mu}))) \widetilde{\subseteq} \widetilde{fs} \ \alpha clg(g^{-1}(\widetilde{\mu})) \widetilde{\subseteq} \widetilde{fs} \ \alpha cl(\widetilde{\mu}),$$
$$g\left(\widetilde{fs} \ SPcl(g^{-1}(\widetilde{\mu}))\right) \widetilde{\subseteq} \widetilde{fs} \ \alpha cl(\widetilde{\mu}) = \widetilde{\mu},$$
$$g^{-1}(g\left(\widetilde{fs} \ SPcl(g^{-1}(\widetilde{\mu}))\right) \widetilde{\subseteq} g^{-1}(\widetilde{\mu}),$$
$$g^{-1}(\widetilde{\mu}) = \widetilde{fs} \ SPcl(g^{-1}(\widetilde{\mu})).$$

That implies $g^{-1}(\tilde{\mu})$ is fuzzy soft β -closed. Therefore g is fuzzy soft pre continuous. This proves $(iii) \Longrightarrow (i)$.

Proposition 3.10. A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft β -open if and only if $g\left(\widetilde{fs} \ int \widetilde{\lambda}\right) \subseteq \widetilde{fs}$ SPint $g(\widetilde{\lambda})$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof. Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft β -open. Let $\tilde{\lambda}$ be fuzzy soft open set in $(X, \tilde{\tau}, E)$. Then \tilde{fs} int $\left(\tilde{\lambda}\right)$ is fuzzy soft set in $(X, \tilde{\tau}, E)$. Since g is fuzzy soft β -open, by Definition 3.4, $g(\tilde{fs} \text{ int } (\tilde{\lambda}))$ is fuzzy soft β -open in $(Y, \tilde{\sigma}, K)$. Then by using Lemma 2.18 $(\tilde{fs} \text{ int } (\tilde{\lambda})) \subseteq g(\tilde{\lambda}), \tilde{fs} SPintg(\tilde{fs}Int(\tilde{\lambda})) \subseteq \tilde{fs} SPintg(\tilde{\lambda})$. Therefore $g\left(\tilde{fs} \text{ int} \tilde{\lambda}\right) \subseteq \tilde{fs} SPintg(\tilde{\lambda})$.

Conversely we assume that $g\left(\widetilde{fs} \ int\widetilde{\lambda}\right) \subseteq \widetilde{fs} \ SPintg(\widetilde{\lambda})$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \widetilde{\tau}, E)$. In particular the above statement is true for fuzzy soft open sets in $\widetilde{\lambda}$. If $\widetilde{\lambda}$ is fuzzy soft open in $\widetilde{\lambda}, g\left(\widetilde{\lambda}\right) \subseteq \widetilde{fs} \ SPintg\left(\widetilde{\lambda}\right) \subseteq g\left(\widetilde{\lambda}\right)$. That implies $g\left(\widetilde{\lambda}\right) = \widetilde{fs} \ SPintg\left(\widetilde{\lambda}\right)$ is fuzzy soft β -open. Therefore g is fuzzy soft β -continuous.

Proposition 3.11. A fuzzy soft mapping $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is fuzzy soft β -closed if and only if \widetilde{fs} $SPclg(\tilde{\lambda}) \subseteq g(\widetilde{fs} \ cl\tilde{\lambda})$ for every fuzzy soft set $\tilde{\lambda}$ in $(X, \tilde{\tau}, E)$.

Proof. Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft semi closed. Let $\tilde{\lambda}$ be fuzzy soft set in $(X, \tilde{\tau}, E)$. Then $\tilde{fs} \ cl(\tilde{\lambda})$ is fuzzy soft closed set in $(X, \tilde{\tau}, E)$. Since g is fuzzy soft β -closed, by Definition 3.5, $g(\tilde{fs} \ cl(\tilde{\lambda}))$ is fuzzy soft β -closed in $(Y, \tilde{\sigma}, K)$. Since $g(\tilde{\lambda}) \subseteq g(\tilde{fs} \ cl(\tilde{\lambda}))$, $\tilde{fs} \ SPclg(\tilde{\lambda}) \subseteq \tilde{fs} \ SPclg(\tilde{\lambda}) = g(\tilde{fs} \ cl(\tilde{\lambda}))$. Therefore $\tilde{fs} \ SPclg(\tilde{\lambda}) \subseteq g(\tilde{fs} \ cl(\tilde{\lambda}))$.

Conversely we assume that, $\widetilde{fs} \ SPclg(\widetilde{\lambda}) \subseteq g(\widetilde{fs} \ cl\widetilde{\lambda})$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \widetilde{\tau}, E)$. Let $\widetilde{\lambda}$ be fuzzy soft closed in $(X, \widetilde{\tau}, E)$. By our assumption, $\widetilde{fs} \ SPclg(\widetilde{\lambda}) \subseteq g(\widetilde{fs} \ cl\widetilde{\lambda}) = g(\widetilde{\lambda}) \subseteq \widetilde{fs} \ SPclg(\widetilde{\lambda})$. Therefore $g(\widetilde{\lambda}) = \widetilde{fs} \ SPclg(\widetilde{\lambda})$. Therefore $g(\widetilde{\lambda})$ is fuzzy soft β -closed.

Theorem 3.12. Let $g = (\rho, \psi) : (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be fuzzy soft mapping. Then the following are equivalent.

- (1). g is fuzzy soft β -continuous.
- (2). The inverse image of every fuzzy soft closed set in $(Y, \tilde{\sigma}, K)$ is fuzzy soft β -closed in $(X, \tilde{\tau}, E)$.
- (3). $g^{-1}\left(\widetilde{fs} int\widetilde{\mu}\right) \cong \widetilde{fs} SPint(g^{-1}(\widetilde{\mu}))$ for every fuzzy soft set $\widetilde{\mu}$ in $(Y, \widetilde{\sigma}, K)$.
- (4). $g\left(\widetilde{fs} \ SPcl\widetilde{\lambda}\right) \subseteq \widetilde{fs} \ cl(g\left(\widetilde{\lambda}\right))$ for every fuzzy soft set $\widetilde{\lambda}$ in $(X, \widetilde{\tau}, E)$.
- (5). $g(\widetilde{fs} \ SPcl(\widetilde{\lambda})) \cong \widetilde{fs} \ Pclg(\widetilde{\lambda})$, for every fuzzy soft semi open set $\widetilde{\lambda}$.
- (6). $g(\widetilde{fs} \ SPcl(\widetilde{\lambda})) \cong \widetilde{fs} \ \alpha clg(\widetilde{\lambda}), \text{ for every fuzzy soft } \beta \text{-open set } \widetilde{\lambda}.$

Proof. Follows from Proposition 3.5, Proposition 3.7, Proposition 3.8, Proposition 3.9.

Remark 3.13. The above discussions give the following implication diagram. Fuzzy soft continuous mapping Fuzzy soft β -continuous mapping.

4. Conclusion

Fuzzy soft β -continuous mappings have been characterized using recent concepts in the literature of fuzzy soft topology.

References

- [1] B. Ahmad and A. Kharal, Mappings on fuzzy soft classes, Advances in Fuzzy Systems, 2009(2009), 4-5.
- [2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continous mappings, Bulletin of the Faculty of Science Assiut University, 12(1)(1983), 77-90.
- [3] Banashree Bora, On Fuzzy Soft Continuous Mapping, International Journal for Basic Sciences and Social Sciences, 1(2)(2012), 50-64.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1986), 182-190.
- [5] P. K. Maji, R. Biswas and A. R. Roy, Soft Set Theory, Computers and Mathematics with Applications, 45(4)(2003), 555-562.
- [6] J. Mahanta and P. K. Das, Results On Fuzzy Soft Topological Spaces, arXiv:1203.0634v1, (2012), 1-11.
- [7] P. K. Maji and R. Biswas, Fuzzy Soft Sets, Journal of Fuzzy Mathematics, 9(3)(2001), 589-602.
- [8] Metin Akdag and Alkan Ozkan, On Soft Preopen Sets and Soft Pre Separation Axioms, Gazi University Journal of Science, 27(4)(2014), 1077-1083.
- [9] D. Molodstov, Soft set Theory, Computers and Mathematics with Applications, 37(1999), 19-31.

- [10] B. Pazar Varol and H. Aygun, *Fuzzy Soft Topology*, Hacettepe Journal of Mathematics and Statistics, 41(3)(2012), 407-419.
- [11] S. Roy and T. Samanta, A note on fuzzy soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2)(2012), 305-311.
- [12] S. S. Takur and S. Singh, On fuzzy semi-pre open sets and fuzzy semi pre continuity, Fuzzy Sets and Systems, (1998), 383-391.
- B. Tanay and M. Burc Kandemir, Topological structure of fuzzy soft sets, Computers and Mathematics with Applications, 61(10)(2011), 2952-2957.
- [14] Tugbahan Simsekler and Saziye Yuksel, Fuzzy Soft Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 5(1)(2013), 87-96.
- [15] L. A. Zadeh, Fuzzy sets, InformationControl, 8(1965), 338-353.