International Journal of Mathematics And its Applications

Square Sum Labeling for Pyramid Graph and Hanging Pyramid Graph

G. Subashini ${ }^{1}$, K. Ramanathan ${ }^{2, *}$ and K. Manimekalai ${ }^{3}$
1 Research Scholar, Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
2 Department of Mathematics, KCG College of Engineering and Technology, Chennai, Tamil Nadu, India.
3 Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

Abstract

In this paper we prove that square sum labeling for $P y_{n} ;(n \geq 3), H P y_{n}, P\left(r, P y_{n}\right), P\left(r, H P y_{n}\right)$, one point union of r copies of pyramid and hanging pyramid graphs are square sum graphs by using Breadth First Search Algorithm.

MSC: 05 C 78.

Keywords: Square sum labeling, Pyramid graph, Hanging Pyramid, Path union, One point union, BFS Algorithm.
(c) JS Publication.
Accepted on: 13 $3^{\text {th }}$ April 2018

1. Introduction

Beineke and Hegde [2] has established a study on number theory. For recent survey on graph labeling, refer [3]. A square sum and strongly square sum was initiated by Ajitha [1]. A trees, unicyclicgraphs ${ }^{m} c_{n}$, are square sum [4]. Some middle and total graphs are proved as square sum by [8]. Pyramid graph was introduced and it was proved that the pyramid graph is graceful labeling by [6]. We begin with simple, finite, connected and undirected graph. We refer to [5, 7] for the standard notations and terminology. We present some definitions which are useful for our work.

Definition 1.1 ([1]). Graph $G(p, q)$ is said to be square sum, the existence of a one-to-one and onto $f: V(G) \rightarrow$ $\{0,1,2, \ldots, p-1\}$ such that it gives rise to a function $f^{*}: E(G) \rightarrow N$ given by $f^{*}(u v)=[f(u)]^{2}+[f(v)]^{2}$ for every $u v \in E(G)$ is injective. Any graph which admits square sum labeling is called square sum graph (SSG).

Example 1.2. Square sum labeling for $k_{1,8}$ and k_{3} are shown in Figure 1.

Figure 1. Square sum labeling

[^0]Definition 1.3 ([6]). A graph which procured by set out the vertices into a fixed number of rows with i vertices in $i^{\text {th }}$ line and every line the $j^{\text {th }}$ apex in that row is joined to the $j^{\text {th }}$ and the $(j+1)^{\text {th }}$ vertex of the next line. We denote the pyramid with n rows by $P y_{n}$ and is illustrated in Figure 2.

Figure 2. Pyramid graph

Definition 1.4. Let graphs $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be all copies of a specific graph G. Adding an edge between G_{i} to G_{i+1} for $i=1,2,3, \ldots, n-1$ is known as path union and it is denoted as $P(r, G)$ [9]. One point union of r copies represented by $G^{(r)}$.

Definition 1.5. Hanging pyramid graph is obtained by attaching the apex of a pyramid graph to a new pendent edge and is denoted by $H P y_{n}$.

2. Main Results

Theorem 2.1. $P y_{n}$ admits a square sum graph.
Proof. Let $P y_{n}$ be the pyramid graph with a vertex set $V=\left\{v_{i, j} / 1 \leq i \leq n ; 1 \leq j \leq i\right\}$ and edge set $E=$ $\left.\left\{v_{i, j} v_{i+1, j}, v_{i, j} v_{i+1, j+1} / 1 \leq i \leq n-1 ; 1 \leq j \leq i\right)\right\}$. Then, $|V(G)|=\frac{\left(n^{2}+n\right)}{2}$ and $|E(G)|=\left(n^{2}-n\right)$. Start with the initial vertex, by using BFS procedure label the vertices in ascending order. Now, we define a bijection $f: V \rightarrow\{0,1,2, \ldots, p-1\}$ as follows:

$$
f\left(v_{i, j}\right)=\frac{1}{2}\left(i^{2}-i\right)+(j-1) \text { For } i=1,2,3, \ldots, n \text { and } j=1,2,3, \ldots, i
$$

It is obvious that from the above defined function, the condition of square sum labeling satisfies and hence the pyramid graph admits square sum.

Example 2.2. The Square sum labeling of $P y_{5}$ is shown in figure 3.

Figure 3. Square sum of pyramid graph

Theorem 2.3. The Hanging Pyramid graph $H P y_{n}$ admits square sum labeling.

Proof. Consider the hanging pyramid graph with $V=V_{1} \cup V_{2}$, where,

$$
\begin{aligned}
V_{1} & =\left\{v_{0}\right\} \\
V_{2} & =\left\{v_{i, j}\right\} i \text { from } 1 \text { to } n, j \text { from } 1 \text { to } i
\end{aligned}
$$

and edge set $E=E_{1} \cup E_{2}$

$$
\begin{aligned}
& E_{1}=\left\{V_{0} V_{11}\right\} \\
& E_{2}=\left\{V_{i, j} V_{i+1, j}, V_{i, j} V_{i+1, j+1} / 1 \leq i \leq n-1 ; 1 \leq j \leq i\right\} \text { for }
\end{aligned}
$$

Then, $|V(G)|=\frac{1}{2}\left(n^{2}+n\right)+1$ and $|E(G)|=n^{2}-n+1$. Initially begin with $v_{1,1}$ of $H P y_{n}$, by Breadth First Search method label the verticesin the order in which they are visited. We define a bijection function $f: V \rightarrow\left\{0,1,2, \ldots, \frac{n^{2}+n}{2}\right\}$ as follows:

$$
f(v)=0 ; f\left(v_{i, j}\right)=\frac{1}{2}\left(i^{2}-i\right)+j \text { For } 1 \leq i \leq n ; 1 \leq j \leq i
$$

It is clearly seen from above defined function, f is injective and all the edge labeling are in increasing sequence and are distinct. Hence the theorem is proved.

Example 2.4. The Square sum labeling of $H P y_{5}$ is pictorial below.

Figure 4. Hanging pyramid graph

Theorem 2.5. For $n \geq 3, P\left(r, P y_{n}\right)$ is square sum graph.
Proof. For a graph $P\left(r, P y_{n}\right)$ with $V=\left\{v_{i, j}^{(k)} / 1 \leq i \leq n ; 1 \leq j \leq i ; 1 \leq k \leq r\right\}$ and $E=E_{1} \cup E_{2}$, where,

$$
\begin{aligned}
& E_{1}=\left\{v_{i, j}^{(k)} v_{i+1, j}^{(k)}, v_{i, j}^{(k)} v_{i+1, j+1}^{(k)} / 1 \leq i \leq n-1 ; 1 \leq j \leq i ; 1 \leq k \leq r\right\} \text { and } \\
& E_{2}=\left\{v_{n, n}^{(k)} v_{1,1}^{(k+1)} / 1 \leq k \leq r-1 ; n \geq 3\right\}
\end{aligned}
$$

Then, $|V|=r\left[\frac{\left(n^{2}+n\right)}{2}\right]$ and $|E|=r[n(n-1)]+(r-1)$. We begin with the vertex $v_{1,1}$ and label the vertices of pyramid graph $P y_{n}$ by using Breadth first search method and the function is defined as:

$$
f: V \rightarrow\left\{0,1,2, \ldots, r\left[\frac{n(n+1)}{2}\right]-1\right\}
$$

is bijection such that, for $1 \leq i \leq n$ and $1 \leq j \leq i$,

$$
f\left(v_{i, j}^{(1)}\right)=\frac{1}{2}\left(i^{2}-i\right)+(j-1)
$$

$$
f\left(v_{i, j}^{(k)}\right)=f\left(v_{i, j}^{(k-1)}\right)+\frac{n(n+1)}{2}(k-1)-f\left(v_{1,1}^{(k-1)}\right), 2 \leq k \leq r
$$

According to the definition of square sum labeling the above defined function f satisfies the condition of square sum. Hence $P\left(r, P y_{n}\right)$ is a square sum graph.

Example 2.6. The path union of 4 copies of $P y_{5}$ is square sum labeling is given in figure 5.

Figure 5. Path union of 4 copies of pyramid graph

Theorem 2.7. For $r \geq 2, n \geq 3, P\left(r, H P y_{n}\right)$ is square sum graph.

Proof. Consider $P\left(r, H P y_{n}\right)$ hanging pyramid graph for $n \geq 3$ with the vertex set be $V=V_{1} \cup V_{2}$ where,

$$
\begin{aligned}
& V_{1}=\left\{v_{k} / 1 \leq k \leq r\right\}, \\
& V_{2}=\left\{v_{i, j}^{(k)} / i=1,2, \ldots, n ; j=1,2, \ldots, i ; k=1,2, \ldots, r\right\}
\end{aligned}
$$

and $E=E_{1} \cup E_{2} \cup E_{3}$, where,

$$
\begin{aligned}
& E_{1}=\left\{v_{k} v_{k+1} / 1 \leq k \leq r-1\right\} \\
& E_{2}=\left\{v_{k} v_{11}^{(k)} / 1 \leq k \leq r\right\} \\
& E_{3}=\left\{v_{i, j}^{(k)} v_{i+1, j}^{(k)}, v_{i, j}^{(k)} v_{i+1, j+1}^{(k)} / 1 \leq i \leq n-1 ; 1 \leq j \leq i ; 1 \leq k \leq r\right\}
\end{aligned}
$$

Then, $|V(G)|=r\left[\frac{n(n+1)}{2}+1\right]$ and $|E(G)|=r\left(n^{2}-n+1\right)+(r-1)$. By BFS algorithm go through all the vertices of G in the order. Now, we define a mapping

$$
f: V \rightarrow\left\{0,1,2, \ldots, r\left[\frac{\left(n^{2}+n\right)}{2}+1\right]-1\right\} \text { as follows: }
$$

For $1 \leq k \leq r$,

$$
\begin{aligned}
f\left(v^{k}\right) & =r-k \\
f\left(v_{1,1}^{(k)}\right) & =(r+k-1) \text { For } 1 \leq k \leq r \\
f\left(v_{i, j}^{(k)}\right) & =f\left(v_{i-1, i-1}^{(r)}\right)+(k-1) i+j \text { For } 2 \leq i \leq n ; 1 \leq j \leq i .
\end{aligned}
$$

The edge labeling are in increasing order and distinct. Therefore, the path union of r copies of hanging pyramid graph is a square sum.

Example 2.8. The $P\left(4, H P y_{5}\right)$ is square sum graph is shown in figure 6 .

Figure 6. Path union of 4 copies of hanging pyramid graph

Theorem 2.9. $P y_{n}^{(r)}$ admits square sum labeling for $n \geq 3$.
Proof. Let G be $P y_{n}^{(r)}$ with $V=V_{1} \cup V_{2}$, where $V_{1}=\left\{v_{1,1}: i=j=1\right\}, V_{2}=\left\{v_{i, j}^{(k)}: 1 \leq i \leq n ; 1 \leq j \leq i ; 1 \leq k \leq r\right\}$ and edge set

$$
E=\left\{v_{i, j}^{(k)} v_{i+1, j}^{(k)}, v_{i, j}^{(k)} v_{i+1, j+1}^{(k)}: 1 \leq i \leq n-1 ; 1 \leq j \leq i ; 1 \leq k \leq r\right\}
$$

Then, $|V(G)|=r\left[\frac{n(n+1)}{2}\right]-r+1$ and $|E(G)|=r n(n-1)$. With the initial vertex $v_{1,1}$ by breadth first search visit and label all the vertices in non decreasing order. We define a bijection $f: V \rightarrow\left\{0,1,2, \ldots r\left[\frac{n(n+1)}{2}\right]-r\right\}$ as follows:

$$
\begin{aligned}
& f\left(v_{1,1}\right)=0, \text { for } i=j=1 \\
& f\left(v_{2, j}^{(k)}\right)=(k-1) i+j \text { For } i=2 ; 1 \leq j \leq i \\
& f\left(v_{i, j}^{(k)}\right)=f\left(v_{i-1, i-1}^{(r)}\right)+(k-1) i+j \text { For } 3 \leq i \leq n ; 1 \leq j \leq i ; 1 \leq k \leq r
\end{aligned}
$$

We observe from above defined function, f is injective and all the edge labeling are in increasing order. Therefore, $P y_{n}^{(r)}$ is a square sum graph.

Example 2.10. $P y_{4}^{(4)}$ is $S S G$.

Figure 7. One point union of 4 copies of pyramid graph

Theorem 2.11. The $H P y_{n}^{(r)}$ is square sum graph for $n \geq 3$.
Proof. A graph with the vertex set $V=V_{1} \cup V_{2}$ of $H P y_{n}^{(r)}$, where, $V_{1}=\left\{v_{0}\right\}, V_{2}=\left\{v_{i, j}^{(k)}: 1 \leq i \leq n ; 1 \leq j \leq i ; 1 \leq k \leq r\right\}$ and edge set $E=E_{1} \cup E_{2}$ where, $E_{1}=\left\{v_{0} v_{11}^{(k)}: 1 \leq k \leq r\right\}, E_{2}=\left\{v_{i, j}^{(k)} v_{i+1, j}^{(k)}, v_{i, j}^{(k)} v_{i+1, j+1}^{(k)}: 1 \leq i \leq n-1 ; 1 \leq j \leq i ; 1 \leq\right.$ $k \leq r\}$. Then, $|V|=r\left[\frac{n(n+1)}{2}\right]+1$ and $|E|=r\left(n^{2}-n+1\right)$. By BFS method the vertices are labeled from the root vertex in a ascending sequence. Now we define a bijection $f: V \rightarrow\left\{0,1,2, \ldots r\left[\frac{n(n+1)}{2}\right]\right\}$ as follows:

$$
f\left(v_{0}\right)=0
$$

$$
\begin{aligned}
& f\left(v_{1,1}^{(k)}\right)=k\left(\frac{i+1}{2}\right) \text { for } i=1, j=1 ; 1 \leq k \leq r \\
& f\left(v_{i, j}^{(k)}\right)=f\left(v_{i-1, i-1}^{(r)}\right)+(k-1) i+j \text { for } 2 \leq i \leq n ; 1 \leq j \leq i ; 1 \leq k \leq r
\end{aligned}
$$

According to the definition of square sum labeling, the above defined function f satisfies the condition. Therefore $H P y_{n}^{(r)}$ is a square sum graph.

Example 2.12. $\mathrm{HPy}_{4}^{(8)}$ is square sum graph is shown in figure 8.

Figure 8. One point union of 8 copies of hanging pyramid graph

3. Conclusion

We have proved that the pyramid graph, hanging pyramid graphs, $P\left(r, P y_{n}\right), P\left(r, H P y_{n}\right), P y_{n}^{(r)}, H P y_{n}^{(r)}$ are square sum graph. To study and establish equivalent results for different graph families can be done for further work.

References

[1] V.Ajitha, S.Arumugam and K.A.Germina, On square sum graphs, AKCE J. Graphs and combinatorics, 6(1)(2009), 1-10.
[2] L.W.Beineke and S.M.Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory, 21(2001), 63-75.
[3] J.A.Gallian, A dynamic survey of graph labeling, The Electronics journal of Combinatories, 17 (2010), \#DS6.
[4] K.A.Germina and R.Sebastian, Further results on square sum graphs, International Mathematical forum, 8(1)(2013), 47-57.
[5] F.Harary, Graph theory, Narosa Publishing House, (2001).
[6] S.M.Lee and G.Wang, All pyramids, lotuses and diamonds are k-graceful, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S), 32(1988), 145-150.
[7] A.Rosa, On certain valuation of graph, theory of graphs, (Rome, July 1966), Golden and Breach. N.Y and Paris, (1967), 349-355.
[8] J.Shiama, Square sum labeling for some middle and total graphs, International Journal of Computer Applications, 37(4)(2012).
[9] Sze-chin shee and Yong-Song Ho, The cordiality of the path - union of n copies of a graph, Discrete Mathematics, 151(1996), 221-229.

[^0]: * E-mail: krnath_11@yahoo.com

