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Abstract: We enumerate the approximate solution of the second order differential equation of the LCR electric circuit. That is, we

study the Hyers-Ulam stability and Hyers-Ulam-Rassias of the dirrential equations l′′(t) +
R

L
l′(t) +

1

LC
l(t) = 0 and the

non-homogeneous differential equation l′′(t) +
R

L
l′(t) +

1

LC
l(t) = p(t), with initial conditions H(a) = H′(a) = 0, where

R,L,C are constants and l ∈ C2(I), p(t) ∈ C(I), I = [a, b] ⊆ R.
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1. Introduction

The Hyers-Ulam stability property issue for different functional equation was presented by Ulam [15] in 1940. Then in the

next year, D.H. Hyers [7] was handled the issue of Ulam for Cauchy additive functional equation in Banach spaces. From

that point forward, Aoki [16], Bourgin [2] and Rassias [11] are generalized the Hyers result. Starting there onwards, colossal

number of authors are shown the Hyers-Ulam problem for various functional equation on different spaces [3, 4, 17]. As

of late, the Hyers-Ulam stability issue was proposed by supplanting functional equation by differential equation. In 1998,

Alsina [1] seems to be the primary authors who contemplated the Ulam-Hyers stability of x′(t) = x(t). Then Takashi

[14] are generalized the result reported in [1] for Banach space valued function. These outcomes were stretched out to the

Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the linear and non-linear differential equation of first order, second

order and higher order in [5, 6, 8–10, 12, 13, 18–20]. Encouraged by the above discussions, our foremost goal is towards

enumerate the stability of the differential equations in the sense of Hyers-Ulam and Hyers-Ulam-Rassias for simple electric

circuit of the shape

l′′(t) +
R

L
l′(t) +

1

LC
l(t) = 0 (1)

and the non-homogeneous differential equation

l′′(t) +
R

L
l′(t) +

1

LC
l(t) = p(t), (2)
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with initial condition

l(a) = l′(a) = 0, (3)

here R,L,C are constants and l ∈ C2(I), p(t) ∈ C(I), I = [a, b] ⊆ R.

2. Preliminaries

Firstly, we give the definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the linear differential equation

(1) and (2).

Definition 2.1. The homogeneous differential equation (1) is said to have Hyers-Ulam stability, if for every ε > 0, there is

a constant K > 0, l ∈ C2[a, b], such that ∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ ε,
with (3) then there is some j ∈ C2[a, b], satisfies the differential equation j′′(t)+

R

L
j′(t)+

1

LC
j(t) = 0 with j(a) = j′(a) = 0

such that |l(t)− j(t)| ≤ K ε. Where K is called as the Hyers-Ulam stability constant for (1).

Definition 2.2. The non-homogeneous linear differential equation (2) is said to have the Hyers-Ulam stability, if for every

ε > 0, there is a constant K > 0, l ∈ C2[a, b], such that

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ ε,
with (3) then there is a j ∈ C2[a, b], satisfying j′′(t)+

R

L
j′(t)+

1

LC
j(t) = p(t) with j(a) = j′(a) = 0 such that |l(t)− j(t)| ≤

K ε. Where K is called as a Hyers-Ulam stability constant for (2).

Definition 2.3. The homogeneous linear differential equation (1) is said to have the Hyers-Ulam-Rassias stability, if there

is a constant K > 0, for every ε > 0 and l ∈ C2[a, b], if there exists a function φ : [0,∞)→ [0,∞) such that

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ φ(t) ε,

with (3) then there is j ∈ C2[a, b], satisfying j′′(t) +
R

L
j′(t) +

1

LC
j(t) = 0 with j(a) = j′(a) = 0 such that |l(t)− j(t)| ≤

K φ(t) ε. Where K is called as a Hyers-Ulam-Rassias stability constant for (1).

Definition 2.4. The non-homogeneous linear differential equation (2) has the Hyers-Ulam-Rassias stability, if there is a

constant K > 0, for every ε > 0 and l ∈ C2[a, b], if there exists φ : [0,∞)→ [0,∞) such that

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ φ(t) ε,

with (3) then there exists some j ∈ C2[a, b], satisfying j′′(t) +
R

L
j′(t) +

1

LC
j(t) = p(t) with j(a) = j′(a) = 0 such that

|l(t)− j(t)| ≤ K φ(t) ε. Where K is called as a Hyers-Ulam-Rassias stability constant (2).

3. Hyers-Ulam Stability

Now, we enumerate the Hyers-Ulam stability of (1) with (3).
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Theorem 3.1. Suppose that R,L,C are constants and l ∈ C2[a, b] such that |l′(t)| ≤ |l(t)| and satisfies the inequality

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ ε
with initial condition (3), then (1) has Hyers-Ulam stability.

Proof. For every ε > 0, there is a twice continously differentiable function l : [a, b] → C such that |l′(t)| ≤ |l(t)| and

satisfies the inequality ∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ ε, (4)

with initial condition (3) and M = max
t∈I
|l(t)|. From the inequality (4), we have

−ε ≤ l′′(t) +
R

L
l′(t) +

1

LC
l(t) ≤ ε. (5)

Multiplying the above inequality (5) by l′(t) and then integrating, we get

−ε
t∫

a

l′(t) dt ≤
t∫

a

l′′(t) l′(t) dt+

t∫
a

R

L
l′(t)2 dt+

t∫
a

1

LC
l(t) l′(t) dt ≤ ε

t∫
a

l′(t) dt.

From which we obtain

−2ε

t∫
a

l′(t) dt ≤ l′(t)2 +
l(t)2

LC
+

2R

L

t∫
a

l′(t)2 dt ≤ 2 ε

t∫
a

l′(t) dt

l(t)2

LC
≤ 2 ε

t∫
a

l′(t) dt+
2R

L

t∫
a

l′(t)2 dt

M2 ≤ 2LCεM(b− a) + 2RC(b− a)M2

M ≤ 2LCε(b− a)

1− ν , where ν = 2RC(b− a).

Hence |l(t)| ≤ K ε, for all t ∈ [a, b], where K =
2LC(b− a)

1− ν . Obviously, j(t) = 0 is a solution of (1) with initial condition

(3) such that |l(t)− j(t)| ≤ K ε. Then by the virtue of Definition 2.1, the Theorem holds good.

In the next theorem, we study the Hyers-Ulam stability of the non-homogeneous differential equation (2) with (3).

Theorem 3.2. Suppose that R,L,C are constants and l ∈ C2[a, b] such that |l′(t)| ≤ |l(t)| and satisfies the inequality

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ ε
with (3), then (2) has the Hyers-Ulam stability.

Proof. For every ε > 0, there is a twice continously differentiable function l : [a, b] → C such that |l′(t)| ≤ |l(t)| and

satisfies the inequality ∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ ε, (6)

with initial condition (3) and M = max
t∈I
|l(t)|. From the inequality (6), we have

−ε ≤ l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t) ≤ ε. (7)
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Multiplying the above inequality (7) by l′(t) and then integrating, we get

−ε
t∫

a

l′(t) dt ≤
t∫

a

l′′(t) l′(t) dt+

t∫
a

R

L
l′(t)2 dt+

t∫
a

1

LC
l(t) l′(t) dt−

t∫
a

p(t) l′(t) dt ≤ ε
t∫

a

l′(t) dt.

From which we get that

−2 ε

t∫
a

l′(t) dt ≤ l′(t)2 +
l(t)2

LC
+

2R

L

t∫
a

l′(t)2 dt−
t∫

a

p(t) l′(t) dt ≤ 2 ε

t∫
a

l′(t) dt

l(t)2

LC
≤ 2 ε

t∫
a

l′(t) dt+
2R

L

t∫
a

l′(t)2 dt+ 2

t∫
a

p(t) l′(t) dt

M2 ≤ 2LCεM(b− a) + 2RC(b− a)M2 + 2LCMN(b− a)

M ≤ 2LC(N + ε)(b− a)

1− ν , where ν = 2RC(b− a).

Hence |l(t)| ≤ K (ε), for all t ∈ [a, b]. Obviously, j(t) = 0 is a solution of (2) with initial condition (3) such that

|l(t)− j(t)| ≤ K (ε). Then by the virtue of Definition 2.2, equation (2) has the Ulam-Hyers stability.

4. Hyers-Ulam-Rassias Stability

Now, we study the Hyers-Ulam-Rassias stability of (1) with (3).

Theorem 4.1. Suppose that R,L,C are constants and l ∈ C2[a, b] such that |l′(t)| ≤ |l(t)| and if there is a function

φ : [0,∞)→ [0,∞) satisfies the inequality

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ φ(t) ε,

with initial condition (3), then (1) has the Hyers-Ulam-Rassias stability with φ(a) = 0.

Proof. For every ε > 0, there is a twice continously differentiable function l : [a, b] → C such that |l′(t)| ≤ |l(t)| and

satisfies the inequality ∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)

∣∣∣∣ ≤ φ(t) ε, (8)

with initial condition (3) and M = max
t∈I
|l(t)|. From the inequality (8), we have

−φ(t) ε ≤ l′′(t) +
R

L
l′(t) +

1

LC
l(t) ≤ φ(t) ε. (9)

Multiplying the above inequality (9) by l′(t) and then integrating, we get

−ε
t∫

a

φ(t) l′(t) dt ≤
t∫

a

l′′(t) l′(t) dt+

t∫
a

R

L
l′(t)2 dt+

t∫
a

1

LC
l(t) l′(t) dt ≤ ε

t∫
a

φ(t) l′(t) dt.

From which we obtain

−2 ε

t∫
a

φ(t) l′(t) dt ≤ l′(t)2 +
l(t)2

LC
+

2R

L

t∫
a

l′(t)2 dt ≤ 2 ε

t∫
a

φ(t) l′(t) dt
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l(t)2

LC
≤ 2 ε

t∫
a

φ(t) l′(t) dt+
2R

L

t∫
a

l′(t)2 dt

M2 ≤ 2LCφ(t) εM + 2RC(b− a)M2

M ≤ 2LCφ(t) ε

1− ν , where ν = 2RC(b− a).

Hence |l(t)| ≤ K φ(t) ε, for all t ∈ [a, b], where K =
2LC

1− ν . Obviously, j(t) = 0 is a solution of (1) with initial condition

(3) such that |l(t)− j(t)| ≤ K φ(t) ε. Then by the virtue of Definition 2.3, the differential equation (1) has the Hyers-Ulam-

Rassias stability.

Finally, we study the Hyers-Ulam-Rassias stability of the non-homogeneous differential equation (2) with (3).

Theorem 4.2. Suppose that R,L,C are constants and l ∈ C2[a, b] such that |l′(t)| ≤ |l(t)| and if there exists φ : [0,∞) →

[0,∞) satisfies the inequality ∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ φ(t) ε

with initial condition (3), then the differential equation (2) has the Hyers-Ulam-Rassias stability with φ(a) = 0.

Proof. For every ε > 0, there exists a l : [a, b] → C be twice continously differentiable function such that |l′(t)| ≤ |l(t)|

and if there exists φ : [0,∞)→ [0,∞) satisfies the inequality

∣∣∣∣l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t)

∣∣∣∣ ≤ φ(t) ε, (10)

with initial condition (3) and M = max
t∈[a,b]

|l(t)|. From the inequality (10), we have

−φ(t) ε ≤ l′′(t) +
R

L
l′(t) +

1

LC
l(t)− p(t) ≤ φ(t) ε. (11)

Multiplying the above inequality (11) by l′(t) and then integrating, we get

−ε
t∫

a

φ(t) l′(t) dt ≤
t∫

a

l′′(t) l′(t) dt+

t∫
a

R

L
l′(t)2 dt+

t∫
a

1

LC
l(t) l′(t) dt−

t∫
a

p(t) l′(t) dt ≤ ε
t∫

a

φ(t) l′(t) dt.

From which we get that

−2 ε

t∫
a

φ(t) l′(t) dt ≤ l′(t)2 +
l(t)2

LC
+

2R

L

t∫
a

l′(t)2 dt−
t∫

a

p(t) l′(t) dt ≤ 2 ε

t∫
a

φ(t) l′(t) dt

l(t)2

LC
≤ 2 ε

t∫
a

φ(t) l′(t) dt+
2R

L

t∫
a

l′(t)2 dt+ 2

t∫
a

p(t) l′(t) dt

M2 ≤ 2LCφ(t) εM + 2RC(b− a)M2 + 2LCMN(b− a)

M ≤ 2LC(N(b− a) + φ(t) ε)

1− ν , where ν = 2RC(b− a).

Hence |l(t)| ≤ K (ε)φ(t), for all t ∈ [a, b]. Obviously, j(t) = 0 is a solution of (2) with initial condition (3) such that

|l(t)− j(t)| ≤ K (ε)φ(t). Then by the virtue of Definition 2.4, the differential equation (2) has the Hyers-Ulam-Rassias

stability.
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