International Journal of Mathematics fud its Applications

Multiple Magic Graphs

C. T. Nagaraj ${ }^{1}$, C. Y. Ponnappan ${ }^{2}$ and G. Prabakaran ${ }^{3, *}$
1 Research Scholar, Department of Mathematics, Bharathiar University, Coimbatore, Tamilnadu, India.
2 Department of Mathematics, Government Arts College, Melur, Tamilnadu, India.
3 Department of Mathematics, Thiagarajar College, Madurai, Tamilnadu, India.

Abstract

Let G be a graph of order n and size m. A vertex magic total labeling is an assignment of the integers $1,2,3, \ldots, m+n$ to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant called the magic constant of G. Such a labeling is a-vertex multiple magic if the set of the labels of the vertices is $\{a, 2 a, \ldots, n a\}$ and is b-edge multiple magic if the set of labels of the edges is $\{b, 2 b, \ldots, m b\}$. This article, presents properties of a - vertex multiple magic graphs and b - edge multiple magic graphs.

MSC: 05C78.

Keywords: a-vertex multiple magic graphs, b-edge multiple magic graphs.
(c) JS Publication.

Accepted on: $13^{\text {th }}$ April 2018

1. Introduction

Graphs are generally finite, simple and undirected. A graph G has vertex set $V=V(G)$ and the edge set $E=E(G)$. We let $n=|V|$ and $m=|E|$. The set of neighbours of a vertex v is denoted by $N(v)$. A total labeling of G is a bijection $f: V \cup E \rightarrow\{1,2,3, \ldots, m+n\}$ and the associated weights of a vertex v_{i} in G is

$$
w_{f}\left(v_{i}\right)=f\left(v_{i}\right)+\sum f\left(v_{i} v_{j}\right)
$$

. If each vertex has the same weight, then the total labeling f of G is vertex magic. In this case, $w_{f}\left(v_{i}\right)=k$. The magic labeling of graphs was started by sedlacek [5], but the concept of vertex magic total labeling(VMTL) first appeared only in 2002 in [2]. A VMTL f of a graph $G=(V, E)$ is said to be a - vertex consecutive $f(V)=\{a+1, a+2, \ldots, a+n\}$, where $a \in\{0,1,2, \ldots, m\}$. A graph which admits a-vertex consecutive magic total labeling is called $a-$ vertex consecutive magic. Analogously, a VMTL f of a graph $G=(V, E)$ is called b-edge consecutive if the set of labels of the edges is $f(E)=\{b+1, b+2, \ldots, b+m\}$, where $b \in\{0,1,2, \ldots, n\}$. A graph which admits a $b-$ edge consecutive magic total labeling is said to be b - edge consecutive magic. The paper published in consecutive vertex magic graph is [1], which is published in 2006. Nagaraj [3] introduced the concept of an Even VMTL. A VMTL is even if $f(V(G))=\{2,4,6, \ldots, 2 n\}$. A graph G is called even vertex magic graph if it admits an even vertex magic labeling. Nagaraj [4] introduced the concept of an Odd VMTL. A VMTL is odd if $f(V(G))=\{1,3,5, \ldots, 2 n-1\}$. A graph G is called odd vertex magic graph if it admits an odd vertex magic labeling.

[^0]
2. Definition and Main Results

Definition 2.1. A vertex magic total labeling f of a graph $G=(V, E)$ is said to be a-vertex multiple, if the set of the labels of the vertices is $f(V)=\{a, 2 a, 3 a, \ldots, n a\}$, where $a \in\left\{1,2,3, \ldots,\left\lfloor\frac{m+n}{n}\right\rfloor\right\}$. A graph which admits an a-vertex multiple magic total labeling is called a-vertex multiple magic.

Definition 2.2. A vertex magic total labeling f of a graph $G=(V, E)$ is said to be b-edge multiple, if the set of the labels of the edges is $f(E)=\{b, 2 b, 3 b, \ldots, m b\}$, where $b \in\left\{1,2,3, \ldots,\left\lfloor\frac{m+n}{m}\right\rfloor\right\}$. A graph which admits a b-edge multiple magic total labeling is said to be b-edge multiple magic.

Theorem 2.3. Let G be an a-vertex multiple magic graph then the magic constant k is given by

$$
k=2 m+n+1+\frac{m(m+1)}{n}-\frac{a(n+1)}{2} .
$$

Proof. Assume that G is an a-vertex multiple magic graph. Let f be an a-vertex multiple magic labeling of a graph G with the magic constant k. Then $f(v)=\{a, 2 a, 3 a, \ldots, n a\}$ with $1 \leq a \leq\left\lfloor\frac{m+n}{n}\right\rfloor$

$$
\begin{aligned}
k & =f(u)+\sum_{v \in N(u)} f(u v) \forall u \in V \\
n k & =[a+2 a+3 a+\ldots+n a]+2\{1+2+3+\ldots+m+n\}-2\{a+2 a+3 a+\ldots+n a\} \\
& =2\{1+2+3+\ldots+m+n\}-\{a+2 a+3 a+\ldots+n a\} \\
& =\frac{2(m+n)(m+n+1)}{2}-\frac{a n(n+1)}{2} \\
n k & =(m+n)(m+n+1)-\frac{a n(n+1)}{2} \\
n k & =m^{2}+m n+m+m n+n^{2}+n-\frac{a n(n+1)}{2} \\
n k & =m^{2}+2 m n+m+n^{2}+n-\frac{a n(n+1)}{2} \\
k & =2 m+n+1+\frac{m(m+1)}{n}-\frac{a(n+1)}{2}
\end{aligned}
$$

Theorem 2.4. Let G be any $2-$ vertex multiple magic graph with size m and magic number k. Then the maximum degree is atmost $\Delta(G) \leq \sqrt{k-2}$.

Proof. Let us consider a vertex v with maximum degree $\Delta=\Delta(G)$. The magic number $k=w(v) \geq 2+1+3+5+\ldots+$ $2 \Delta-1 \Rightarrow \Delta \leq \sqrt{k-2}$.

Theorem 2.5. Let G be a $2-$ vertex multiple magic graph then G cannot have isolated vertex.
Proof. From the definition of vertex magic total graph, G cannot have more than one isolated vertex. If G has an isolated vertex, say v, then the weight of that vertex satisfies $k=w(v) \leq 2 n$. Then by Theorem 2.3,

$$
k=2 m+\frac{m(m+1)}{n}
$$

Let G be 2 - vertex multiple magic graph then, $m \geq n$. Therefore, $k \geq 3 n+1>2 n$, which is a contradiction to $k \leq 2 n$. Therefore G cannot have isolated vertex.

Theorem 2.6. Let G be a b-edge multiple magic graph then the magic constant k is given by

$$
k=m+\frac{(n+1)}{2}+\frac{m(m+1)(b+1)}{2 n}
$$

Proof. Assume that G is an b-edge multiple magic graph. Let f be an b-edge multiple magic labeling of a graph G with the magic constant k. Then $f(E)=\{b, 2 b, 3 b, \ldots, m b\}$ with $1 \leq b \leq\left\lfloor\frac{m+n}{m}\right\rfloor$

$$
\begin{aligned}
k & =f(u)+\sum_{v \in N(u)} f(u v) \forall u \in V \\
n k & =\{1+2+3+\ldots+m+n\}-\{b+2 b+3 b+\ldots+m b\}+2\{b+2 b+3 b+\ldots+m b\} \\
& =\{1+2+3+\ldots+m+n\}+\{b+2 b+3 b+\ldots+m b\} \\
& =\frac{(m+n)(m+n+1)}{2}+\frac{b m(m+1)}{2} \\
n k & =\frac{m^{2}+m n+m+m n+n^{2}+n+b m^{2}+b m}{2} \\
n k & =\frac{m^{2}}{2}+m n+\frac{m}{2}+\frac{n^{2}}{2}+\frac{n}{2}+\frac{b m^{2}}{2}+\frac{b m}{2} \\
k & =\frac{m^{2}}{2 n}+m+\frac{m}{2 n}+\frac{n}{2}+\frac{1}{2}+\frac{b m^{2}}{2 n}+\frac{b m}{2 n} \\
k & =\frac{m(m+1)}{2 n}+m+\frac{n+1}{2}+\frac{b m(m+1)}{2 n} \\
k & =m+\frac{n+1}{2}+\frac{m(m+1)(b+1)}{2 n}
\end{aligned}
$$

Theorem 2.7. If G is a disconnected a - vertex multiple magic graph with magic constant k, then

$$
k \leq \frac{\left(n^{4}-2 n^{3}+7 n^{2}-2 a n^{2}-2 a n-6 n+8\right)}{4 n}
$$

Proof. Let G be a disconnected graph then $m \leq \frac{(n-1)(n-2)}{2}$. Then, by Theorem 2.3 ,

$$
\begin{aligned}
& k=2 m+n+1+\frac{m(m+1)}{n}-\frac{a(n+1)}{2} \\
& k \leq 2 \frac{(n-1)(n-2)}{2}+n+1+\frac{(n-1)^{2}(n-2)^{2}}{4 n}-\frac{a(n+1)}{2}+\frac{(n-1)(n-2)}{2 n} \\
& k \leq(n-1)(n-2)+n+1+\frac{(n-1)^{2}(n-2)^{2}}{4 n}-\frac{a(n+1)}{2}+\frac{(n-1)(n-2)}{2 n} \\
& k \leq \frac{1}{4 n}\left\{4 n(n-1)(n-2)+4 n^{2}+4 n+(n-1)^{2}(n-2)^{2}-2 n a(n+1)+2(n-1)(n-2)\right\} \\
& k \leq \frac{1}{4 n}\left\{4 n\left(n^{2}-3 n+2\right)+4 n^{2}+4 n+\left(n^{2}+1-2 n\right)\left(n^{2}+4-4 n\right)-2 a\left(n^{2}+n\right)+2 n^{2}-6 n+4\right\} \\
& k \leq \frac{\left(n^{4}-2 n^{3}+7 n^{2}-2 a n^{2}-2 a n-6 n+8\right)}{4 n}
\end{aligned}
$$

Theorem 2.8. If G is a connected a - vertex multiple magic graph, then $k \leq \frac{\left(n^{3}+2 n^{2}+3 n+2-2 a n-2 a\right)}{4}$.
Proof. Let G be a connected graph then $m \leq \frac{n(n-1)}{2}$. Then by Theorem 2.3,

$$
\begin{aligned}
& k=2 m+n+1+\frac{m(m+1)}{n}-\frac{a(n+1)}{2} \\
& k \leq \frac{2 n(n-1)}{2}+n+1+\frac{n^{2}(n-1)^{2}}{4 n}+\frac{n(n-1)}{2 n}-\frac{a(n+1)}{2} \\
& k \leq n^{2}-n+n+1+\frac{n^{2}\left(n^{2}+1-2 n\right)}{4 n}+\frac{n(n-1)}{2 n}-\frac{a(n+1)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& k \leq \frac{1}{4}\left\{4 n^{2}+4+n^{3}+n-2 n^{2}+2 n-2-2 a n-2 a\right\} \\
& k \leq \frac{1}{4}\left\{n^{3}+2 n^{2}+3 n+2-2 a n-2 a\right\}
\end{aligned}
$$

Which completes the proof.
Theorem 2.9. If G is a disconnected b - edge multiple magic graph with magic constant k, then

$$
k \leq \frac{1}{8 n}\left\{n^{4}-2 n^{3}+7 n^{2}-6 n+8+b n^{4}-6 b n^{3}+15 b n^{2}-18 b n+8 b\right\} .
$$

Proof. Let G be a disconnected graph then $m \frac{(n-1)(n-2)}{2}$. By Theorem 2.4,

$$
\begin{aligned}
k= & m+\frac{n+1}{2}+\frac{m(m+1)(b+1)}{2 n} \\
k \leq & \frac{(n-1)(n-2)}{2}+\frac{n+1}{2}+\frac{(n-1)^{2}(n-2)^{2}}{8 n}+\frac{(n-1)(n-2)}{4 n}+\frac{b}{2 n}\left\{\frac{(n-1)^{2}(n-2)^{2}}{4}+\frac{(n-1)(n-2)}{2}\right\} \\
k \leq & \frac{n^{2}-3 n+2}{2}+\frac{n+1}{2}+\frac{\left(n^{2}+1-2 n\right)\left(n^{2}+4-4 n\right)}{8 n}+\frac{\left(n^{2}-3 n+2\right)}{4 n} \\
& \quad+\frac{b}{2 n}\left\{\frac{\left(n^{2}+1-2 n\right)\left(n^{2}+4-4 n\right)}{4}+\frac{\left(n^{2}-3 n+2\right)}{2}\right\} \\
k \leq & \frac{1}{8 n}\left\{4 n\left(n^{2}-3 n+2\right)+4 n(n+1)+n^{4}+4 n^{2}-4 n^{3}+n^{2}+4-4 n-2 n^{3}-8 n+8 n^{2}+2 n^{2}\right. \\
& \left.\quad-6 n+4+b\left(n^{4}+4 n^{2}-4 n^{3}+n^{2}+4-4 n-2 n^{3}-8 n+8 n^{2}\right)+b\left(2 n^{2}-6 n+4\right)\right\} \\
k \leq & \frac{1}{8 n}\left\{n^{4}-2 n^{3}+7 n^{2}-6 n+8+b n^{4}-6 b n^{3}+15 b n^{2}-18 b n+8 b\right\}
\end{aligned}
$$

Theorem 2.10. If G is a connected b - edge multiple magic graph with magic constant k, then $k \leq$ $\frac{1}{8 n}\left\{n^{4}+2 n^{3}+3 n^{2}-6 n+6 n^{4}-2 b n^{3}+3 b n^{2}-2 b n\right\}$.

Proof. Let G be a connected graph then $m \leq \frac{n(n-1)}{2}$. Then by Theorem 2.6,

$$
\begin{aligned}
& k=m+\frac{(n+1)}{2}+\frac{m(m+1)(b+1)}{2 n} \\
& k \leq \frac{n(n-1)}{2}+\frac{(n+1)}{2}+\frac{n^{2}(n-1)^{2}}{8 n}+\frac{n(n-1)}{4 n}+\frac{n^{2}(n-1)^{2} b}{8 n}+\frac{n(n-1) b}{4 n} \\
& k \leq \frac{1}{8 n}\left\{4 n n(n-1)+4 n(n+1)+n^{2}(n-1)^{2}+2 n(n-1)+n^{2}(n-1)^{2} b+2 b n(n-1)\right\} \\
& k \leq \frac{1}{8 n}\left\{4 n^{3}-4 n^{2}+4 n^{2}+4 n+n^{2}\left(n^{2}+1-2 n\right)+2 n^{2}-2 n+n^{2} b\left(n^{2}+1-2 n\right)+2 b n^{2}-2 b n\right\} \\
& k \leq \frac{1}{8 n}\left\{n^{4}+2 n^{3}+3 n^{2}+2 n+b n^{4}-2 b n^{3}+3 b n^{2}-2 b n\right\}
\end{aligned}
$$

Lemma 2.11. Let G be an a-vertex multiple magic graph on n vertices and m-edges.If n is odd then n divides $m(m+1)$.
Lemma 2.12. Let G be b-edge multiple magic graphs on n-vertices and m-edges.If n is odd then $2 n$ divides $m(m+1)(b+1)$.
Example 2.13. k_{6} is 2-vertex multiple magic graph with magic constant $k=70$.

-	2	4	6	8	10	12
2	-	20	17	1	9	21
4	20	-	7	13	15	11
6	17	7	-	16	19	5
8	1	13	16	-	14	18
10	9	15	19	14	-	3
12	21	11	5	18	3	-

Example 2.14. k_{7} is 2-vertex multiple magic graph with magic constant $k=108$.

-	2	4	6	8	10	12	14
2	-	28	22	19	1	9	27
4	28	-	3	11	25	13	24
6	22	3	-	17	23	21	16
8	19	11	17	-	26	20	7
10	1	25	23	26	-	18	5
12	9	13	21	20	18	-	15
14	27	24	16	7	5	15	-

Example 2.15. k_{5} is not 2-vertex multiple magic graph.
For $k_{5}, n=5 \Rightarrow m=5 c_{2}=10 \Rightarrow k=42$. $f: V \rightarrow\{2,4,6,8,10\}$ and $f: E \rightarrow\{1,3,5,7,9,11,12,13,14,15\}$. Here, in edge labels 12 and 14 only two even number. k_{5} is not 2 -vertex multiple magic graph.

Example 2.16. Complete bipartite graph $k_{4,4}$ is 2 - vertex multiple magic graph with magic constant 66.

X / Y	4	6	12	14
2	22	24	15	3
8	1	13	23	21
10	20	18	7	11
16	19	5	9	17

Example 2.17. $k_{3,3}$ is not 2 -vertex multiple magic graph.
For $n=6, m=9, m+n=15, k=23$. $f: V \rightarrow\{2,4,6,8,10,12\}$ and $f: E \rightarrow\{1,3,5,7,9,11,12,13,14,15\}$. Here, in edge labels 14 only one even numbers.

Example 2.18. k_{5} is 3 - vertex multiple magic graph with magic constant 39 .

	3	6	9	12	15
3	-	14	8	4	10
6	14	-	13	5	1
9	8	13	-	7	2
12	4	5	7	-	11
15	10	1	2	11	-

Example 2.19. $H_{4,7}$ is 2 -vertex multiple magic graph with magic constant $k=58$.

Figure 1. $2-$ vertex multiple magic graph. $n=7, m=14, k=58$

Example 2.20. Let G be the regular graph with 6 vertices and degree 4. Show that G is $2-$ vertex multiple magic graph with magic constant $k=50$.

Figure 2. $2-$ vertex multiple graph. $n=6, m=12, k=50$

Example 2.21. $C_{3} \times C_{3}$ is $2-$ vertex multiple magic graph with magic constant $k=70$.

Figure 3. $2-$ vertex multiple magic graph. $n=6, m=15, k=70$.

Example 2.22. $P_{3} \times P_{2}$ is $2-$ vertex multiple magic graph with magic constant $k=36$.

Figure 4. 2 - vertex multiple magic graph. $n=5, m=9, k=36$

Example 2.23. $2-$ Edge multiple vertex magic graph with magic constant $k=19$

Figure 5. 2 - edge multiple vertex magic graph, $n=7, m=6, k=19$.

References

[1] C.Balbuena, E.Barker, Yuqing Lin, M.Miller, and K.Sugeng ,Consecutive magic graphs, Discrete Mathematics, 306(16)(2006), 1817-1829.
[2] J.A.MacDougall, M.Miller, Slamin and W.D.Wallis, Vertex magic total labelings of graphs, Util. Math., 61(2002), 3-21.
[3] C.T.Nagaraj, C.Y.Ponnappan and G.Prabakaran, Even vertex magic total labeling, International Journal of Pure and Applied Mathematics, 115(9)(2017), 363-375.
[4] C.T.Nagaraj, C.Y.Ponnappan and G.Prabakaran, Odd vertex magic total labeling of some graphs, International Journal of Pure and Applied Mathematics, 118(10)(2018), 97-109.
[5] J.Sedlacek, Theory of Graphs and its Applications, Proc. Symposium, (1963), 163-167.

[^0]: * E-mail: ct_nagaraj@yahoo.co.in

