

International Journal of *Mathematics* And its Applications

Multiple Magic Graphs

	C. T. Nagaraj ¹ , C. Y. Ponnappan ² and G. Prabakaran ^{3,*}					
	1 Research Scholar, Department of Mathematics, Bharathiar University, Coimbatore, Tamilnadu, India.					
	2 Department of Mathematics, Government Arts College, Melur, Tamilnadu, India.					
	3 Department of Mathematics, Thiagarajar College, Madurai, Tamilnadu, India.					
Abstract:	Let G be a graph of order n and size m. A vertex magic total labeling is an assignment of the integers $1, 2, 3,, m + n$ to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant called the magic constant of G. Such a labeling is a-vertex multiple magic if the set of the labels of the vertices is $\{a, 2a,, na\}$ and is b-edge multiple magic if the set of labels of the edges is $\{b, 2b,, mb\}$. This article, presents properties of a -vertex multiple magic graphs and b - edge multiple magic graphs.					
MSC:	05C78.					
Keywords:	a-vertex multiple magic graphs, b -edge multiple magic graphs.					

vertex multiple magic graphs, b -edge multiple m (c) JS Publication.

Accepted on: 13th April 2018

Introduction 1.

Graphs are generally finite, simple and undirected. A graph G has vertex set V = V(G) and the edge set E = E(G). We let n = |V| and m = |E|. The set of neighbours of a vertex v is denoted by N(v). A total labeling of G is a bijection $f: V \cup E \rightarrow \{1, 2, 3, ..., m+n\}$ and the associated weights of a vertex v_i in G is

$$w_f(v_i) = f(v_i) + \sum f(v_i v_j)$$

. If each vertex has the same weight, then the total labeling f of G is vertex magic. In this case, $w_f(v_i) = k$. The magic labeling of graphs was started by sedlacek [5], but the concept of vertex magic total labeling(VMTL) first appeared only in 2002 in [2]. A VMTL f of a graph G = (V, E) is said to be a-vertex consecutive $f(V) = \{a + 1, a + 2, ..., a + n\}$, where $a \in \{0, 1, 2, ..., m\}$. A graph which admits a-vertex consecutive magic total labeling is called a-vertex consecutive magic. Analogously, a VMTL f of a graph G = (V, E) is called b-edge consecutive if the set of labels of the edges is $f(E) = \{b+1, b+2, ..., b+m\}$, where $b \in \{0, 1, 2, ..., n\}$. A graph which admits a b- edge consecutive magic total labeling is said to be b- edge consecutive magic. The paper published in consecutive vertex magic graph is [1], which is published in 2006. Nagaraj [3] introduced the concept of an Even VMTL. A VMTL is even if $f(V(G)) = \{2, 4, 6, ..., 2n\}$. A graph G is called even vertex magic graph if it admits an even vertex magic labeling. Nagaraj [4] introduced the concept of an Odd VMTL. A VMTL is odd if $f(V(G)) = \{1, 3, 5, ..., 2n - 1\}$. A graph G is called odd vertex magic graph if it admits an odd vertex magic labeling.

E-mail: ct_nagaraj@yahoo.co.in

2. Definition and Main Results

Definition 2.1. A vertex magic total labeling f of a graph G = (V, E) is said to be a-vertex multiple, if the set of the labels of the vertices is $f(V) = \{a, 2a, 3a, ..., na\}$, where $a \in \{1, 2, 3, ..., \lfloor \frac{m+n}{n} \rfloor\}$. A graph which admits an a-vertex multiple magic total labeling is called a-vertex multiple magic.

Definition 2.2. A vertex magic total labeling f of a graph G = (V, E) is said to be b-edge multiple, if the set of the labels of the edges is $f(E) = \{b, 2b, 3b, ..., mb\}$, where $b \in \{1, 2, 3, ..., \lfloor \frac{m+n}{m} \rfloor\}$. A graph which admits a b-edge multiple magic total labeling is said to be b-edge multiple magic.

Theorem 2.3. Let G be an a-vertex multiple magic graph then the magic constant k is given by

$$k = 2m + n + 1 + \frac{m(m+1)}{n} - \frac{a(n+1)}{2}.$$

Proof. Assume that G is an a-vertex multiple magic graph. Let f be an a-vertex multiple magic labeling of a graph G with the magic constant k. Then $f(v) = \{a, 2a, 3a, ..., na\}$ with $1 \le a \le \lfloor \frac{m+n}{n} \rfloor$

$$\begin{split} k &= f(u) + \sum_{v \in N(u)} f(uv) \ \forall \ u \in V \\ nk &= [a + 2a + 3a + \dots + na] + 2\{1 + 2 + 3 + \dots + m + n\} - 2\{a + 2a + 3a + \dots + na\} \\ &= 2\{1 + 2 + 3 + \dots + m + n\} - \{a + 2a + 3a + \dots + na\} \\ &= 2\{1 + 2 + 3 + \dots + m + n\} - \{a + 2a + 3a + \dots + na\} \\ &= \frac{2(m + n)(m + n + 1)}{2} - \frac{an(n + 1)}{2} \\ nk &= (m + n)(m + n + 1) - \frac{an(n + 1)}{2} \\ nk &= m^2 + mn + m + mn + n^2 + n - \frac{an(n + 1)}{2} \\ nk &= m^2 + 2mn + m + m^2 + n - \frac{an(n + 1)}{2} \\ nk &= m^2 + 2mn + m + n^2 + n - \frac{an(n + 1)}{2} \\ k &= 2m + n + 1 + \frac{m(m + 1)}{n} - \frac{a(n + 1)}{2} \end{split}$$

Theorem 2.4. Let G be any 2- vertex multiple magic graph with size m and magic number k. Then the maximum degree is at most $\Delta(G) \leq \sqrt{k-2}$.

Proof. Let us consider a vertex v with maximum degree $\Delta = \Delta(G)$. The magic number $k = w(v) \ge 2 + 1 + 3 + 5 + \dots + 2\Delta - 1 \Rightarrow \Delta \le \sqrt{k-2}$.

Theorem 2.5. Let G be a 2- vertex multiple magic graph then G cannot have isolated vertex.

Proof. From the definition of vertex magic total graph, G cannot have more than one isolated vertex. If G has an isolated vertex, say v, then the weight of that vertex satisfies $k = w(v) \le 2n$. Then by Theorem 2.3,

$$k = 2m + \frac{m(m+1)}{n}$$

Let G be 2- vertex multiple magic graph then, $m \ge n$. Therefore, $k \ge 3n + 1 > 2n$, which is a contradiction to $k \le 2n$. Therefore G cannot have isolated vertex. **Theorem 2.6.** Let G be a b-edge multiple magic graph then the magic constant k is given by

$$k = m + \frac{(n+1)}{2} + \frac{m(m+1)(b+1)}{2n}.$$

Proof. Assume that G is an b-edge multiple magic graph. Let f be an b-edge multiple magic labeling of a graph G with the magic constant k. Then $f(E) = \{b, 2b, 3b, ..., mb\}$ with $1 \le b \le \lfloor \frac{m+n}{m} \rfloor$

$$\begin{split} k &= f(u) + \sum_{v \in N(u)} f(uv) \ \forall \ u \in V \\ nk &= \{1 + 2 + 3 + \dots + m + n\} - \{b + 2b + 3b + \dots + mb\} + 2\{b + 2b + 3b + \dots + mb\} \\ &= \{1 + 2 + 3 + \dots + m + n\} + \{b + 2b + 3b + \dots + mb\} \\ &= \frac{(m + n)(m + n + 1)}{2} + \frac{bm(m + 1)}{2} \\ nk &= \frac{m^2 + mn + m + mn + n^2 + n + bm^2 + bm}{2} \\ nk &= \frac{m^2 + mn + \frac{m}{2} + \frac{n^2}{2} + \frac{n}{2} + \frac{bm^2}{2} + \frac{bm}{2} \\ k &= \frac{m^2}{2n} + m + \frac{m}{2n} + \frac{n}{2} + \frac{1}{2} + \frac{bm^2}{2n} + \frac{bm}{2n} \\ k &= \frac{m(m + 1)}{2n} + m + \frac{n + 1}{2} + \frac{bm(m + 1)}{2n} \\ k &= m + \frac{n + 1}{2} + \frac{m(m + 1)(b + 1)}{2n} \end{split}$$

Theorem 2.7. If G is a disconnected a- vertex multiple magic graph with magic constant k, then

$$k \le \frac{(n^4 - 2n^3 + 7n^2 - 2an^2 - 2an - 6n + 8)}{4n}.$$

Proof. Let G be a disconnected graph then $m \leq \frac{(n-1)(n-2)}{2}$. Then, by Theorem 2.3,

$$\begin{split} &k = 2m + n + 1 + \frac{m(m+1)}{n} - \frac{a(n+1)}{2} \\ &k \leq 2\frac{(n-1)(n-2)}{2} + n + 1 + \frac{(n-1)^2(n-2)^2}{4n} - \frac{a(n+1)}{2} + \frac{(n-1)(n-2)}{2n} \\ &k \leq (n-1)(n-2) + n + 1 + \frac{(n-1)^2(n-2)^2}{4n} - \frac{a(n+1)}{2} + \frac{(n-1)(n-2)}{2n} \\ &k \leq \frac{1}{4n} \left\{ 4n(n-1)(n-2) + 4n^2 + 4n + (n-1)^2(n-2)^2 - 2na(n+1) + 2(n-1)(n-2) \right\} \\ &k \leq \frac{1}{4n} \left\{ 4n(n^2 - 3n + 2) + 4n^2 + 4n + (n^2 + 1 - 2n)(n^2 + 4 - 4n) - 2a(n^2 + n) + 2n^2 - 6n + 4 \right\} \\ &k \leq \frac{(n^4 - 2n^3 + 7n^2 - 2an^2 - 2an - 6n + 8)}{4n} \end{split}$$

Theorem 2.8. If G is a connected a- vertex multiple magic graph, then $k \leq \frac{(n^3+2n^2+3n+2-2an-2a)}{4}$.

Proof. Let G be a connected graph then $m \leq \frac{n(n-1)}{2}$. Then by Theorem 2.3,

$$\begin{aligned} k &= 2m + n + 1 + \frac{m(m+1)}{n} - \frac{a(n+1)}{2} \\ k &\leq \frac{2n(n-1)}{2} + n + 1 + \frac{n^2(n-1)^2}{4n} + \frac{n(n-1)}{2n} - \frac{a(n+1)}{2} \\ k &\leq n^2 - n + n + 1 + \frac{n^2(n^2 + 1 - 2n)}{4n} + \frac{n(n-1)}{2n} - \frac{a(n+1)}{2} \end{aligned}$$

$$k \leq \frac{1}{4} \left\{ 4n^2 + 4 + n^3 + n - 2n^2 + 2n - 2 - 2an - 2a \right\}$$
$$k \leq \frac{1}{4} \left\{ n^3 + 2n^2 + 3n + 2 - 2an - 2a \right\}$$

Which completes the proof.

Theorem 2.9. If G is a disconnected b-edge multiple magic graph with magic constant k, then

$$k \le \frac{1}{8n} \left\{ n^4 - 2n^3 + 7n^2 - 6n + 8 + bn^4 - 6bn^3 + 15bn^2 - 18bn + 8b \right\}.$$

Proof. Let G be a disconnected graph then $m \frac{(n-1)(n-2)}{2}$. By Theorem 2.4,

$$\begin{split} k &= m + \frac{n+1}{2} + \frac{m(m+1)(b+1)}{2n} \\ k &\leq \frac{(n-1)(n-2)}{2} + \frac{n+1}{2} + \frac{(n-1)^2(n-2)^2}{8n} + \frac{(n-1)(n-2)}{4n} + \frac{b}{2n} \left\{ \frac{(n-1)^2(n-2)^2}{4} + \frac{(n-1)(n-2)}{2} \right\} \\ k &\leq \frac{n^2 - 3n + 2}{2} + \frac{n+1}{2} + \frac{(n^2 + 1 - 2n)(n^2 + 4 - 4n)}{8n} + \frac{(n^2 - 3n + 2)}{4n} \\ &+ \frac{b}{2n} \left\{ \frac{(n^2 + 1 - 2n)(n^2 + 4 - 4n)}{4} + \frac{(n^2 - 3n + 2)}{2} \right\} \\ k &\leq \frac{1}{8n} \{4n(n^2 - 3n + 2) + 4n(n+1) + n^4 + 4n^2 - 4n^3 + n^2 + 4 - 4n - 2n^3 - 8n + 8n^2 + 2n^2 \\ &- 6n + 4 + b(n^4 + 4n^2 - 4n^3 + n^2 + 4 - 4n - 2n^3 - 8n + 8n^2) + b(2n^2 - 6n + 4)\} \\ k &\leq \frac{1}{8n} \{n^4 - 2n^3 + 7n^2 - 6n + 8 + bn^4 - 6bn^3 + 15bn^2 - 18bn + 8b\} \end{split}$$

Theorem 2.10. If G is a connected b- edge multiple magic graph with magic constant k, then $k \leq \frac{1}{8n} \{n^4 + 2n^3 + 3n^2 - 6n + 6n^4 - 2bn^3 + 3bn^2 - 2bn\}.$

Proof. Let G be a connected graph then $m \leq \frac{n(n-1)}{2}$. Then by Theorem 2.6,

$$\begin{split} &k = m + \frac{(n+1)}{2} + \frac{m(m+1)(b+1)}{2n} \\ &k \leq \frac{n(n-1)}{2} + \frac{(n+1)}{2} + \frac{n^2(n-1)^2}{8n} + \frac{n(n-1)}{4n} + \frac{n^2(n-1)^2b}{8n} + \frac{n(n-1)b}{4n} \\ &k \leq \frac{1}{8n} \left\{ 4nn(n-1) + 4n(n+1) + n^2(n-1)^2 + 2n(n-1) + n^2(n-1)^2b + 2bn(n-1) \right\} \\ &k \leq \frac{1}{8n} \left\{ 4n^3 - 4n^2 + 4n^2 + 4n + n^2(n^2 + 1 - 2n) + 2n^2 - 2n + n^2b(n^2 + 1 - 2n) + 2bn^2 - 2bn \right\} \\ &k \leq \frac{1}{8n} \left\{ n^4 + 2n^3 + 3n^2 + 2n + bn^4 - 2bn^3 + 3bn^2 - 2bn \right\} \\ \Box$$

Lemma 2.11. Let G be an a-vertex multiple magic graph on n vertices and m-edges. If n is odd then n divides m(m + 1). **Lemma 2.12.** Let G be b-edge multiple magic graphs on n-vertices and m-edges. If n is odd then 2n divides m(m+1)(b+1). **Example 2.13.** k_6 is 2-vertex multiple magic graph with magic constant k = 70.

-	2	4	6	8	10	12
2	-	20	17	1	9	21
4	20	-	γ	13	15	11
6	17	7	-	16	19	5
8	1	13	16	-	14	18
10	9	15	19	14	-	3
12	21	11	5	18	3	-

-	2	4	6	8	10	12	14
2	-	28	22	19	1	9	27
4	28	-	3	11	25	13	24
6	22	\mathcal{Z}	-	17	23	21	16
8	19	11	17	-	26	20	γ
10	1	25	23	26	-	18	5
12	9	13	21	20	18	-	15
14	27	24	16	7	5	15	-

Example 2.14. k_7 is 2-vertex multiple magic graph with magic constant k = 108.

Example 2.15. k_5 is not 2-vertex multiple magic graph.

For $k_5, n = 5 \Rightarrow m = 5c_2 = 10 \Rightarrow k = 42$. $f: V \to \{2, 4, 6, 8, 10\}$ and $f: E \to \{1, 3, 5, 7, 9, 11, 12, 13, 14, 15\}$. Here, in edge labels 12 and 14 only two even number. k_5 is not 2-vertex multiple magic graph.

Example 2.16. Complete bipartite graph $k_{4,4}$ is 2- vertex multiple magic graph with magic constant 66.

X/Y	4	6	12	14
2	22	24	15	3
8	1	13	23	21
10	20	18	7	11
16	19	5	9	17

Example 2.17. $k_{3,3}$ is not 2-vertex multiple magic graph.

For n = 6, m = 9, m + n = 15, k = 23. $f: V \to \{2, 4, 6, 8, 10, 12\}$ and $f: E \to \{1, 3, 5, 7, 9, 11, 12, 13, 14, 15\}$. Here, in edge labels 14 only one even numbers.

Example 2.18. k_5 is 3- vertex multiple magic graph with magic constant 39.

	3	6	9	12	15
3	-	14	8	4	10
6	14	-	13	5	1
9	8	13	-	γ	2
12	4	5	7	-	11
15	10	1	2	11	-

Example 2.19. $H_{4,7}$ is 2-vertex multiple magic graph with magic constant k = 58.

Figure 1. 2- vertex multiple magic graph. n = 7, m = 14, k = 58

Example 2.20. Let G be the regular graph with 6 vertices and degree 4. Show that G is 2- vertex multiple magic graph with magic constant k = 50.

Figure 2. 2- vertex multiple graph. n = 6, m = 12, k = 50

Example 2.21. $C_3 \times C_3$ is 2-vertex multiple magic graph with magic constant k = 70.

Figure 3. 2- vertex multiple magic graph. n = 6, m = 15, k = 70.

Example 2.22. $P_3 \times P_2$ is 2- vertex multiple magic graph with magic constant k = 36.

Figure 4. 2- vertex multiple magic graph. n = 5, m = 9, k = 36

Example 2.23. 2– Edge multiple vertex magic graph with magic constant k = 19

Figure 5. 2- edge multiple vertex magic graph, n = 7, m = 6, k = 19.

References

- C.Balbuena, E.Barker, Yuqing Lin, M.Miller, and K.Sugeng , Consecutive magic graphs, Discrete Mathematics, 306(16)(2006), 1817-1829.
- [2] J.A.MacDougall, M.Miller, Slamin and W.D.Wallis, Vertex magic total labelings of graphs, Util. Math., 61(2002), 3-21.
- [3] C.T.Nagaraj, C.Y.Ponnappan and G.Prabakaran, Even vertex magic total labeling, International Journal of Pure and Applied Mathematics, 115(9)(2017), 363-375.
- [4] C.T.Nagaraj, C.Y.Ponnappan and G.Prabakaran, Odd vertex magic total labeling of some graphs, International Journal of Pure and Applied Mathematics, 118(10)(2018), 97-109.
- [5] J.Sedlacek, Theory of Graphs and its Applications, Proc. Symposium, (1963), 163-167.