International Journal of Mathematics And its Applications

Stability of Quindecic Functional Equation

R. Murali ${ }^{1, *}$ and V. Vithya ${ }^{1}$
1 PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur, Vellore, Tamil Nadu, India.

Abstract: | In this paper, we find the general solution of a quindecic functional equation and prove the stability of quindecic functional |
| :--- |
| equation in matrix normed spaces by using the fixed point method. |

MSC: $\quad 39 \mathrm{~B} 52,39 \mathrm{~B} 82,46 \mathrm{~L} 07,47 \mathrm{H} 10,47 \mathrm{~L} 25$.

Keywords: Generalized Hyers-Ulam stability, J. M. Rassias stability, fixed point, quindecic functional equation, matrix normed spaces. (c) JS Publication.

Accepted on: $13^{\text {th }}$ April 2018

1. Introduction

In 1940, S. M. Ulam [19] investigated the stability problems for various functional equations. He raised a question relating to the stability of homomorphism. In the following year, D. H. Hyers [5] was able to give a partial solution to Ulam's question. The result of Hyers was generalized by Aoki [1] for additive mappings. In 1978, Th. M. Rassias [12] succeeded in extending the result of Hyers theorem by weakening the condition for the Cauchy difference. In 1982, J. M. Rassias [14] solved the Ulam problem for different mappings and for many Euler-Lagrange type quadratic mappings, by involving a product of different powers of norms. In 1994, a generalization of the Rassias theorem was obtained by Gavruta [4] by replacing the unbounded Cauchy difference by a general control function. A further generalization of the stability for a large class of mapping was obtained by Isac and Th. M. Rassias [6]. They also presented some applications in non-linear analysis, especially in fixed point theory. This terminology may also be applied to the cases of other functional equations $[2,3,11,13,16,18,21]$. Also, the generalized Hyers-Ulam stability of functional equations and inequalities in matrix normed spaces has been studied by number of authors [7-9, 20]. Very recently, K. Ravi et. al., [17] discussed the general solution of quattuordecic functional equation

$$
\begin{aligned}
f(x+7 y) & -14 f(x+6 y)+91 f(x+5 y)-364 f(x+4 y)+1001 f(x+3 y)-2002 f(x+2 y) \\
& -3003 f(x+y)-3432 f(x)+3003 f(x-y)-2002 f(x-2 y)+1001 f(x-3 y) \\
& -364 f(x-4 y)+91 f(x-5 y)-14 f(x-6 y)+f(x-7 y)=14!f(y)
\end{aligned}
$$

where, $14!=87178291200 f$ and its stability in quasi β - normed spaces. In this paper, we offer the following new functional equation

$$
f(x+8 y)-15 f(x+7 y)+105 f(x+6 y)-455 f(x+5 y)+1365 f(x+4 y)-3003 f(x+3 y)
$$

[^0]\[

$$
\begin{align*}
& +5005 f(x+2 y)-6435 f(x+y)+6435 f(x)-5005 f(x-y)+3003 f(x-2 y)-1365 f(x-3 y) \\
& +455 f(x-4 y)-105 f(x-5 y)+15 f(x-6 y)-f(x-7 y)=15!f(y) \tag{1}
\end{align*}
$$
\]

where $15!=1307674368000$, is said to be quindecic functional equation if the function $f(x)=c x^{15}$ is its solution. In this paper, we determine the general solution of the functional equation (1) and we also present the Generalized Hyers-Ulam stability and J. M. Rassias stbility of the functional equation (1) in matrix normed spaces by using fixed point method. Throughout this paper, let us consider $\left(X,\|\cdot\|_{n}\right)$ be a matrix normed space, $\left(Y,\|\cdot\|_{n}\right)$ be a matrix Banach space and let n be a fixed non-negative integer.

2. General Solution of Quindecic Functional Equation (1)

In this segment, we derive the general solution of quindecic functional equation (1). Throughout this part, let us consider \mathcal{D} and \mathcal{E} be real vector spaces.

Theorem 2.1. If $f: \mathcal{D} \rightarrow \mathcal{E}$ be a mapping satisfying (1) for all $x, y \in \mathcal{D}$, then $f(2 x)=2^{15} f(x)$ for all $x, y \in \mathcal{D}$.

Proof. Set $x=y=0$ in (1), one gets $f(0)=0$. Refilling $x=0, y=x$ and $x=x, y=-x$ in (1) and joining the two out coming equations, we get $f(-x)=-f(x)$. Hence, f is an odd mapping. Refilling $x=0, y=2 x$ and $x=8 x, y=x$ in (1) and eliminating the two out coming equations, one gets

$$
\begin{align*}
15 f(15 x) & -119 f(14 x)+455 f(13 x)-1275 f(12 x)+3003 f(11 x)-5355 f(10 x) \\
& +6435 f(9 x)-5525 f(8 x)+5005 f(7 x)-4641 f(6 x)+1365 f(5 x) \\
& +1547 f(4 x)+105 f(3 x)-1307674369000 f(2 x)+15!f(x)=0 \tag{2}
\end{align*}
$$

for all $x \in \mathcal{D}$. Refilling (x, y) by $(7 x, x)$ in (1), and increasing the out coming equation by 15 , and then eliminating the out coming equation from (2), we get

$$
\begin{align*}
106 f(14 x) & -1120 f(13 x)-43680 f(5 x)+22022 f(4 x)-6720 f(3 x)+5550 f(12 x) \\
& -17472 f(11 x)+39690 f(10 x)-68640 f(9 x)+91000 f(8 x)-91520 f(7 x) \\
& +70434 f(6 x)-1307674367000 f(2 x)+2092278989000 f(x)=0 \tag{3}
\end{align*}
$$

$\forall x \in \mathcal{D}$. Refilling (x, y) by $(6 x, x)$ in (1), and increasing the out coming equation by 106 , and then eliminating the out coming equation from (3), we have

$$
\begin{align*}
470 f(13 x) & -5580 f(12 x)+30758 f(11 x)-105000 f(10 x)+249678 f(9 x)-439530 f(8 x) \\
& +590590 f(7 x)-611676 f(6 x)+486850 f(5 x)-296296 f(4 x) \\
& +137970 f(3 x)-1307674416000 f(2 x)+159536272900000 f(x)=0 \tag{4}
\end{align*}
$$

for all $x \in \mathcal{D}$. Replenishing (x, y) by $(5 x, x)$ in (1), and increasing the out coming equation by 470 , and then the out coming equation from (4), we have

$$
1470 f(12 x)+108850 f(10 x)-391872 f(9 x)+971880 f(8 x)-1761760 f(7 x)
$$

$$
\begin{align*}
& +2412774 f(6 x)-2537600 f(5 x)+2056054 f(4 x)-1273440 f(3 x) \\
& -18592 f(11 x)-1307673775000 f(2 x)+774143225900000 f(x)=0 \tag{5}
\end{align*}
$$

$\forall x \in \mathcal{D}$. Replenishing (x, y) by $(4 x, x)$ in (1), and increasing the out coming equation by 1470 , and then eliminating the out coming equation from (5), we arrive at

$$
\begin{align*}
3458 f(11 x) & +276978 f(9 x)-1034670(8 x)+2652650 f(7 x)-4944576 f(6 x) \\
& +6921850 f(5 x)-7403396 f(4 x)+6082440 f(3 x) \\
& -455000 f(10 x)-1307678167000 f(2 x)+2696424548000000 f(x)=0 \tag{6}
\end{align*}
$$

for all $x \in \mathcal{D}$. Replenishing (x, y) by $(3 x, x)$ in (1), and increasing the out coming equation by 3458 , and then eliminating the out coming equation from (6), we arrive at

$$
\begin{align*}
6370 f(10 x) & -86112 f(9 x)+538720 f(8 x)-2067520 f(7 x)+5439798 f(6 x)-10385440 f(5 x) \\
& +14845376 f(4 x)-16117920 f(3 x)-1307661223000 f(2 x)+7218362502000000 f(x)=0 \tag{7}
\end{align*}
$$

$\forall x \in \mathcal{D}$. Replenishing (x, y) by $(2 x, x)$ in (1), and increasing the out coming equation by 6370 , and then eliminating the out coming equation from (7), we have

$$
\begin{align*}
9438 f(9 x) & -130130 f(8 x)+830830 f(7 x)+24204180 f(3 x)-3255252 f(6 x)+87373000 f(5 x) \\
& -16940924 f(4 x)+15548248250000000 f(x)-1307699315000 f(2 x)=0 \tag{8}
\end{align*}
$$

for all $x \in \mathcal{D}$. Replenishing (x, y) by (x, x) in (1), and increasing the out coming equation by 9438 , and then eliminating the out coming equation from (8), we have

$$
\begin{align*}
11440 f(8 x) & -160160 f(7 x)+1029600 f(6 x)-4004000 f(5 x)+10410400 f(4 x) \\
& -18738720 f(3 x)-1307651465000 f(2 x)+27890078910000000 f(x)=0 \tag{9}
\end{align*}
$$

$\forall x \in \mathcal{D}$. Replenishing (x, y) by $(0, x)$ in (1), and increasing the out coming equation by 11440 , and then eliminating the out coming equation from (9), we have $f(2 x)=2^{15} f(x)$ for all $x \in \mathcal{D}$. Thus $f: \mathcal{D} \rightarrow \mathcal{E}$ is a quindecic mapping.

3. Generalized Hyers-Ulam Stability of Quindecic Functional Equation (1)

In this segment, we will investigate the Generalized Hyers-Ulam stability for the functional equation (1) in matrix normed spaces by using the fixed point method. For a mapping $f: X \rightarrow Y$, define $\mathcal{H} f: X^{2} \rightarrow Y$ and $\mathcal{H} f_{n}: M_{n}\left(X^{2}\right) \rightarrow M_{n}(Y)$ by,

$$
\begin{aligned}
\mathcal{H} f(c, d) & =f(c+8 d)-15 f(c+7 d)+105 f(c+6 d)-455 f(c+5 d)+1365 f(c+4 d)-3003 f(c+3 d) \\
& +5005 f(c+2 d)-6435 f(c+d)+6435 f(c)-5005 f(c-d)+3003 f(c-2 d) \\
& -1365 f(c-3 d)+455 f(c-4 d)-105 f(c-5 d)+15 f(c-6 d)-f(c-7 d)-15!f(y) \\
\mathcal{H} f_{n}\left(x_{k l}, y_{k l}\right) & =f_{n}\left(\left[x_{k l}+8 y_{k l}\right]\right)-15 f_{n}\left(\left[x_{k l}+7 y_{k l}\right]\right)+105 f_{n}\left(\left[x_{k l}+6 y_{k l}\right]\right)-455 f_{n}\left(\left[x_{k l}+5 y_{k l}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& +1365 f_{n}\left(\left[x_{k l}+4 y_{k l}\right]\right)-3003 f_{n}\left(\left[x_{k l}+3 y_{k l}\right]\right)+5005 f_{n}\left(\left[x_{k l}+2 y_{k l}\right]\right) \\
& -6435 f_{n}\left(\left[x_{k l}+y_{k l}\right]\right)+6435 f_{n}\left(\left[x_{k l}\right]\right)-5005 f_{n}\left(\left[x_{k l}-y_{k l}\right]\right) \\
& +3003 f_{n}\left(\left[x_{k l}-2 y_{k l}\right]\right)-1365 f_{n}\left(\left[x_{k l}-3 y_{k l}\right]\right)+455 f_{n}\left(\left[x_{k l}-4 y_{k l}\right]\right) \\
& -105 f_{n}\left(\left[x_{k l}-5 y_{k l}\right]\right)+15 f_{n}\left(\left[x_{k l}-6 y_{k l}\right]\right)-f_{n}\left(\left[x_{k l}-7 y_{k l}\right]\right)-15!f_{n}\left(\left[y_{k l}\right]\right)
\end{aligned}
$$

for all $c, d \in X$ and all $x=\left[x_{k l}\right], y=\left[y_{k l}\right] \in M_{n}(X)$.
Theorem 3.1. Let $r= \pm 1$ be fixed and $\varsigma: X^{2} \rightarrow[0, \infty)$ be a function such that there exists a $\zeta<1$ with

$$
\begin{equation*}
\varsigma(c, d) \leq 2^{15 r} \zeta \varsigma\left(\frac{c}{2^{r}}, \frac{d}{2^{r}}\right) \forall c, d \in X . \tag{10}
\end{equation*}
$$

Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\left\|\mathcal{H} f_{n}\left(\left[x_{k l}\right],\left[y_{k l}\right]\right)\right\| \leq \sum_{k, l=1}^{n} \varsigma\left(x_{k l}, y_{k l}\right) \forall x=\left[x_{k l}\right], y=\left[y_{k l}\right] \in M_{n}(X) . \tag{11}
\end{equation*}
$$

Then there exists a unique quindecic mapping $\mathbb{Q}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f_{n}\left(\left[x_{k l}\right]\right)-\mathbb{Q}_{n}\left(\left[x_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \frac{\zeta^{\frac{1-r}{2}}}{2^{19}(1-\zeta)} \varsigma^{*}\left(x_{k l}\right) \forall x=\left[x_{k l}\right] \in M_{n}(X), \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
\varsigma^{*}\left(x_{k l}\right) & =\frac{1}{15!}\left[\varsigma\left(0,2 x_{k l}\right)+\varsigma\left(8 x_{k l}, x_{k l}\right)+15 \varsigma\left(7 x_{k l}, x_{k l}\right)+106 \varsigma\left(6 x_{k l}, x_{k l}\right)\right. \\
& +470 \varsigma\left(5 x_{k l}, x_{k l}\right)+1470 \varsigma\left(4 x_{k l}, x_{k l}\right)+3458 \varsigma\left(3 x_{k l}, x_{k l}\right) \\
& \left.+6370 \varsigma\left(2 x_{k l}, x_{k l}\right)+9438 \varsigma\left(x_{k l}, x_{k l}\right)+11440 \varsigma\left(0, x_{k l}\right)\right]
\end{aligned}
$$

Proof. Switching $n=1$ in (11), we obtain

$$
\begin{equation*}
\|\mathcal{H} f(c, d)\| \leq \varsigma(c, d) \tag{13}
\end{equation*}
$$

By utilizing Theorem 2.1, one gets

$$
\begin{align*}
\left\|-f(2 c)+2^{15} f(c)\right\| & \leq \frac{1}{15!}[\varsigma(0,2 c)+\varsigma(8 c, c)+15 \varsigma(7 c, c)+106 \varsigma(6 c, c)+470 \varsigma(5 c, c) \\
& +1470 \varsigma(4 c, c)+3458 \varsigma(3 c, c)+6370 \varsigma(2 c, c)+9438 \varsigma(c, c)+11440 \varsigma(0, c)] \tag{14}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left\|f(2 c)-2^{15} f(c)\right\| \leq \varsigma^{*}(c) \forall c \in X \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left\|f(c)-\frac{1}{2^{15 r}} f\left(2^{r} c\right)\right\| \leq \frac{\zeta^{\left(\frac{1-r}{2}\right)}}{2^{15}} \varsigma^{*}(c) \quad \forall c \in X . \tag{16}
\end{equation*}
$$

Set $\mathcal{T}=\{f: X \rightarrow Y\}$ and offer the generalized metric ρ on \mathcal{T} as follows:

$$
\rho(f, g)=\inf \left\{\mu \in \mathbb{R}_{+}:\|f(c)-g(c)\| \leq \mu \varsigma^{*}(c), \forall c \in X\right\}
$$

It is easy to check that (\mathcal{T}, ρ) is a complete generalized metric (see also [10]). Define the mapping $\mathcal{S}: \mathcal{T} \rightarrow \mathcal{T}$ by

$$
\mathcal{S} f(c)=\frac{1}{2^{15 r}} f\left(2^{r} c\right) \quad \forall f \in \mathcal{T} \text { and } c \in X
$$

Set $f, g \in \mathcal{T}$ and τ be an arbitrary constant with $\rho(f, g)=\tau$. Then $\|f(c)-g(c)\| \leq \tau \varsigma^{*}(c)$ for all $c \in X$. Utilizing (10), we find that

$$
\|\mathcal{S} f(c)-\mathcal{S} g(c)\|=\left\|\frac{1}{2^{15 r}} f\left(2^{r} c\right)-\frac{1}{2^{15 r}} g\left(2^{r} c\right)\right\| \leq \zeta \tau \varsigma^{*}(c)
$$

for all $c \in X$. Hence it holds that $\rho(\mathcal{S} f, \mathcal{S} g) \leq \zeta \tau$, that is, $\rho(\mathcal{S} f, \mathcal{S} g) \leq \zeta \rho(f, g)$ for all $f, g \in \mathcal{T}$. By (16), we have $\rho(f, \mathcal{S} f) \leq \frac{\zeta^{\left(\frac{1-r}{2}\right)}}{2^{15}}$. According to the Theorem 2.2 in [3], there exists a mapping $\mathbb{Q}: X \rightarrow Y$ which satisfying:
(1). \mathbb{Q} is a unique fixed point of \mathcal{S}, which is satisfied $\mathbb{Q}\left(2^{r} c\right)=2^{15 r} \mathbb{Q}(c) \forall c \in X$.
(2). $\rho\left(\mathcal{S}^{m} f, \mathbb{Q}\right) \rightarrow 0$ as $m \rightarrow \infty$. This implies that $\lim _{m \rightarrow \infty} \frac{1}{2^{15 m r}} f\left(2^{m r} c\right)=\mathbb{Q}(c) \forall c \in X$.
(3). $\rho(f, \mathbb{Q}) \leq \frac{1}{1-\zeta} \rho(f, \mathcal{S} f)$, which implies

$$
\begin{equation*}
\|f(c)-\mathbb{Q}(c)\| \leq \frac{\zeta^{\frac{1-r}{2}}}{2^{15}(1-\zeta)} \varsigma^{*}(c) \quad \forall c \in X \tag{17}
\end{equation*}
$$

It follows from (10) and (11) that

$$
\|\mathcal{H} \mathbb{Q}(c, d)\|=\lim _{m \rightarrow \infty} \frac{1}{2^{15 m r}}\left\|\mathcal{H} f\left(2^{m r} c, 2^{m r} d\right)\right\| \leq \lim _{m \rightarrow \infty} \frac{1}{2^{15 m r}} \varsigma\left(2^{m r} c, 2^{m r} d\right) \leq \lim _{m \rightarrow \infty} \frac{2^{m r} \zeta^{r}}{2^{15 m r}} \varsigma(c, d)=0
$$

for all $c, d \in X$. Therefore, the mapping $\mathbb{Q}: X \rightarrow Y$ is quindecic mapping. By Lemma 2.1 in [8] and (17), we can get (12) Thus $\mathbb{Q}: X \rightarrow Y$ is a unique quindecic mapping satisfying (12).

Corollary 3.2. Let $r= \pm 1$ be fixed and let s, ω be non-negative real numbers with $s \neq 15$. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{H} f_{n}\left(\left[x_{k l}\right],\left[y_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \omega\left(\left\|x_{k l}\right\|^{s}+\left\|y_{k l}\right\|^{s}\right) \forall x=\left[x_{k l}\right], y=\left[y_{k l}\right] \in M_{n}(X) . \tag{18}
\end{equation*}
$$

Then there exists a unique quindecic mapping $\mathbb{Q}: X \rightarrow Y$ such that

$$
\left\|f_{n}\left(\left[x_{k l}\right]\right)-\mathbb{Q}_{n}\left(\left[x_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \frac{\omega_{0}}{\left|2^{15}-2^{s}\right|}\left\|x_{k l}\right\|^{s} \quad \forall x=\left[x_{k l}\right] \in M_{n}(X),
$$

where $\omega_{0}=\frac{\omega}{15!}\left[42206+6371\left(2^{s}\right)+3458\left(3^{s}\right)+1470\left(4^{s}\right)+470\left(5^{s}\right)+106\left(6^{s}\right)+15\left(7^{s}\right)+8^{s}\right]$.
Proof. The proof is related to the proof of Theorem 3.1 by taking $\varsigma(c, d)=\omega\left(\|c\|^{s}+\|d\|^{s}\right)$ for all $a, b \in X$. Then we can choose $\zeta=2^{r(s-15)}$, and we can obtain the required result.

Corollary 3.3. Let $r= \pm 1$ be fixed and let s, ω be non-negative real numbers with $s=a+b \neq 15$. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{H} f_{n}\left(\left[x_{k l}\right],\left[y_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \omega\left(\left\|x_{k l}\right\|^{a} .\left\|y_{k l}\right\|^{b}\right) \forall x=\left[x_{k l}\right], y=\left[y_{k l}\right] \in M_{n}(X) . \tag{19}
\end{equation*}
$$

Then there exists a unique quindecic mapping $\mathbb{Q}: X \rightarrow Y$ such that

$$
\left\|f_{n}\left(\left[x_{k l}\right]\right)-\mathbb{Q}_{n}\left(\left[x_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \frac{\omega_{0}}{\left|2^{15}-2^{s}\right|}\left\|x_{k l}\right\|^{s} \quad \forall x=\left[x_{k l}\right] \in M_{n}(X),
$$

where $\omega_{0}=\frac{\omega}{15!}\left[9438+6370\left(2^{a}\right)+3458\left(3^{a}\right)+1470\left(4^{a}\right)+470\left(5^{a}\right)+106\left(6^{a}\right)+15\left(7^{a}\right)+8^{a}\right]$

Proof. The proof is related to the proof of Theorem 3.1.

Corollary 3.4. Let $r= \pm 1$ be fixed and let s, ω be non-negative real numbers with $s=a+b \neq 15$. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{H} f_{n}\left(\left[x_{k l}\right],\left[y_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \omega\left(\left\|x_{k l}\right\|^{a} \cdot\left\|y_{k l}\right\|^{b}+\left\|x_{k l}\right\|^{a+b}+\left\|y_{k l}\right\|^{a+b}\right) \forall x=\left[x_{k l}\right], y=\left[y_{k l}\right] \in M_{n}(X) . \tag{20}
\end{equation*}
$$

Then there exists a unique quindecic mapping $\mathbb{Q}: X \rightarrow Y$ such that

$$
\left\|f_{n}\left(\left[x_{k l}\right]\right)-\mathbb{Q}_{n}\left(\left[x_{k l}\right]\right)\right\|_{n} \leq \sum_{k, l=1}^{n} \frac{\omega_{0}}{\left|2^{15}-2^{s}\right|}\left\|x_{k l}\right\|^{s} \quad \forall x=\left[x_{k l}\right] \in M_{n}(X),
$$

where
$\omega_{0}=\frac{\omega}{15!}\left[51644+6371\left(2^{s}\right)+6370\left(2^{a}\right) 3458\left(3^{s}+3^{a}\right)+1470\left(4^{s}+4^{a}\right)+470\left(5^{s}+5^{a}\right)+106\left(6^{s}+6^{a}\right)+15\left(7^{s}+7^{a}\right)+8^{s}+8^{a}\right]$.

Proof. The proof is related to the proof of Theorem 3.1.

References

[1] T.Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[2] M.Arunkumar, A.Bodaghi, J.M.Rassias and Elumalai Sathiya, The General Solution and Approximations of a Decic Type Functional Equation in Various Normed Spaces, Journal of the Chungcheong Mathematical Society, 29(2)(2016), 287-328.
[3] L.Cadariu and V.Radu, Fixed Points and the Stability of Jensen's Functional Equation, J. Inequal. Pure Appl. Math., 4(1)(2003), 1-7.
[4] P.Gavruta, A Generalization of the Hyers-Ulam Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[5] D.H.Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224.
[6] G.Isac and Th.M.Rassias, Stability of φ-Additive Mappings: Applications to Nonlinear Analysis, J. Funct. Anal., 19(1996), 219-228.
[7] J.Lee, D.Shin and C.Park, An Additive Functional Inequality in Matrix Normed Spaces, Mathematical Inequalities and Applications, 16(4)(2013), 1009-1022.
[8] J.Lee, D.Shin and C.Park, Hyers-Ulam Stability of Functional Equations in Matrix Normed Spaces, Journal of Inequalities and Applications, 22(2013), 1-11.
[9] J.Lee, C.Park and D.Shin, Functional Equations in Matrix Normed Spaces, Proc. Indian Acad. Sci., 125(3)(2015), 399-412.
[10] D.Mihet and V.Radu, On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces, J. Math. Anal. Appl., 343(2008), 567-572.
[11] Murali Ramdoss, Sandra Pinelas and Vithya Veeramani, Stability of Tredecic Functional Equation in Matrix Normed Spaces, Journal of Advances in Mathematics, 13(2)(2017), 7135-7145.
[12] Th.M.Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc., 72(1978), 297-300.
[13] J.M.Rassias and Mohammad Eslamian, Fixed Points and Stability of Nonic Functional Equation in Quasi β - Normed Spaces, Contemporary Anal. Appl. Math., 3(2)(2015), 293-309.
[14] J.M.Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal., 46(1)(1982), 126-130.
[15] K.Ravi, J.M.Rassias and B.V.Senthil Kumar, Ulam-Hyers Stability of Undecic Functional Equation in Quasi- β Normed Spaces: Fixed Point Method, Tbilisi Mathematical Science, 9(2)(2016), 83-103.
[16] J.M.Rassias, K.Ravi and B.V.Senthil Kumar, A fixed point approach to Ulam-Hyers stability of duodecic functional equation in quasi-?-normed spaces, Tbilisi J. Math., 10(4)(2017), 83101.
[17] K.Ravi, J.M.Rassias, S.Pinelas and S.Suresh, General Solution and Stability of Quattuordecic Functional Equation in Quasi - β Normed Spaces, Advances in Pure Mathematics, 6(2016), 921-941.
[18] Y.Shen and W.Chen, On the Stability of Septic and Octic Functional Equations, J. Computational Analysis and Applications, 18(2)(2015), 277-290.
[19] S.M.Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, (1964).
[20] Z.Wang and P.K.Sahoo, Stability of an ACQ- Functional Equation in Various Matrix Normed Spaces, J. Nonlinear Sci. Appl., 8(2015), 64-85.
[21] T.Z.Xu, J.M.Rassias, M.J.Rassias and W.X.Xu, A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi- β Normed Spaces, Journal of Inequalities and Applications, (2010), 1-23.

[^0]: * E-mail: shcrmurali@yahoo.co.in

