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Abstract: A binary vertex labeling f : V (G) → {0, 1} of a graph G is called a cordial labeling if |vf (0) − vf (1)| ≤ 1 and |ef (0) −
ef (1)| ≤ 1. A graph G is cordial if it admits cordial labeling.. The dual graph obtained from an Aztec diamond of order
n, where each square is a vertex and if two squares are adjacent in Aztec diamond then their corresponding vertices are

linked by and edge in the dual graph; is known as Aztec diamond graph of order n. In this paper n-chain Aztec diamond

graphs are proved to be cordial.
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1. Introduction

Applications of graph labeling in fields such as network analysis, communication network, transport efficiency etc., generate

not only a vast array of opportunities in the field of graph theory but also create a great amount of interest in the minds of

young researchers who intend to do their work in this field. Graph labeling is a mapping that allocates labels to vertices and

edges in accordance with a specified rule. Finding this unique function is the main task of graph labeling. Various kinds of

graph labeling that are found so far can be easily accessed in dynamic survey by Gallian [4] which is reviewed annually. The

enormous amount of researches done in graph labeling indicates not only the interest but also the creative ideas that this

field of knowledge emanates in the minds of readers and scholars. The broad fields of research in graph labeling are two in

number. First among the two is finding new labeling techniques to apply on the existing set of graphs and the second one

is generating new graphs and using the available graph labeling techniques on these new graphs. The first field is chosen

for this research project. The graph chosen is Aztec diamond graphs. Aztec diamond graphs [5] are known for tilings and

its related properties. But in this paper the Aztec diamond graphs are seen through a different lens. It is subjected to the

test of cordial labeling. Moreover the second field of research in graph labeling is also applied, because new disjoint union

of n Aztec diamond graphs are generated and the same labeling is verified for these new set of graphs, apart from that the

n- chain of Aztec diamond graphs generated by [1] are also taken for testing cordial labeling. Throughout this paper edges

and links are identically used, while vertices and points have equal meaning.

Definition 1.1 ([3, 8]). A binary vertex labeling f : V (G)→ {0, 1} of a graph G is called a cordial labeling if |vf (0)−vf (1)| ≤

1 and |ef (0)− ef (1)| ≤ 1 . A graph G is cordial if it admits cordial labeling. The idea of cordial labeling was introduced by

Cahit as a weaker version of graceful and harmonious labeling.
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Definition 1.2 ([7]). For a graph G = (V (G), E(G)), a vertex labeling function f : V (G)→ {0, 1} induces an edge labeling

function f∗ : E(G) → {0, 1} defined as f∗(e = uv) = f(u)f(v). Then f is called a product cordial labeling of graph G if

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

Definition 1.3. Let n be a positive integer, The Aztec diamond of order n is the union of all the unit squares with integral

vertices (x, y) satisfying |x| + |y| ≤ n + 1. The Aztec diamond of order 1 consists of 4 unit squares which have the origin

(0, 0) as one of their vertices. The Aztec diamond of order n is the dual graph to the Aztec diamond of order n in which

the vertices are the squares and an edge joins two vertices if and only if the corresponding squares are adjacent in the Aztec

diamond [5]. The corner vertex of an Aztec diamond graph is defined as two degree vertex whose adjacent vertices are either

degree 2 or degree 4.

Figure 1: 1a: Aztec diamond of order 4 Figure 2: 1b: Aztec diamond graph of order 4

Definition 1.4. Let G1(A, k) and G2(A, k) be any two Aztec diamond graphs of same order. The graph G(2A, k) is said to

be Twin Aztec diamond graph if the graph is obtained by linking an edge with any one of the corner vertices of G1(A, k) to

any one of the corner vertices of G2(A, k). It is shown in Figure 1. It contains 4(k2 + k) vertices and (8k2 + 1) edges [1].

Similarly triple and n-chain Aztec diamond graphs [1] can be defined as shown in Figures 2 and 3.

Figure 3: Twin Aztec Diamond Graph
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Figure 4: Triple Aztec Diamond Graph

Figure 5: n-Chain Aztec Diamond Graph

Definition 1.5 ([6]). Let G be a graph and G1, G2, ..., Gn, n ≥ 2 be n copies of graph G. The graph obtained by adding an

edge from Gi to G(i + 1)(fori = 1, 2, ..., n− 1) is called path union of G.

Definition 1.6. Let G1 and G2 be subgraphs of G then G1 and G2 are disjoint if they have no common vertex, and edge

disjoint if they have no edge in common. And it is denoted by G1 + G2 [2]. Let G1(A, k), G2(A, k), ..., Gn(A, k) be n Aztec

diamond graphs of same order k. The disjoint union of n Aztec diamond graphs is denoted as G1(A, k) + G2(A, k) + ... +

Gn(A, k). It contains (2nk2 + 2nk) vertices and (4nk2) edges. It is denoted by Gd(nA, k).

Figure 6: Disjoint Union of n Aztec diamond graphs Gd(nA, k)

In this paper cordial labeling are investigated for n-Chain Aztec diamond graphs and disjoint union of n Aztec diamond

graphs. Throughout the paper k indicates the order of the Aztec diamond graphs, while n denotes the number of Aztec

diamond graphs of order k. The notations p and q are used to represent the number of vertices and number of edges in a

graph G respectively.
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2. Main Results

In this section single, double, triple Aztec diamond graphs are proved to be cordial and the result is extended for n chain

Aztec diamond graphs.

Theorem 2.1. Aztec diamond graph G(A, k) is cordial.

Proof. Let G(A, k) be a Aztec diamond graph of order k . The number of points is 2(k2 + k) and the number of links is

(4k2). The vertex labeling pattern is as given below. The Aztec diamond graph G(A, k) is split into (2k) horizontal paths

P1, P2, P3, ., P2k. where Pi represents the shortest path between Vij and Vij ,1 ≤ i ≤ 2k, 1 ≤ j ≤ 2k. For each Pi, 1 ≤ i ≤ 2k

,the label 0 is assigned to all the points of Pi if i is odd , and the label 1 is assigned to all the points of Pi , if i is even. Let

f : V → {0, 1} be a mapping from the set of points of G to {0, 1} and for each edge (uv) ∈ E assign the label |f(u)− f(v)|.

The resulting number of points labeled as 0 and the number of points labeled as 1 differ at most by 1. Similarly, the induced

number of links labeled as 1 and the number of links labeled as 0 also differ at most by 1. Hence the graph G(A, k) is cordial.

Figure 7: Cordial Labeling Pattern of G (A,k)

Example 2.2. Aztec diamond graph G(A, 4) is proved cordial in figure 6. The inner box indicates the number of points and

links labeled as 1 or 0.

Figure 8: Cordial G(k,4)
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Theorem 2.3. Twin Aztec diamond graph G(2A, k) is cordial.

Proof. Let G(2A, k) be a twin Aztec diamond graph of order k, It contains (4k2 + 4k) points (8k2 + 1) links. Assume

G1(A, k) and G2(A, k) as two Aztec diamond graphs in G(2A, k). The G(2A.k) is split into 4k horizontal paths P1, P2, ..., P4K ,

where Pi represents the shortest horizontal path between Vij and Vij , 1 ≤ i ≤ 4k, 1 ≤ j ≤ 4k. Further the graph G1(A, k)

contains 2k horizontal paths P1, P2, ..., P2k and the graph G2(A, k) contains 2k horizontal paths P2k+1, P2k+2, ...P4k. For

each Pi, 1 ≤ i ≤ 4k, the label 0 is assigned to all the points of Pi if i is odd, and the label 1 is assigned to all the points of

Pi if i is even. Let f : v → {0, 1} be a mapping from the set of points of G to {0, 1} and for each edge (uv)E assign the

label|f(u) − f(v)|. The above Pattern of labeling is modified near the link edge in such a way the resulting labels are as

follows. The induced number of points labeled as 0 and the number of points labeled as 1 differ at most by one. Similarly,

the number of links labeled as 0 and the number of links labeled as 1 differ also at most by one. Therefore the graph G(2A, k)

is cordial.

Figure 9: Cordial Labeling Pattern of G(2A, k).

Example 2.4. G(2A, 3) is shown to be cordial in figure 9.

Figure 10: Cordial G(2A, 3).

Theorem 2.5. G(3A, k) satisfies cordial labeling.

Proof. Let G(3A, k) be a triple Aztec diamond graph of order k. It contains 6(k2 + k) points and (12k2 + 2) links. Let

G1(A, k), G2(A, k)andG3(A, k) be three Aztec diamond graphs in G(3A, k). Here the Triple Aztec diamond graph G(3A, k)

is split into 6k horizontal paths P1, P2, ..., P6k, where pi represents the shortest horizontal path between VijandVij , 1 ≤

i ≤ 6k, 1 ≤ j ≤ 6k. The graph G1(A, k) contains 2k horizontal paths P1, P2, ..., P2k. and the graph G2(A, k) contains 2k
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horizontal paths P2k+1, P2k+2, ..., P4k . For each Pi, 1 ≤ i ≤ 2k, The label 0 is assigned to all the points of Pi if i is odd,

and the label 1 is assigned to all the points of Pi if i is even For each Pi , 2k + 1 ≤ i ≤ 4k, The label 0is assigned to all the

points of Pi if i is odd, and the label 1 is assigned to all the points of Pi if i is even. Further the graph G3(A, k) contains

6k horizontal path, P4k+1, ..., P6k for each Pi ,4k + 1 ≤ i ≤ 6k, The label 0 is assigned to all the points of Pi if i is even

,and the label 1 is assigned to all the points of Pi if i is odd. Let f : v → {0, 1} be a mapping from the set of points of G

to {0, 1} and for each edge (uv)E assign the label |f(u)− f(v)|. The above labeling patterns need to be altered for the link

and its adjacent points to achieve the desired result. The number of points labeled as 0 and the number of points labeled as

1 differ at most by one. Similarly, The number of links labeled as 0 and the number of links labeled as 1 also differ at most

by one. Hence G(3A, k) is cordial.

Figure 11: Cordial Labeling Pattern of G(3A,k)

Example 2.6. Triple Aztec diamond graph G(3A, 2) is verified to be cordial in figure 11.

Figure 12: Cordial Triple Aztec Diamond Graph G(3A,2)

Theorem 2.7. Any n-Chain Aztec diamond graph G(nA, k) is cordial.

Proof. The n-Chain Aztec diamond graph consists of n Aztec diamond graphs. For odd n , the cordial labeling pattern

is similar to triple Aztec diamond graph. For even n, the labeling is similar to double Aztec diamond graphs. Hence for any

finite positive integer n, the n chain Aztec diamond graph is cordial.

Theorem 2.8. Finite disjoint union of n-Aztec diamond graph Gd(nA, k) of order k is cordial, for any positive integer n

and k.

Proof. Let Gd(nA, k) be a disjoint union of n-Aztec diamond graphs of order k. It contains (2nk2 + 2nk) points and

(4nk2) links. If G1(A, k), G2(A, k), ..., Gn(A, k) are n- Aztec diamond graphs of same order in G(nA, k). By applying the

cordial labeling conditions to each of the Aztec diamond graphs, it is easy to verify that Gd(nA, k) is cordial Gd(2A, 3) and

Gd(3A, 2) are proved to be cordial in Example 2.9 and 2.10.
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Figure 13: Cordial Labeling Pattern of Gd(nA, k)

Extending the result to any finite n results in Theorem 2.8.

Example 2.9. Disjoint union of two Aztec diamond graph Gd(2A, 3) is cordial.

Figure 14: Cordial Labeling of Gd(2A, 3)

Example 2.10. Disjoint union of three Aztec diamond graph Gd(3A, 2) is cordial.

Figure 15: Cordial labeling of Gd(3A, 2)

Theorem 2.11. Finite disjoint union of Aztec diamond graph Gd(nA, k) of order k is product cordial for even n.

Proof. Let G(nA, k) be a disjoint union of n-Aztec diamond graph of order k. It contains (2nk2 + 2nk) points and (4nk2)

links. Let G1(A, k), G2(A, k), ..., Gn(A, k) be n Aztec diamond graphs of same order in G(nA, k). The vertex labeling pattern

is simple. For each of points of alternative Aztec diamond graphs labels either 0 or 1 is allocated completely. The resultant

edge labels satisfy the condition of product cordial labeling.
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Example 2.12. Disjoint union of two Aztec diamond graph Gd(2A, 3) is product cordial.

Figure 16: Product Cordial Labeling of Gd(2A, 3)

3. Scope of Further Research

Aztec diamond graphs of different order can be combined to get a n-chain Aztec diamond graph of different order and

labeling techniques such as mean labeling, harmonious labeling, elegant labeling can be tested on the newly created Aztec

diamond graphs.
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