International Journal of Mathematics fud its Applications

Ulam Stability for Particular Difference Equation of Second Order

R. Murali ${ }^{1, *}$, D.I. Asuntha Rani ${ }^{1}$ and A. Ponmana Selvan ${ }^{1}$
1 PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur, Vellore, Tamil Nadu, India.

$$
\begin{array}{ll}
\text { Abstract: } & \text { We study the Hyers-Ulam stability of the homogeneous and non-homogeneous linear difference equation of second order } \\
\text { with initial conditions by using } Z \text {-Transforms method. } \\
\text { MSC: } & 26 \mathrm{D} 10,44 \mathrm{~A} 10,39 \mathrm{~A} 10,34 \mathrm{~A} 30 .
\end{array}
$$

Keywords: Hyers-Ulam stability, homogeneous and non-homogeneous, linear difference equation, Z-Transforms method.
(C) JS Publication.

Accepted on: $13^{\text {th }}$ April 2018

1. Introduction

In 1940, S.M. Ulam [15] posed a question concerning the stability of functional equations. This problem was solved by D.H. Hyers [6] in 1941 for Cauchy additive functional equation in Banach spaces. After that many researchers have been extensively established the stability results to the various functional equations in different directions (see [3, 4, 7, 12]). Now a days, the theory of difference equations and their applications have been receiving exhaustive attention of many researchers (see $[1,5,16]$). Some authors have proved the Hyers-Ulam stability of linear and non-linear reccurences, linear reccurence with constant co-efficients, linear reccurence of higher order in [2, 10, 13, 14, 16]. Recently, Jung et.al., [11] proved the Hyers-Ulam stability and non-stability for the difference equation of first order. Motivation of the above researchers, the authors are interested in proving the Hyers-Ulam stability of the homogeneous linear difference equation

$$
\begin{equation*}
m(w+2)-r(1+s) m(w+1)+r s m(w)=0 \tag{1}
\end{equation*}
$$

and the non-homogeneous linear difference equation

$$
\begin{equation*}
m(w+2)-r(1+s) m(w+1)+r s m(w)=l(w) \tag{2}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
m(0)=0 \text { and } m(1)=1 \tag{3}
\end{equation*}
$$

by using Z-Transforms method for all $w>0$, where $r, s \neq 0$ be a constant.

[^0]
2. Preliminaries

Now, we give the definitions of Hyer-Ulam stability of the homogeneous and non-homogeneous linear difference equations (1) and (2) with (3).

Definition 2.1. Let the homogeneous linear difference equation (1) has the Hyers-Ulam stability, if for every $\epsilon>0$ there exists a positive constant \boldsymbol{C} such that $m(w)$ satisfies the inequality

$$
|m(w+2)-r(1+s) m(w+1)+r s m(w)| \leq \epsilon
$$

with (3) then there exists a function $n(w)$ satisfying (1) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq \boldsymbol{C} \epsilon$.
Definition 2.2. We say that the non-homogeneous linear difference equation (2) has the Hyers-Ulam stability, if for every $\epsilon>0$ there exists a constant \boldsymbol{C} such that $m(w)$ be a function satisfies

$$
|m(w+2)-r(1+s) m(w+1)+r s m(w)-l(w)| \leq \epsilon,
$$

with (3) then there exists a function $n(w)$ satisfying (2) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq \boldsymbol{C} \epsilon$.

3. Hyers-Ulam Stability (1) and (2)

In this section, we prove the Hyers-Ulam stability of the homogeneous linear difference equations (1) by applying Z Transforms method.

Theorem 3.1. For every $\epsilon>0$, there exists a positive constant \boldsymbol{C} such that a function $m:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
\begin{equation*}
|m(w+2)-r(1+s) m(w+1)+r s m(w)| \leq \epsilon, \tag{4}
\end{equation*}
$$

for each value of w with initial conditions $m(0)=0$ and $m(1)=1$, then there exists a solution function $n:(0, \infty) \rightarrow \mathbb{F}$ of the difference equation (1) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq \boldsymbol{C} \epsilon$, for all $w>0$.

Proof. Consider a function $g:(0, \infty) \rightarrow \mathbb{F}$ such that $g(w)=m(w+2)-r(1+s) m(w+1)+r s m(w)$, for all $w>0$. By (4), we have $|g(w)| \leq \epsilon$. Now, taking Z-Transform to $g(w)$, then we have

$$
\begin{equation*}
Z[g(w)]=G(z)=\left(z^{2}-r(1+s) z+r s\right) M(z)-z(z-r(1+s)) m(0)-z m(1) \tag{5}
\end{equation*}
$$

Using the initial conditions (3) in (5), we obtain

$$
\begin{equation*}
G(z)=\left(z^{2}-r(1+s) z+r s\right) M(z)-z . \tag{6}
\end{equation*}
$$

Since we have $z^{2}-r(1+s) z+r s=(z-p)(z-q)$, where

$$
p=\frac{r(1+s)+\sqrt{r^{2}\left(1+s^{2}+2 s\right)-4 r s}}{2}
$$

and

$$
q=\frac{r(1+s)-\sqrt{r^{2}\left(1+s^{2}+2 s\right)-4 r s}}{2}
$$

Then (6) becomes

$$
\begin{equation*}
M(z)-\frac{z}{(z-p)(z-q)}=\frac{G(z)}{(z-p)(z-q)} \tag{7}
\end{equation*}
$$

Now, we define a function $n(w)$ such that $n(w)=\frac{p^{w}-q^{w}}{p-q} m(1)$, then applying Z-Transforms to $n(w)$, we get

$$
Z[n(w)]=N(z)=\frac{z m(1)}{(z-p)(z-q)}
$$

Hence

$$
\begin{equation*}
(z-p)(z-q) N(z)-z(z-r(1+s)) m(0)-z m(1)=0 \tag{8}
\end{equation*}
$$

Since we have $n(0)=m(0)=0$ and $n(1)=m(1)=1$. Now,

$$
\begin{aligned}
Z[n(w+2)-r(1+s) n(w+1)+r s n(w)] & =Z[n(w+2)]-r(1+s) Z[n(w+1)]+r s Z[n(w)] \\
& =(z-p)(z-q) N(z)-z(z-r(1+s)) n(0)-z n(1) \\
& =0
\end{aligned}
$$

Since Z is one-to-one operator, it holds that $n(w+2)-r(1+s) n(w+1)+r s n(w)=0$.
Therefore $n(w)$ is a solution of (1). Then we have

$$
Z[m(w)]-Z[n(w)]=M(z)-N(z)=\frac{G(z)}{(z-p)(z-q)}=Z[h(w) * g(w)]
$$

where $h(w)=\frac{1}{z}\left\{\frac{p^{w}-q^{w}}{p-q}\right\}$. Since Z-Transforms is linear and one-to-one, we have $m(w)-n(w)=(h(w) * g(w))$. Now taking modulus on both sides, we get

$$
|m(w)-n(w)|=|h(w) * g(w)|=\left|\sum_{w=-\infty}^{\infty} h(w-k) g(w)\right| \leq \sum_{w=-\infty}^{\infty}|h(w-k)||g(w)| \leq \mathbf{C} \epsilon
$$

for each $w>0$, where $\mathbf{C}=\sum_{w=-\infty}^{\infty}|h(w-k)|=\sum_{w=-\infty}^{\infty}\left|\frac{1}{z}\left\{\frac{a^{w-k}-b^{w-k}}{a-b}\right\}\right|$ exists for each value of w. Then by the virtue of Definition 2.1, the linear difference equation (1) has the Hyers-Ulam stability.

By the similar argument of the Theorem 3.1 we can prove the Hyers-Ulam-Rassias stability of (1) with (3). The following corollary shows that the Hyers-Ulam-Rassias stability of the homogeneous linear difference equation (1) with initial condition (3).

Corollary 3.2. For every $\epsilon>0$ and $\theta:(0, \infty) \rightarrow(0, \infty)$ be a function, there exists a positive constant C such that a difference function $m:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
|m(w+2)-r(1+s) m(w+1)+r s m(w)| \leq \epsilon \theta(w)
$$

for each value of w with initial condition (3), then there exists a solution function $n:(0, \infty) \rightarrow \mathbb{F}$ of the difference equation (1) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq \boldsymbol{C}(\epsilon) \theta(w)$, for all $w>0$.

Now, we prove the Hyers-Ulam stability of the non-homogeneous linear difference equation (2) with initial conditions (3).

Theorem 3.3. For every $\epsilon>0$, there exists a positive constant \boldsymbol{C} such that a function $m:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
\begin{equation*}
|m(w+2)-r(1+s) m(w+1)+r s m(w)-l(w)| \leq \epsilon, \tag{9}
\end{equation*}
$$

for each value of w with initial conditions (3), then there exists a solution function $n:(0, \infty) \rightarrow \mathbb{F}$ of the difference equation (2) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq \boldsymbol{C} \epsilon$, for all $w>0$ with $l(0)=0$ and $l(1)=1$.

Proof. Let us define a function $g:(0, \infty) \rightarrow \mathbb{F}$ such that $g(w)=m(w+2)-r(1+s) m(w+1)+r s m(w)-l(w)$, for all $w>0$. By (9), we have $|g(w)| \leq \epsilon$. Now, taking Z-Transforms to $g(w)$, then

$$
\begin{equation*}
Z[g(w)]=G(w)=\left(z^{2}-r(1+s) z+r s\right) M(z)-z(z-r(1+s)) m(0)-z m(1)-L(z) \tag{10}
\end{equation*}
$$

From (10), we have a function $m_{0}:(0, \infty) \rightarrow \mathbb{F}$ is a solution of (2) if and only if

$$
\begin{equation*}
\left(z^{2}-r(1+s) z+r s\right) M(z)-z(z-r(1+s)) m_{0}(0)-z m_{0}(1)=L(z) \tag{11}
\end{equation*}
$$

Using the initial conditions (3) in (11), we have

$$
\begin{equation*}
G(z)=\left(z^{2}-r(1+s) z+r s\right) M(z)-z-L(z) \tag{12}
\end{equation*}
$$

Since we have $z^{2}-r(1+s) z+r s=(z-p)(z-q)$, where

$$
p=\frac{r(1+s)+\sqrt{r^{2}\left(1+s^{2}+2 s\right)-4 r s}}{2}
$$

and

$$
q=\frac{r(1+s)-\sqrt{r^{2}\left(1+s^{2}+2 s\right)-4 r s}}{2}
$$

Then (12) becomes

$$
\begin{equation*}
M(z)-\frac{z}{(z-p)(z-q)}=\frac{G(z)+L(z)}{(z-p)(z-q)} \tag{13}
\end{equation*}
$$

Now, we define a function $n(w)$ such that $n(w)=\frac{p^{w}-q^{w}}{p-q} m(1)+[h(w) * l(w)]$, then applying Z-Transform to $\mathrm{n}(\mathrm{w})$, we get

$$
Z[n(w)]=N(z)=\frac{z m(1)}{(z-p)(z-q)}+\frac{L(z)}{(z-p)(z-q)}
$$

Hence

$$
\begin{equation*}
(z-p)(z-q) N(z)-z(z-r(1+s)) m(0)-z m(1)=L(z) \tag{14}
\end{equation*}
$$

Since we have $n(0)=m(0)=0$ and $n(1)=m(1)=1$. Now,

$$
\begin{aligned}
Z[n(w+2)-r(1+s) n(w+1)+r s n(w)] & =Z[n(w+2)]-r(1+s) Z[n(w+1)]+r s Z[n(w)] \\
& =\left(z^{2}-r(1+s) z+r s\right) N(z)-z(z-r(1+s)) n(0)-z n(1) \\
& =H(z)=Z[h(w)]
\end{aligned}
$$

Since Z is one-to-one operator, it holds that $n(w+2)-r(1+s) n(w+1)+r s n(w)=l(w)$. Therefore, $n(w)$ is a solution of (2). Then we have

$$
Z[m(w)]-Z[n(w)]=M(z)-N(z)=\frac{G(z)}{(z-p)(z-q)}=Z[h(w) * g(w)]
$$

where $h(w)=\frac{1}{z}\left\{\frac{p^{w}-q^{w}}{p-q}\right\}$. Since Z-Transforms is linear and one-to-one, we have $m(w)-n(w)=(h(w) * g(w))$. Now taking modulus on both sides, we get

$$
|m(w)-n(w)|=|h(w) * g(w)|=\left|\sum_{w=-\infty}^{\infty} h(w-k) g(w)\right| \leq \sum_{w=-\infty}^{\infty}|h(w-k)||g(w)| \leq \mathbf{C} \epsilon
$$

for each $w>0$, where $\mathbf{C}=\sum_{w=-\infty}^{\infty}|h(w-k)|=\sum_{w=-\infty}^{\infty}\left|\frac{1}{z}\left\{\frac{p^{w-k}-q^{w-k}}{p-q}\right\}\right|$ exists for each value of w. Then by the virtue of Definition 2.2, the linear difference equation (2) has the Hyers-Ulam stability.

By the similar argument of the Theorem 3.3 we can prove the Hyers-Ulam-Rassias stability of (2) with (3). The following corollary shows that the Hyers-Ulam-Rassias stability of the non-homogeneous linear difference equation (2) with initial conditions (3).

Corollary 3.4. For every $\epsilon>0$ and $\theta:(0, \infty) \rightarrow(0, \infty)$ be a function there exists a positive constant \boldsymbol{C} such that a difference function $m:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
|m(w+2)-r(1+s) m(w+1)+r s m(w)-l(w)| \leq \epsilon \theta(w),
$$

for each value of w with initial conditions (3), then there exists a solution function $n:(0, \infty) \rightarrow \mathbb{F}$ of the difference equation (2) with $n(0)=0$ and $n(1)=1$ such that $|m(w)-n(w)| \leq C(\epsilon) \theta(w)$, for all $w>0$ with $q(0)=0$ and $q(1)=1$.

References

[1] R.P.Agarwal, Difference equations and Inequalities, Marcel Dekker, New York, (2000).
[2] J.Brzdek, D.Popa and B.Xu, The Hyers-Ulam stability of non-linear recurrences, J. Math.Anal. Appl., 335(2007), 443449.
[3] N.Brillouet-Bellout, J.Brzdek and K.Cieplinski, On some recent developments in Ulam's type stability, Abstract and Applied Analysis, 41(2012).
[4] M.Burger, N.Ozawa and A.Thom, On Ulam stability, Israel J. Math., 193(2013), 109-129.
[5] S.Elayadi, An Introduction to Difference Equations, Third edition, Springer, New York, (2005).
[6] D.H.Hyers, On the stability of the linear functional equation, Proc. Nat. Sci. U.S.A., 27(1941), 222-224.
[7] S.M.Jung, Hyers-Ulam Rassias Stability of Functional Equation in Nonlinear Analysis, Springer, New York, (2011).
[8] S.M.Jung, D.Popa and M.T.Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global optim., 59(2014), 165-17.
[9] S.M.Jung and M.T.Rassias, A linear functional equation of third order associated with the Fibonacci numbers, Abstr. Appl. Anal., (2014).
[10] S.M.Jung, Hyers-Ulam stability of the first-order matrix difference equations, Adv. Difference Equ., 3(2015).
[11] S.M.Jung and Y.W.Nam, On the Hyers-Ulam stability of the first-order difference equation, J. Funct. spaces, (2016).
[12] R.Murali, Matina J.Rassias and V.Vithya, The General Solution and Stability of Nonadecic Functional Equation in Matrix Normed Spaces, Malaya J. Mat., 5(2)(2017), 416-427.
[13] D.Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309(2005), 591-597.
[14] D.Popa, Hyers-Ulam stability of a linear recurrence with constant co-efficients, Advances Difference Equations, 2005(2005), 101-107.
[15] S.M.Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York - London, (1960).
[16] Walter G.Kelly and Allan C.Peterson, Difference equations: An Introduction with Applications, Academic Press, (2001).

[^0]: * E-mail: shcrmurali@yahoo.co.in

