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Abstract: Let G be a graph of order n and size m. A vertex magic total labeling is an assignment of the integers 1, 2, 3, ...,m + n
to the vertices and the edges of G, so that at each vertex , the vertex label and the labels on the edges incident at that

vertex, add to a fixed constant called the magic constant of G. Such a labeling is a-vertex multiple magic if the set of the
labels of the vertices is {a, 2a, ..., na} and is b-edge multiple magic if the set of labels of the edges is {b, 2b, ...,mb}. This

article, presents properties of a− vertex multiple magic graphs and b− edge multiple magic graphs.
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1. Introduction

Graphs are generally finite, simple and undirected. A graph G has vertex set V = V (G) and the edge set E = E(G). We

let n = |V | and m = |E|. The set of neighbours of a vertex v is denoted by N(v). A total labeling of G is a bijection

f : V ∪ E → {1, 2, 3, ...,m + n} and the associated weights of a vertex vi in G is

wf (vi) = f(vi) +
∑

f(vivj)

. If each vertex has the same weight, then the total labeling f of G is vertex magic. In this case, wf (vi) = k. The magic

labeling of graphs was started by sedlacek [5], but the concept of vertex magic total labeling(VMTL) first appeared only

in 2002 in [2]. A VMTL f of a graph G = (V,E) is said to be a− vertex consecutive f(V ) = {a + 1, a + 2, ..., a + n},

where a ∈ {0, 1, 2, ...,m}. A graph which admits a−vertex consecutive magic total labeling is called a− vertex consecutive

magic. Analogously, a VMTL f of a graph G = (V,E) is called b−edge consecutive if the set of labels of the edges is

f(E) = {b + 1, b + 2, ..., b + m}, where b ∈ {0, 1, 2, ..., n}. A graph which admits a b− edge consecutive magic total labeling

is said to be b− edge consecutive magic. The paper published in consecutive vertex magic graph is [1], which is published

in 2006. Nagaraj [3] introduced the concept of an Even VMTL. A VMTL is even if f(V (G)) = {2, 4, 6, ..., 2n}. A graph G

is called even vertex magic graph if it admits an even vertex magic labeling. Nagaraj [4] introduced the concept of an Odd

VMTL. A VMTL is odd if f(V (G)) = {1, 3, 5, ..., 2n− 1}. A graph G is called odd vertex magic graph if it admits an odd

vertex magic labeling.
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2. Definition and Main Results

Definition 2.1. A vertex magic total labeling f of a graph G = (V,E) is said to be a-vertex multiple, if the set of the labels

of the vertices is f(V ) = {a, 2a, 3a, ..., na}, where a ∈ {1, 2, 3, ..., bm+n
n
c}. A graph which admits an a-vertex multiple magic

total labeling is called a-vertex multiple magic.

Definition 2.2. A vertex magic total labeling f of a graph G = (V,E) is said to be b-edge multiple, if the set of the labels

of the edges is f(E) = {b, 2b, 3b, ...,mb}, where b ∈ {1, 2, 3, ..., bm+n
m
c}. A graph which admits a b-edge multiple magic total

labeling is said to be b-edge multiple magic.

Theorem 2.3. Let G be an a-vertex multiple magic graph then the magic constant k is given by

k = 2m + n + 1 +
m(m + 1)

n
− a(n + 1)

2
.

Proof. Assume that G is an a-vertex multiple magic graph. Let f be an a-vertex multiple magic labeling of a graph G

with the magic constant k. Then f(v) = {a, 2a, 3a, ..., na} with 1 ≤ a ≤ bm+n
n
c

k = f(u) +
∑

v∈N(u)

f(uv) ∀ u ∈ V

nk = [a + 2a + 3a + ... + na] + 2{1 + 2 + 3 + ... + m + n} − 2{a + 2a + 3a + ... + na}

= 2{1 + 2 + 3 + ... + m + n} − {a + 2a + 3a + ... + na}

=
2(m + n)(m + n + 1)

2
− an(n + 1)

2

nk = (m + n)(m + n + 1)− an(n + 1)

2

nk = m2 + mn + m + mn + n2 + n− an(n + 1)

2

nk = m2 + 2mn + m + n2 + n− an(n + 1)

2

k = 2m + n + 1 +
m(m + 1)

n
− a(n + 1)

2

Theorem 2.4. Let G be any 2− vertex multiple magic graph with size m and magic number k. Then the maximum degree

is atmost ∆(G) ≤
√
k − 2.

Proof. Let us consider a vertex v with maximum degree ∆ = ∆(G). The magic number k = w(v) ≥ 2 + 1 + 3 + 5 + ... +

2∆− 1⇒ ∆ ≤
√
k − 2.

Theorem 2.5. Let G be a 2− vertex multiple magic graph then G cannot have isolated vertex.

Proof. From the definition of vertex magic total graph, G cannot have more than one isolated vertex. If G has an isolated

vertex, say v, then the weight of that vertex satisfies k = w(v) ≤ 2n. Then by Theorem 2.3,

k = 2m +
m(m + 1)

n

Let G be 2− vertex multiple magic graph then, m ≥ n. Therefore, k ≥ 3n + 1 > 2n, which is a contradiction to k ≤ 2n.

Therefore G cannot have isolated vertex.
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Theorem 2.6. Let G be a b-edge multiple magic graph then the magic constant k is given by

k = m +
(n + 1)

2
+

m(m + 1)(b + 1)

2n
.

Proof. Assume that G is an b-edge multiple magic graph. Let f be an b-edge multiple magic labeling of a graph G with

the magic constant k. Then f(E) = {b, 2b, 3b, ...,mb} with 1 ≤ b ≤ bm+n
m
c

k = f(u) +
∑

v∈N(u)

f(uv) ∀ u ∈ V

nk = {1 + 2 + 3 + ... + m + n} − {b + 2b + 3b + ... + mb}+ 2{b + 2b + 3b + ... + mb}

= {1 + 2 + 3 + ... + m + n}+ {b + 2b + 3b + ... + mb}

=
(m + n)(m + n + 1)

2
+

bm(m + 1)

2

nk =
m2 + mn + m + mn + n2 + n + bm2 + bm

2

nk =
m2

2
+ mn +

m

2
+

n2

2
+

n

2
+

bm2

2
+

bm

2

k =
m2

2n
+ m +

m

2n
+

n

2
+

1

2
+

bm2

2n
+

bm

2n

k =
m(m + 1)

2n
+ m +

n + 1

2
+

bm(m + 1)

2n

k = m +
n + 1

2
+

m(m + 1)(b + 1)

2n

Theorem 2.7. If G is a disconnected a− vertex multiple magic graph with magic constant k, then

k ≤ (n4 − 2n3 + 7n2 − 2an2 − 2an− 6n + 8)

4n
.

Proof. Let G be a disconnected graph then m ≤ (n−1)(n−2)
2

. Then, by Theorem 2.3,

k = 2m + n + 1 +
m(m + 1)

n
− a(n + 1)

2

k ≤ 2
(n− 1)(n− 2)

2
+ n + 1 +

(n− 1)2(n− 2)2

4n
− a(n + 1)

2
+

(n− 1)(n− 2)

2n

k ≤ (n− 1)(n− 2) + n + 1 +
(n− 1)2(n− 2)2

4n
− a(n + 1)

2
+

(n− 1)(n− 2)

2n

k ≤ 1

4n

{
4n(n− 1)(n− 2) + 4n2 + 4n + (n− 1)2(n− 2)2 − 2na(n + 1) + 2(n− 1)(n− 2)

}
k ≤ 1

4n

{
4n(n2 − 3n + 2) + 4n2 + 4n + (n2 + 1− 2n)(n2 + 4− 4n)− 2a(n2 + n) + 2n2 − 6n + 4

}
k ≤ (n4 − 2n3 + 7n2 − 2an2 − 2an− 6n + 8)

4n

Theorem 2.8. If G is a connected a− vertex multiple magic graph, then k ≤ (n3+2n2+3n+2−2an−2a)
4

.

Proof. Let G be a connected graph then m ≤ n(n−1)
2

. Then by Theorem 2.3,

k = 2m + n + 1 +
m(m + 1)

n
− a(n + 1)

2

k ≤ 2n(n− 1)

2
+ n + 1 +

n2(n− 1)2

4n
+

n(n− 1)

2n
− a(n + 1)

2

k ≤ n2 − n + n + 1 +
n2(n2 + 1− 2n)

4n
+

n(n− 1)

2n
− a(n + 1)

2
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k ≤ 1

4

{
4n2 + 4 + n3 + n− 2n2 + 2n− 2− 2an− 2a

}
k ≤ 1

4

{
n3 + 2n2 + 3n + 2− 2an− 2a

}
Which completes the proof.

Theorem 2.9. If G is a disconnected b− edge multiple magic graph with magic constant k, then

k ≤ 1

8n

{
n4 − 2n3 + 7n2 − 6n + 8 + bn4 − 6bn3 + 15bn2 − 18bn + 8b

}
.

Proof. Let G be a disconnected graph then m (n−1)(n−2)
2

. By Theorem 2.4,

k = m +
n + 1

2
+

m(m + 1)(b + 1)

2n

k ≤ (n− 1)(n− 2)

2
+

n + 1

2
+

(n− 1)2(n− 2)2

8n
+

(n− 1)(n− 2)

4n
+

b

2n

{
(n− 1)2(n− 2)2

4
+

(n− 1)(n− 2)

2

}
k ≤ n2 − 3n + 2

2
+

n + 1

2
+

(n2 + 1− 2n)(n2 + 4− 4n)

8n
+

(n2 − 3n + 2)

4n

+
b

2n

{
(n2 + 1− 2n)(n2 + 4− 4n)

4
+

(n2 − 3n + 2)

2

}
k ≤ 1

8n
{4n(n2 − 3n + 2) + 4n(n + 1) + n4 + 4n2 − 4n3 + n2 + 4− 4n− 2n3 − 8n + 8n2 + 2n2

− 6n + 4 + b(n4 + 4n2 − 4n3 + n2 + 4− 4n− 2n3 − 8n + 8n2) + b(2n2 − 6n + 4)}

k ≤ 1

8n

{
n4 − 2n3 + 7n2 − 6n + 8 + bn4 − 6bn3 + 15bn2 − 18bn + 8b

}

Theorem 2.10. If G is a connected b− edge multiple magic graph with magic constant k, then k ≤
1
8n

{
n4 + 2n3 + 3n2 − 6n + 6n4 − 2bn3 + 3bn2 − 2bn

}
.

Proof. Let G be a connected graph then m ≤ n(n−1)
2

. Then by Theorem 2.6,

k = m +
(n + 1)

2
+

m(m + 1)(b + 1)

2n

k ≤ n(n− 1)

2
+

(n + 1)

2
+

n2(n− 1)2

8n
+

n(n− 1)

4n
+

n2(n− 1)2b

8n
+

n(n− 1)b

4n

k ≤ 1

8n

{
4nn(n− 1) + 4n(n + 1) + n2(n− 1)2 + 2n(n− 1) + n2(n− 1)2b + 2bn(n− 1)

}
k ≤ 1

8n

{
4n3 − 4n2 + 4n2 + 4n + n2(n2 + 1− 2n) + 2n2 − 2n + n2b(n2 + 1− 2n) + 2bn2 − 2bn

}
k ≤ 1

8n

{
n4 + 2n3 + 3n2 + 2n + bn4 − 2bn3 + 3bn2 − 2bn

}

Lemma 2.11. Let G be an a-vertex multiple magic graph on n vertices and m-edges.If n is odd then n divides m(m + 1).

Lemma 2.12. Let G be b-edge multiple magic graphs on n-vertices and m-edges.If n is odd then 2n divides m(m+1)(b+1).

Example 2.13. k6 is 2-vertex multiple magic graph with magic constant k = 70.

- 2 4 6 8 10 12

2 - 20 17 1 9 21

4 20 - 7 13 15 11

6 17 7 - 16 19 5

8 1 13 16 - 14 18

10 9 15 19 14 - 3

12 21 11 5 18 3 -
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Example 2.14. k7 is 2-vertex multiple magic graph with magic constant k = 108.

- 2 4 6 8 10 12 14

2 - 28 22 19 1 9 27

4 28 - 3 11 25 13 24

6 22 3 - 17 23 21 16

8 19 11 17 - 26 20 7

10 1 25 23 26 - 18 5

12 9 13 21 20 18 - 15

14 27 24 16 7 5 15 -

Example 2.15. k5 is not 2-vertex multiple magic graph.

For k5, n = 5 ⇒ m = 5c2 = 10 ⇒ k = 42. f : V → {2, 4, 6, 8, 10} and f : E → {1, 3, 5, 7, 9, 11, 12, 13, 14, 15}. Here, in edge

labels 12 and 14 only two even number. k5 is not 2-vertex multiple magic graph.

Example 2.16. Complete bipartite graph k4,4 is 2− vertex multiple magic graph with magic constant 66.

X/Y 4 6 12 14

2 22 24 15 3

8 1 13 23 21

10 20 18 7 11

16 19 5 9 17

Example 2.17. k3,3 is not 2-vertex multiple magic graph.

For n = 6, m = 9, m + n = 15, k = 23. f : V → {2, 4, 6, 8, 10, 12} and f : E → {1, 3, 5, 7, 9, 11, 12, 13, 14, 15}. Here, in edge

labels 14 only one even numbers.

Example 2.18. k5 is 3− vertex multiple magic graph with magic constant 39.

3 6 9 12 15

3 - 14 8 4 10

6 14 - 13 5 1

9 8 13 - 7 2

12 4 5 7 - 11

15 10 1 2 11 -

Example 2.19. H4,7 is 2−vertex multiple magic graph with magic constant k = 58.

Figure 1. 2− vertex multiple magic graph. n = 7,m = 14, k = 58
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Example 2.20. Let G be the regular graph with 6 vertices and degree 4. Show that G is 2− vertex multiple magic graph

with magic constant k = 50.

Figure 2. 2− vertex multiple graph. n = 6,m = 12, k = 50

Example 2.21. C3 × C3 is 2− vertex multiple magic graph with magic constant k = 70.

Figure 3. 2− vertex multiple magic graph. n = 6,m = 15, k = 70.

Example 2.22. P3 × P2 is 2− vertex multiple magic graph with magic constant k = 36.

Figure 4. 2− vertex multiple magic graph. n = 5,m = 9, k = 36

Example 2.23. 2− Edge multiple vertex magic graph with magic constant k = 19

Figure 5. 2− edge multiple vertex magic graph, n = 7,m = 6, k = 19.
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