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1. Introduction

Fuzzy sets have been introduced by Lotfi.A.Zadeh. Fuzzy set theory permits the gradualassessment of the membership of

elements in a set which is described in the interval [0,1]. It can be used in a wide range of domains where information is

incomplete and imprecise. Interval arithmetic was first suggested by Dwyer in 1951. By means ofzadeh’s extension principle,

the usual arithmetic operations on real numbers can be extended to the ones defined on fuzzy numbers. Dubois and prade

has defined any of the real line [2–4, 7]. A fuzzy number is a quantity whose values are imprecise, rather than exact as is

the case with single-valued numbers. Among the various shapes of fuzzy numbers, Triangular fuzzy numbers are the must

commonly used membership function. In this paper, a new fuzzy number called ‘Octagonal Fuzzy Numbers’ is utilized

in developing the notion of “Corresponding matrices”. Proposed the above said fuzzy number without any restrictions of

parameter. Recently introduced Dinagar and Rajesh kanna the “Modified definition” of the Octagonal fuzzy number by

including conditions for the convexity of the number and few more results have been verified in this work. The paper is

organized as follows, firstly in section 2, of this paper, Preliminaries. In section 3, we recall the definition of octagonal fuzzy

number and some operations on octagonal fuzzy numbers. In section 4, we defined Octagonal fuzzy matrix definition and

some operations on octagonal fuzzy matrices (OFM). In section 5, Fundamental properties of Octagonal Fuzzy Matrices. In

section 6, Trace of a octagonal Fuzzy Matrices (OFM) and some property. In section 7, Determinant of a Octagonal Fuzzy

matrices. In section 8, Fuzzy Comparable OFM. Finally In section 9, conclusion included.

2. Preliminaries

Definition 2.1 (Fuzzy Set). A Fuzzy Set is characterized by its membership function, taking values from the domain,

space or universe of discourse mapped into the unit interval [0,1]. A fuzzy set A in the universal set X is defined as

∗ E-mail: johnson22970@gmail.com
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A = (x, µ(x) : x ∈ X).here, µA : A → [0, 1] is the grade of the membership function and µA(x) is the grade value of x ∈ X

in the fuzzy set A.

Definition 2.2 (Normal Fuzzy Set). A fuzzy set A is called normal if there exists an element x ∈ X whose membership

value is one, i.e., µA(X) = 1.

Definition 2.3 (Fuzzy Number). A fuzzy number A is a subset of real line R, with the membership function µA satisfying

the following properties:

(1). µA(x) is piecewise continuous in its domain.

(2). A is normal, i.e., there is ax0 ∈ A such that µA(x0) = 1.

(3). A is convex, i.e., µA(λx1 + (1− λ)x2) = min(µA(x1), µA(x2)).∨ x1, x2 in X.

Definition 2.4 (Hexagonal Fuzzy Number). A fuzzy number on Ãh is hexagonal fuzzy number denoted by Ãh =

(a1, a2, a3, a4, a5, a6), where (a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6) are real number satisfying a2−a1 ≤ a3−a2 and a5−a4 ≥ a6−a5

and its membership function µÃh(x) is given by

µÃh(X) =



0, x ≤ a1

1
2

(
x−a1
a2−a1

)
, a1 ≤ x ≤ a2

1
2

+ 1
2

(
x−a3
a4−a3

)
, a2 ≤ x ≤ a3

1, a3 ≤ x ≤ a4

1
2
− 1

2

(
x−a3
a4−a3

)
, a4 ≤ x ≤ a5

1
2

(
x−a6
a6−a5

)
, a5 ≤ x ≤ a6

0, x ≥ a6

3. Octagonal Fuzzy Numbers

l1(r) is a bounded left continuous non decreasing function over [o, w1], 0 ≤ w1 ≤ k Octagonal fuzzy numbers are proposed

by Malini.S.U and Kennedy Felbin .C in 2013.

Definition 3.1. An octagonal Fuzzy Number denoted by Ãw is defined to be the ordered quadruple Ãw =

(l1(r), s1(t), s2(t), l2(r)) for r ∈ [0, k] and t ∈ [k,w], where,

(1). l1(r) is a bounded left continuous non decreasing function over [o, w1], 0 ≤ w1 ≤ k.
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(2). s1(t) is a bounded left continuous non decreasing function over [k,w2], k ≤ w2 ≤ w.

(3). s2(t) is a bounded left continuous non increasing function over [k,w2], k ≤ w2 ≤ w.

(4). l2(r) is a bounded left continuous non increasing function over [o, w1], 0 ≤ w1 ≤ k.

Remark 3.2. If w = 1 then the above defined number is called a normal octagonal fuzzy number.

Definition 3.3. A fuzzy number Ã is a normal octagonal fuzzy number denoted by where a1, a2, a3, a4, a5, a6, a7, a8 are real

numbers and its membership function is given by,

[Ã]α =



0, for X ≤ a1

k
(
x−a1
a2−a1

)
, for a1 ≤ X ≤ a2

k, for a1 ≤ X ≤ a3

k + (1− k)
(
x−a3
a4−a3

)
, for a3 ≤ X ≤ a4

1, for a4 ≤ X ≤ a5

k + (1− k)
(
a6−x
a6−a5

)
, for a5 ≤ X ≤ a6

k, for a6 ≤ X ≤ a7

k
(
a8−x
a8−a7

)
, fora7 ≤ X ≤ a8

0, for X ≥ a8

α-Cut of ANOFM: To find the α-cut of a normal octagonal fuzzy number Ã = (a1, a2, a3, a4, a5, a6, a7, a8) for α ∈ [0, 1]


[
a1 +

(
α
k

)
(a2 − a1), a8 −

(
α
k

)
(a8 − a7)

]
for α ∈ [0, k][

a3 +
(
α−k
1−k

)
(a4 − a3), a6 −

(
α−k
1−k

)
(a6 − a5)

]
for α ∈ [k, 1]

Definition 3.4 (Arithmetic operations of Octagonal Fuzzy Number). Formation of an arithmetic operation is crucial in

the study of fuzzy numbers. Note that every OFN is associated with two weights:w1 and w2. To avoid confusion, we use the

notation wiA for i = 1, 2 to represent w1 and w2 as the weights of the OFN.

(a). Addition:

Let A = (a1, a2, a3, a4, a5, a6, a7, a8) and B = (b1, b2, b3, b4, b5, b6, b7, b8) be two OFN’s then, A+B = (a1 + b1, a2 + b2, a3 +

b3, a4 + b4, a5 + b5, a6 + b6, a7 + b7, a8 + b8) with wi(A+B) = max(wiA, wiB) for i = 1, 2.

(b). Substraction:
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We define A = (a1, a2, a3, a4, a5, a6, a7, a8) and B = (b1, b2, b3, b4, b5, b6, b7, b8) be two OFN’s then, (A−B) = (a1 − b1, a2 −

b2, a3 − b3, a4 − b4, a5 − b5, a6 − b6, a7 − b7, a8 − b8) with, wi(A−B) = max(wi, , wiB) for i = 1, 2

(c). Scalar Multiplication:

Let, A = (a1, a2, a3, a4, a5, a6, a7, a8) be a OFN and k ∈ R be any scalar. If k ≥ 0, kA = (ka1, ka2, ka3, ka4, ka5, ka6, ka7, ka8)

and if k ≤ 0, kA = (ka1, ka2, ka3, ka4, ka5, ka6, ka7, ka8).

(d). Multiplication:

Let A = (a1, a2, a3, a4, a5, a6, a7, a8) and Let B = (b1, b2, b3, b4, b5, b6, b7, b8) be two OFNs, then AB =

(a1b1, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8) with wi(AB) = max(wiA, wiB) i = 1, 2.

(e). Inverse:

We define the inverse of a OFN when all its components are non-zero. Suppose A = (a1, a2, a3, a4, a5, a6, a7, a8) is a OFN;

then A−1 ≈ 1
A
≈
[

1
a8
, 1
a7
, 1
a6
, 1
a5
, 1
a4
, 1
a3
, 1
a2
, 1
a1

]
if one of the components of a OFN becomes 0, then we cannot find its

inverse.

(f). Division:

The division of two OFN’s A = (a1, a2, a3, a4, a5, a6, a7, a8) and B = (b1, b2, b3, b4, b5, b6, b7, b8) is approximated as the mul-

tiplication with inverse. A
B
≈ AB−1 ≈

[
a1
b8
, a2
b7
, a3
b6
, a4
b5
, a5
b4
, a6
b3
, a7
b2
, a8
b1

]
AOFN A is divisible by B only when B is a non-null

OFN having non-zero components.

(g). Exponent:

The exponent of a OFN A = (a1, a2, a3, a4, a5, a6, a7, a8) is defined as the power of its components. An =

(an1 , a
n
2 , a

n
3 , a

n
4 , a

n
5 , a

n
6 , a

n
7 , a

n
8 ) with n being a real number.

4. Octagonal Fuzzy MAtrix (OFM)

Definition 4.1. A OFM of order m×n is defined as A = (aoij)m×n where, Aoij = (aij1, aij2, aij3, aij4, aij5, aij6, aij7, aij8)

is ijth element of Â.

Definition 4.2 (Operations on OFM). Let A = (aoij) and B = (boij) be two OFM of same order.then we have the following

(a). A+B = (aoij + boij).

(b). A−B = (aoij − boij).

(c). For A = (aoij) and B = (boij) then A.B = (coij), where (coij) =
n∑
k=1

aoik bokj for i = 1, 2, ...,m; j = 1, 2, ..., n.

(d). AT = (aij), the transpose of A.

(e). kA = (kaij), where k is any scalar.

Some special types of octagonal fuzzy matrices corresponding to classical matrices are now introduced in this section. However

in fuzzy matrix algebra, we define some other types of octagonal fuzzy matrices and their algebraic properties.

5. Fundamental Properties of OFM

Here we introduce some fundamental properties of OFMs. Here we furnish the commutative and associative laws, which are

well defined, for OFM under the arithmetic operations addition and multiplication.
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Proposition 5.1. For any 3 square OFMs L,M,N of the same order s× n, we have the following results:

(1). L+M = M + L

(2). L+ (M +N) = (L+M) +N

(3). L+ L = 2L

(4). L− L = 0, a null equivalent OFM.

(5). L+ 0 = 0− L = L

Proposition 5.2. Let L and M be any two OFNs of the same order and s, t be any two scalars. Then,

(1). s(tL) = (st)L

(2). s(L+M) = sL+ sM

(3). (s+ t)L = s L+ t L

(4). s(L−M) = sL− sM

Proposition 5.3. Let L and M be any two OFNs such that L+M and L.M are well defined. Then,

(1). (LT )T = L

(2). (L+M)T = LT +MT

(3). (L.M)T = MT .LT

Proposition 5.4. Let L and M be any two OFNs of the same order and s, t be any two scalars. Then,

(1). (sL)T = sLT

(2). (sL+ tM)T = sLT + tMT

Proposition 5.5. Let l be any square OFM. Then,

(1). LLT and LT are both symmetric.

(2). L+ LT is a fuzzy symmetric OFM.

(3). L− LT is a fuzzy skew- symmetric OFM.

6. Trace of a OFM

Definition 6.1. The trace of a square OFM A = (aij) is defined as the sum of the elements of the principle diagonal. It is

denoted by tr(A), i.e.,
n∑
i=1

aii.

Proposition 6.2. The product of two pure lower triangular OFMs is also a pure lower triangular OFM.

Proof. Let L = (lij) and M = (mij) be two pure lower triangular OFM of the same order k. Where, lij =

(l1ij , l2ij , l3ij , l4ij , l5ij , l6ij , l7ij , l8ij) and mij = (m1ij ,m2ij ,m3ij ,m4ij ,m5ij ,m6ij ,m7ij ,m8ij). Because L,M are both lower
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triangular OFM’s. lij = (0, 0, 0, 0, 0, 0, 0, 0) and mij = (0, 0, 0, 0, 0, 0, 0, 0) for i < j; i, j = 1, 2, ..., k. Let, Y = L.M = (yij).

Then

lij =

k∑
r=1

lirmrj

=

k∑
r=1

(l1ij , l2ij , l3ij , l4ij , l5ij , l6ij , l7ij , l8ij)(m1ij ,m2ij ,m3ij ,m4ij ,m5ij ,m6ij ,m7ij ,m8ij)

Now, it is enough to establish that (yij) = (0, 0, 0, 0, 0, 0, 0, 0). For i < j, ij = 1, 2, ..., k for i < r, we have pir =

(0, 0, 0, 0, 0, 0, 0, 0), r = 1, 2, ..., i− 1 and qir = (0, 0, 0, 0, 0, 0, 0, 0), r = i, i+ 1, .., k. Therefore

(yij) =

k∑
r=1

lirmrj =

i−1∑
r=1

lirmrj +

k∑
r=i−1

lirmrj

now,

(yij) =

k∑
r=1

lirmrj =

i−1∑
r=1

lirmrj +

k∑
r=i−1

lirmrj

= liimii = (0, 0, 0, 0, 0, 0, 0, 0)

Because, pir = (0, 0, 0, 0, 0, 0, 0, 0), r = 1, 2, ..., i− 1 and mir = (0, 0, 0, 0, 0, 0, 0, 0), r = i, i+ 1, ..., k. Hence the result.

7. Determinant of a OFM

Definition 7.1. The determinant of n× n OFM A = (aoij) is denoted by det(a) or |A| and defined as

|A| =
∑
z∈sn

(
sgnz.

n∏
i=i

aizi

)

Where, aizi = (a1izi, a2izi, a3izi, a4izi, a5izi, a6izi, a7izi, a8izi) are OFN and sn denotes the symmetric group of all permuta-

tions of the indices (1, 2, ..., n) and sgnz = 1 or −1 according the permutations z =

 1 2 . . . n

z(1) z(2) . . . n

 is even or odd

respectively.

Proposition 7.2. If any two columns(rows) of a square OFM A are interchanged, then only the sign of determinant |A of

A changes.

Proof. LetA = (aij) be a square OFM of order n × n. if L = lij is obtained from A by interchanging the rth and sth

column (r < s) of A, then it is clear that lij = aij , i 6= r, i 6= s and lrj = asj , lsj = arj . Now,

|P | =
∑
z∈sn

sgnz(ls1(z1), l2z(2)...lrz(r)...lsz(s)...lnz(n))

=
∑
z∈sn

sgnz(a1(z1), a2z(2)....arz(r)...asz(s)...anz(n))

Let, γ =

1 2 . . . r . . . s . . . n

1 2 . . . r . . . s . . . n

. Then, γ is a transposition of interchanging r and s. Thus, γ is an odd permutation;

thus, sgnλ = −1. Let γσ = δ. As σ runs through all permutations on (1, 2, ..., n), δ also runs over the same permutations.

Because σ1γ = σ2γ or σ1 = σ2. Now,

δ = σγ =

 1 2 . . . r . . . s . . . n

σ(1) σ(2) . . . σ(r) . . . σ(s) . . . n


1 2 . . . r . . . s . . . n

1 2 . . . r . . . s . . . n


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Therefore σ(i) = i; i 6= r, s; σ(r) = σ(s), σ(s) = σ(r). Because γ is an odd permutation, δ is even or odd if σ is even or odd,

i.e., sgnδ =-sgnσ. Then,

|L| =
∑
z∈sn

sgnz

n∏
i=1

aiσi

= −
∑
z∈sn

sgnz

n∏
i=1

aiσi

= −|A|.

Hence the result.

8. Fuzzy Comparable OFM

Definition 8.1. Let L and M be two OFMs of order n×n. We say that L is comparable to M if either L = M or M = L,

i.e., when lij ≤ mij → L ≤M or lij ≥ mij →M ≤ L. when both are equal, we called them equivalent OFM.

Proposition 8.2. Let L and M be two OFMs of order a × n. Then, we have the, for any OFM of order n × l, we have

L ≤M which implies L.N ≤M.N .

Proof. Let, L = M , then, we have lij = mij ⇒ (l1ij , l2ij , l3ij , l4ij , l5ij , l6ij , l7ij , l8ij) ≤ (m1ij ,m2ij ,m3ij ,m4ij ,

m5ij ,m6ij ,m7ij ,m8ij). Now

L.M = Lij .Mij

= (l1ij , l2ij , l3ij , l4ij , l5ij , l6ij , l7ij , l8ij).(m1ij ,m2ij ,m3ij ,m4ij ,m5ij ,m6ij ,m7ij ,m8ij)

(because L ≤ M). This implies L.N ≤ M.N , then, lij .nij ≤ mij .nij ⇒ (l1ij , l2ij , l3ij , l4ij , l5ij , l6ij , l7ij , l8ij)

(n1ij , n2ij , n3ij , n4ij , n5ij , n6ij , n7ij , n8ij) ≤ (m1ij ,m2ij ,m3ij ,m4ij ,m5ij ,m6ij ,m7ij ,m8ij) (n1ij , n2ij , n3ij , n4ij , n5ij , n6ij ,

n7ij , n8ij). This implies L ≤M . Hence the proof.

9. Conclusion

In this article, special attention is paid to the OFM and corresponding OFM, along with the related mathematical expressions.

Apply for elementary algebraic operations for OFM, then many types of OFM and their properties (trace, determinant,

etc). Second, this paper addresses the nature of nilpotent OFM, with some interesting properties. There are several choices

to develop the applications of such OFN. We are trying to investigate such applications.
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