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Abstract: An L(3, 2, 1)-labeling is a simplified model for the channel assignment problem. Given a graph G, an L(3, 2, 1)-labeling of

G is a function f from the vertex set V (G) to the set of all non-negative integers such that |f(u)−f(v)| ≥ 1 if d(u, v) = 3,
|f(u)− f(v)| ≥ 2 if d(u, v) = 2 and |f(u)− f(v)| ≥ 3 if d(u, v) = 1. The span of a labeling f , is the difference between the

largest label and the smallest label in an L(3, 2, 1)-labeling. The L(3, 2, 1)-labeling number of G, denoted by λ3,2,1(G), is

the minimum span of all L(3, 2, 1)-labelings of G. A span labeling is an L(3, 2, 1)-labeling whose largest label is λ3,2,1(G).
Let f be an L(3, 2, 1)-labeling that uses labels from 0 to λ3,2,1(G). Then h ∈ (0, λ3,2,1(G)) is a hole if there is no vertex

v ∈ V (G) such that f(v) = h. In this paper, we investigate maximum number of holes in L(3, 2, 1) span labeling of certain

classes of graphs.
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1. Introduction

The frequency assignment problem is a problem where the task is to assign frequencies (non-negative integers) to a given

group of radio transmitters so that interfering transmitters are assigned frequencies with atleast a minimum allowed sepa-

ration. The level of interference between any two radio stations relates with the geographic locations of the stations. Closer

stations have a stronger interference and thus there must be a greater difference between their assigned channels. The

frequency assignment problem was formulated as a vertex labeling problem of graphs by Hale [1]. Two vertices x and y are

said to be ‘very close’ and ‘close’ if the distance between x and y is 1 and 2 respectively. Griggs and Yeh [2] defined the

L(2, 1) - labeling of a graph G = (V,E) as a function f from the vertex set V (G) to the set of non-negative integers such

that |f(x) − f(y)| ≥ 2 if d(x, y) = 1 and |f(x) − f(y)| ≥ 1 if d(x, y) = 2, where d(x, y) represent the distance between the

vertices x and y. By considering those vertices that are at distance three as well, Clipperton [3] introduced the concept of

L(3, 2, 1)− labeling as an extension of L(2, 1)− labeling.

Definition 1.1. The L(3, 2, 1)-labeling of a graph G is a function f from the vertex set V (G) to the set of non-negative

integers such that |f(x) − f(y)| ≥ 3 if d(x, y) = 1, |f(x) − f(y)| ≥ 2 if d(x, y) = 2 and |f(x) − f(y)| ≥ 1 if d(x, y) = 3.

The span of the labeling f , is the difference between the largest label and the smallest label. The L(3, 2, 1)-labeling number,

λ3,2,1(G), or simply λ is the smallest non-negative integer k such that G has a L(3, 2, 1)-labeling of span k. An L(3, 2, 1)-

labeling f is irreducible if there does not exist an L(3, 2, 1)-labeling g such that g(u) ≤ f(u) for all u ∈ V (G) and g(v) < f(v)

for some v ∈ V (G).

A span labeling of P8 is given in the following figure.
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Figure 1. L(3, 2, 1)-labeling of P8 with span 7 where all the 8 labels are used

It is interesting to note that the span labeling of a graph need not be unique always. The span labeling of P8 as shown in

the above figure uses all the labels. However it is not necessary to use all the labels for a span labeling as evident from the

following figure.

Figure 2. L(3, 2, 1)-labeling of P8 with span 7 with only 7 labels being used

A natural question that arises regarding the optimal labeling of a graph G is that, “What would be the minimum number of

labels required for a span labeling?” In other words, we are interested in knowing the maximum number of lables that have

not been used. In fact this question was addressed with respect to L(2, 1)-labeling by Laskar [5] by introducing the term

holes which meant the maximum number of labels that can be spared in an L(2, 1) span labeling. In this paper, we initiate

a study on the maximum number of holes in the L(3, 2, 1) span labeling of certain classes of graphs. The problem of finding

minimum number of different labels needed to label a graph G is equivalent to the question of finding the maximum number

of holes in a span labeling of the graph G. In terms of frequencies, maximum number of holes can be seen as the minimum

number of different frequencies required for an interference-free communication in a given network. Throughout this paper,

unless mentioned otherwise, we will consider simple, undirected graphs as treated in most of the standard text-books on

finite graph theory such as [6].

2. Maximum Number of Holes in Some Families of Graphs

In this section we determine the maximum number of holes in some families of graphs such as complete graphs, paths,

complete bipartite graphs and bistars with respect to L(3, 2, 1)-labeling. First we state the formal definition of a hole.

Definition 2.1. Let f be an L(3, 2, 1)-labeling of a graph G that uses labels from 0 to k. Then, the integer h is said to

be a hole, if h ∈ (0, k) and there is no vertex v ∈ V (G) such that f(v) = h. The maximum number of holes in a span

L(3, 2, 1)-labeling of a graph G is denoted by Hλ(G).

Figure 3. L(3, 2, 1) span labeling of P8 with holes = {1, 3, 4, 6}.

We observe that the knowledge of the L(3, 2, 1) labeling number λ3,2,1(G) is necessary but not sufficient to determine the

maximum number of holes Hλ(G), as L(3, 2, 1) span labeling of G need not be unique. This is clear from Figures 1, 2 and

3, as it shows three different L(3, 2, 1) span labelings of P8. We would be using the following results for further discussions.

Theorem 2.2 ([3]). For any complete graph Kn on n vertices, λ3,2,1(Kn) = 3(n− 1).

Theorem 2.3 ([3]). For any complete bipartite graph Kr,s, λ3,2,1(Kr,s) = 2(r + s)− 1.
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Theorem 2.4 ([3]). For a path Pn on n vertices,

λ3,2,1(Pn) =



3, if n = 2

5, if n = 3, 4

6, if n = 5, 6, 7

7, if n ≥ 8

Lemma 2.5 ([4]). For a star Sn = {v} + K̄n, λ3,2,1(Sn) = 2n + 1. Moreover, if f is a (2n+1) - L(3, 2, 1)-labeling of Sn,

then f(v) = 0 or 2n+1.

Lemma 2.6 ([4]). If H is a subgraph of G, then λ3,2,1(H) ≤ λ3,2,1(G).

Using the above results we first determine the value of Hλ for any complete graph.

Theorem 2.7. For a complete graph Kn on n vertices, Hλ(Kn) = 2(n-1).

Proof. Consider a complete graph Kn on n vertices. By Theorem 2.2, λ3,2,1(Kn) = 3(n − 1). Hence the set of integers

used for the L(3, 2, 1)-labeling will be the set {0, 1, 2, . . . , 3(n− 1)} consisting of 3(n− 1) + 1 = 3n− 2 integers. Since every

pair of vertices are adjacent to each other in Kn, n different integers are required for the L(3, 2, 1)-labeling. Therefore the

number of labels not used is equal to 3n− 2− n = 2(n− 1).

Now we determine the maximum number of holes for a path Pn on n vertices.

Theorem 2.8. For a path Pn on n vertices,

Hλ(Pn) =



2, if n = 2, 4, 5

3, if n = 3

1, if n = 6

0, if n = 7

4, if n ≥ 8

Proof. Let {v1, v2, ..., vn} be the vertices and (vi, vi+1) ∀i = 1, 2, ..., n−1 be the edges of Pn. Note that we need n different

labels to label the vertices of Pn, n ≤ 4. We will consider various cases based on the number of vertices.

Case 1: n = 2.

Consider P2, then by Theorem 2.4 λ3,2,1(P2) = 3. Therefore the only possible labeling of P2 is using the labels 0 and 3.

Hence Hλ(Pn) = 2.

Case 2: n = 3 or 4

Note that by Theorem 2.4 the L(3, 2, 1)-labeling number of P3 and P4 is 5. Therefore the maximum number of labels

required for L(3, 2, 1) span labelings of P3 and P4 would be 6. Further we need atleast 3 labels to label P3, therefore

maximum number of labels not used is 6 - 3 = 3; similarly we need atleast 4 labels to label P4, therefore maximum number

of labels not used is 6 - 4 = 2. Hence Hλ(P3) = 3 and Hλ(P4) = 2.

Case 3: n = 5, 6, 7

First we note that λ3,2,1(Pn) = 6 in this case. Consider the set {2, 5, 0, 3, 6, 1, 4} in the same order and obtain the labeling

for P5, P6 and P7. We can label P5 using the first 5 labels i.e {2, 5, 0, 3, 6}. Hence the number of labels not used in P5 is
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2. Therefore Hλ(P5) ≥ 2. If Hλ(P5) > 2, then atleast one label should be repeated but clearly no labels can be repeated

without increasing the L(3, 2, 1)-labeling number (λ3,2,1). Hence Hλ(P5) = 2. Similarly we can label P6 and P7 using the

first 6 and 7 labels respectively i.e. {2, 5, 0, 3, 6, 1} and {2, 5, 0, 3, 6, 1, 4}. Hence the maximum number of labels not used in

P6 and P7 are 1 and 0 respectively. i.e Hλ(P6) = 1. and Hλ(P7) = 0.

Case 4 : Whenn ≥ 8

Note that atleast four different labels to label Pn, n ≥ 4 satisfying the conditions of L(3, 2, 1)-labeling because same label

cannot be used to label four consecutive vertices as the first and the fourth vertex will be at distance 3 and hence label

difference should be atleast 1. We also know from Theorem 2.4 that λ3,2,1(Pn) = 7, n ≥ 8 therefore atmost 8 labels are used.

Since we need atleast four labels to label Pn therefore atmost four labels are not being used. Therefore

Hλ ≤ 4 (1)

Now, consider the labeling f : V(G) → {0, 1, ..., 7} defined by:

f(vk) =



0, for k ≡ 1(mod4)

5, for k ≡ 2(mod4)

2, for k ≡ 3(mod4)

7, for k ≡ 0(mod4)

We know that λ(Pn)=7, n ≥ 8; therefore the above defined labeling f is a span L(3, 2, 1)-labeling and it does not use four

labels namely 1, 3, 4 and 6. Since Hλ is the maximum number of labels not being used; therefore

Hλ ≥ 4 (2)

Therefore, by (1) and (2), Hλ(Pn) = 4.

Remark 2.9. From the above theorem it follows that Hλ(P8) = 4 and the labeling of P8 in Figure 3 is the optimal labeling

with maximum number of labels not being used.

Remark 2.10. The maximum number of holes for any labeling of P7 is zero which shows that we need to use all the labels

for a span L(3, 2, 1)-labeling of P7.

Theorem 2.11. For a complete bipartite graph Kr,s, Hλ(Kr,s) = r + s.

Proof. Let G = Kr,s be a complete bipartite graph, and let U = {u1, u2, ..., ur} and V = {v1, v2, ..., vs} be the two sets of

vertices that partition V(G). Note that given any two vertices of U they are at distance 2; similarly any two vertices of V

are also at distance 2 and every vertex of U is adjacent every vertex of V . i.e

d(ui, uj) = 2 ∀ ui, uj ∈ U with i 6= j; (3)

d(vi, vj) = 2 ∀ vi, vj ∈ V with i 6= j; (4)

d(ui, vi) = 1 ∀ ui ∈ U and vi ∈ V. (5)

By Theorem 2.3, λ3,2,1(Kr,s) = 2(r + s) − 1 therefore there exist a L(3, 2, 1) span labeling say f . Let f(u1) = 0, because

of equation (3) we need |f(ui) − f(uj)| ≥ 2 ∀ ui, uj ∈ U with i 6= j. Let f(U) denote the set of labels assigned to
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the vertices of U . Thus, f(U) = {0, 2, 4, ..., 2(r − 1)}. Without loss of generality let f(u1) ≤ f(u2) ≤ ... ≤ f(ur), then

f(u1) = 0, f(u2) = 2, ..., f(un) = 2(r − 1). Clearly there is exactly one label that have not been used between f(ui) and

f(ui+1) ∀ i=1,2,...,r−1 namely {1, 3, 5, ..., 2r−1}. Hence there are exactly r−1 labels that have not been used in f(U).Since

equation (??) holds, |f(ui) − f(vi)| ≥ 3 ∀ ui ∈ U and vi ∈ V ; hence f(vi) ≥ f(ur) + 3 = 2(r − 1) + 3 = 2r + 1 ∀i =

1, 2, ..., s. The labeling of vertices in V follows an argument similar to the labeling of vertices in U . Let f(v1) = 2r + 1

and f(vi) = 2r + 1 + 2(i − 1) ∀i = 1, 2, ..., s. Let f(V ) denote the set of labels assigned to the vertices of V . Then

f(V ) = {2r + 1, 2r + 3, ..., 2r + 1 + 2(s− 1)}. Clearly there is exactly one label that have not been used between f(vi) and

f(vi+1) ∀i = 1, 2, ..., s− 1 namely {2r+ 2, 2r+ 4, ..., 2r+ 2(s− 1)}. Hence there are exactly s− 1 labels that have not been

used in f(V ). Maximum number of labels that have not been used to label Kr,s

Figure 4. Assigned labels to the partitioned sets U and V of the vertex set of Kr,s

Hλ(Kr,s) = (r − 1) + (s− 1) + 2 = r + s

Theorem 2.12. For a bistar Br,s,

Hλ(Br,s) =


2 if r = s

2 + |r − s| if r 6= s

Proof. The bistar Br,s is a graph obtained by joining the center (apex) vertices of K1,r and K1,s by an edge. Consider

a copy of K1,r and a copy of K1,s. Let v1, v2, ..., vr and u1, u2, ..., us be the corresponding vertices of K1,r and K1,s

with apex vertex v and u respectively. Let ei = vvi, e
′
i = uui, and e = uv be the edges of the bistar Br,s. Note that

|V (Br,s)| = r + s+ 2 = n and |E(Br,s)| = r + s+ 1.

Figure 5. A Bistar Br,s
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Note that the pair of vertices at distance 1 are (u, ui), (v, vi) and (u, v). Whereas the vertex pairs (vi, vj), (ui, uj), (vi, u)

and (u, vi), ∀ i, j and i 6= j are distance 2 apart. The pendent vertices (vi, uj) ∀ i, j are at a distance 3. Let f be a

L(3, 2, 1)-labeling defined on V (Br,s) to a set of non-negative integer. Then,

|f(v)− f(vi)| ≥ 3, |f(u)− f(ui)| ≥ 3 and |f(v)− f(u)| ≥ 3 (6)

|f(vi)− f(vj)| ≥ 2, |f(vi)− f(u)| ≥ 2, |f(v)− f(ui)| ≥ 2 and |f(ui)− f(uj)| ≥ 2 (7)

|f(vi)− f(uj)| ≥ 1 (8)

Let f(u1) ≤ f(u2) ≤ ... ≤ f(us) and f(v1) ≤ f(v2) ≤ ... ≤ f(vr). Consider the star K1,r with central vertex v and s ≤ r. By

Lemma (2.5) vertex v should be given the label either 0 or 2r+1. Without loss of generality let f(v) = 0, then by equation

(6) f(v1) = f(v) + 3 = 0 + 3 = 3; by equation (7) f(v2) = f(v1) + 2 = 5;

f(v3) = f(v2) + 2 = f(v1) + 2(2);

...

f(vr) = f(v1) + (r − 1)(2) = 3 + (r − 1)(2)

and f(u) = f(v1) + r(2) = 3 + r(2)

Let f(ui) = f(vj)− 1 ∀ j = 1, 2, ..., r and i = 1, 2, ..., s. As per the labeling used above the maximum label used is 3 + 2r.

Therefore λ3,2,1(Br,s) ≤ 3 + 2r. Note that if r < s then according to the above defined labeling there will be atleast one

vertex say us which has to be assigned a label greater than 3+2r. Hence we follow the above defined labeling. Clearly the

diameter of the graph is 3, hence all the vertices of Br,s should be given different labels, hence no label can be repeated or

reduced. That is λ3,2,1(Br,s) ≮ 3 + 2r. Therefore λ3,2,1(Br,s) = 3 + 2r.

Case 1: When r = s.

Here Br,s = Br,r. As per the labeling f defined as above all the labels from the set {0, 1, ..., 3 + 2r} except labels 1 and 2+2r

have been used to label Br,r. Hence there are exactly 2 labels that have not be used to label Br,r. Therefore maximum

number of labels that are not being used will be atleast 2. i.e Hλ(Br,r) ≥ 2. Suppose Hλ(Br,r) > 2 then atleast one label

from the labeling f should be repeated i.e atleast two vertices shoud have the same label which is a contradiction to the

fact that all the vertices of Br,r sould be given different labels. Hence Hλ(Br,r) ≯ 2. Therefore Hλ(Br,r) = 2.

Case 2: When r 6= s.

Without loss of generality let r > s. As per the labeling f defined as above, f(ui) = f(vj) − 1 ∀ j = 1, 2, ..., r and

i = 1, 2, ..., s. Since r > s the labels f(vj)− 1 ∀ j = s+ 1, s+ 2, ..., r will not be used. Therefor all the labels from the set

{0, 1, ..., 3 + 2r} except labels 1, f(vj) − 1 ∀ j = s + 1, s + 2, ..., r and 2 + 2r have been used to label Br,s. Hence there

are exactly 2 + |r − s| labels that have not be used to label Br,s. Therefore maximum number of labels that are not being

used will be atleast 2 + |r − s|. i.e Hλ(Br,s) ≥ 2 + |r − s|. Suppose Hλ(Br,s) > 2 + |r − s| then atleast one label from the

labeling f should be repeated i.e atleast two vertices shoud have the same label which is a contradiction to the fact that all

the vertices of Br,s sould be given different labels. Hence Hλ(Br,s) ≯ 2 + |r − s|. Therefore Hλ(Br,s) = 2 + |r − s|.

3. Problems For Further Exploration

In this paper we have initiated a study of holes in L(3, 2, 1)-labeling for simple graphs. We have given the exact value for

the maximum number of labels that have not been used for complete graphs, paths, complete bipartite graphs and bistar.
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The study could be extended to different labelings and more complex graphs. For certain classes of graphs it is difficult to

find the exact value of holes like in interval graphs as it is difficult to even find the L(3, 2, 1)-labeling number as mentioned

by Madhumangal in [7]. It is interesting to note that there are many graphs that require all the underlying labels, in other

words, graphs that have no-hole labeling. As mentioned earlier the question of finding the the maximum number of holes in

a span labeling of the graph G deals with the problem of determining the minimum number of different frequencies required

for an interference-free communication in a given network subject to certain conditions. The present study is only a first

step in this direction. There are several problems that are open as we consider the concept of holes in L(3, 2, 1) labeling;

some of which are presented below,

Problem 3.1. To determine the maximum number of holes, Hλ in more classes of graphs like trees and interval graphs.

Problem 3.2. Given two graphs G and H, determine the maximum number of holes, Hλ for the various type of product of

graphs G and H.

Problem 3.3. To find bounds of maximum number of holes, Hλ of any graph G.

Problem 3.4. To characterize the graphs which needs to utilize every one of the labels in a L(3, 2, 1) span labeling.
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