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1. Introduction

In 1975, Fuzzy graph theory was introduced by Azriel Rosenfeld. The properties of fuzzy graphs have been studied by

Azriel Rosenfeld [1]. Some operations on fuzzy graphs were introduced by Mordeson. J. N and Peng. C. S [2]. Later on,

Bhattacharya [3] gave some remarks on fuzzy graphs. Dr. K. Radha and Mr. S. Arumugam [4] defined the direct sum of

two fuzzy graphs. In this paper, the degree of vertices in the direct sum of three fuzzy graphs is calculated with an example.

The direct sum of three regular, connected and effective fuzzy graphs are discussed with an example. In this paper, the

degree of vertices in the direct sum of three fuzzy graphs is calculated with an example. The direct sum of three regular,

connected and effective fuzzy graphs are discussed with an example.

2. Preliminaries

Definition 2.1. A fuzzy graph G is a pair of functions G : (σ, µ) where σ is a fuzzy subset of a non-empty set V and µ is

a symmetric fuzzy relation on σ. The underlying crisp graph of G : (σ, µ) is denoted by G∗ : (V,E) where E ⊆ V × V .

Definition 2.2. Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). The degree of a vertex x is defined as dG(x) =
∑
x 6=y

µ(xy).

Definition 2.3. Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). If each vertex has same degreeK, then G is said to be a

regular fuzzy graph of degree K.

Definition 2.4. If there is a path between every pair of vertices then Gis said to be a connected fuzzy graph.

Definition 2.5. Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). A fuzzy graph G is an effective fuzzy graph ifµ(xy) =

σ(x) ∧ σ(y) for all x, y ∈ E.
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3. Direct Sum

Definition 3.1. Let G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) denote three fuzzy graphs with underlying crisp graphs

G∗1 : (V1, E1), G∗2 : (V2, E2) and G∗3 : (V3, E3) respectively. Let V = V1 ∪ V2 ∪ V3 and let E = {xy/x, y ∈ V : xy ∈ E1 or

xy ∈ E2 or xy ∈ E3}. Define G1 : (σ, µ) by

σ(x) =



σ(x1), ifx ∈ V1

σ(x2), ifx ∈ V2

σ(x3), ifx ∈ V3

σ(x1) ∨ σ(x2) ∨ σ(x3), ifx ∈ V1 ∪ V2 ∪ V3.

and σ(x) =


µ1(x, y) ≤ σ1(x) ∪ σ1(y), ifx, y ∈ E1

µ2(x, y) ≤ σ2(x) ∪ σ2(y), ifx, y ∈ E2

µ3(x, y) ≤ σ3(x) ∪ σ3(y), ifx, y ∈ E3.

Therefore G : (σ, µ) is called the direct sum of three fuzzy graphs.

Example 3.2. The following Figure 1 gives an example of the direct sum of three fuzzy graphs.

Figure 1. Direct Sum of Three Fuzzy Graphs

4. Degree of Vertices in G1 ⊕G2 ⊕G3

Theorem 4.1. The degree of a vertex in G1 ⊕G2 ⊕G3 in terms of the degree of the vertices in G1, G2 and G3 is given by,

dG1⊕G2⊕G3(x) =



dG1(x), ifx ∈ V1

dG2(x), ifx ∈ V2

dG3(x), ifx ∈ V3

dG1(x) + dG2(x) + dG3(x), ifx ∈ V1 ∪ V2 ∪ V3andE1 ∩ E1 ∩ E3 = φ.

Proof. In G1 ⊕G2 ⊕G3 for any vertex we have two cases to consider.

Case (i): If x ∈ V1 or x ∈ V2 or x ∈ V3 the the edge incident at x lies in E1 ∩ E1 ∩ E3.

(µ1 ⊕ µ2 ⊕ µ3)(x) =


µ1(x, y), ifx ∈ V1x, y ∈ E1

µ2(x, y), ifx ∈ V2x, y ∈ E2

µ3(x, y), ifx ∈ V3x, y ∈ E3.

Hence,

If x ∈ V1 then dG1⊕G2⊕G3(x) =
∑

x,y∈E1

µ1(x, y) = dG1(x).

214



T.Henson and N. Devi

If x ∈ V2 then dG1⊕G2⊕G3(x) =
∑

x,y∈E2

µ2(x, y) = dG2(x).

If x ∈ V3 then dG1⊕G2⊕G3(x) =
∑

x,y∈E3

µ3(x, y) = dG3(x).

Case (ii): If no edge incident at x lies in E1 ∩ E1 ∩ E3 but V1 ∩ V1 ∩ V3. Then any edge incident at x is either E1 in or in

E2 or in E3 but not in E1 ∩E1 ∩E3. Also all these edges are included in G1 ⊕G2 ⊕G3 i given by, hence the degree of xin

G1 ⊕G2 ⊕G3 is given by,

dG1⊕G2⊕G3(x) =
∑

x,y∈E

(µ1 ⊕ µ2 ⊕ µ3)(x, y)

=
∑

x,y∈E1

µ1(x, y) +
∑

x,y∈E2

µ2(x, y) +
∑

x,y∈E3

µ3(x, y)

= dG1(x) + dG2(x) + dG3(x).

Example 4.2. The following Figure 2 illustrate the degree of vertices in G1 ⊕G2 ⊕G3.

Figure 2. Degree of Vertices in G1 ⊕ G2 ⊕ G3

The degree of the vertices in G1 ⊕G2 ⊕G3 is as follows:

dG1⊕G2⊕G3(x1) = 0.1 + 0.3 + 0.6 + 0.4 + 0.2 = 1.6

dG1⊕G2⊕G3(x2) = 0.1

dG1⊕G2⊕G3(x3) = 0.3

dG1⊕G2⊕G3(x4) = 0.2 + 0.5 = 0.7

dG1⊕G2⊕G3(x5) = 0.4 + 0.5 = 0.9

dG1⊕G2⊕G3(x6) = 0.1

Now, let us find in terms of degree of the vertices in the fuzzy graphs G1, G2 and G3.

dG1⊕G2⊕G3(x1) = dG1(x1) + dG2(x1) + dG3(x1) = (0.1 + 0.3) + (0.2 + 0.4) + 0.6 = 1.6

dG1⊕G2⊕G3(x2) = dG2(x2) = 0.1

dG1⊕G2⊕G3(x3) = dG1(x3) = 0.3

dG1⊕G2⊕G3(x4) = dG2(x4) = 0.2 + 0.5 = 0.7

dG1⊕G2⊕G3(x5) = dG2(x5) = 0.4 + 0.5 = 0.9

dG1⊕G2⊕G3(x6) = dG3(x6) = 0.6.
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5. Direct Sum of Three Regular Fuzzy Graphs

Theorem 5.1. If G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) are regular fuzzy graphs with degrees K1,K2 and K3

respectively and V1 ∩ V2 ∩ V3 6= φ then G1 ⊕G2 ⊕G3 : (σ, µ) is regular if and only if K1 = K2 = K3.

Proof. Let G1 : (σ1, µ1) be a K1-regular fuzzy graph with underlying crisp graph G∗1 : (V1, E1) and let G2 : (σ2, µ2) be

a K2-regular fuzzy graph with underlying crisp graph G∗2 : (V2, E2) and let G3 : (σ3, µ3) be a K3-regular fuzzy graph with

underlying crisp graph G∗3 : (V3, E3) respectively such that V1 ∩ V2 ∩ V3 6= φ. Assume that G1 ⊕G2 ⊕G3 : (σ, µ) is regular,

dG1⊕G2⊕G3(x) =



dG1(x), ifx ∈ V1

dG2(x), ifx ∈ V2

dG3(x), ifx ∈ V3

dG1(x) + dG2(x) + dG3(x), ifx ∈ V1 ∩ V2 ∩ V3andE1 ∩ E1 ∩ E3 = φ.

Since V1 ∩ V2 ∩ V3 6= φ,

dG1⊕G2⊕G3(x) =


dG1(x) = K1, ifx ∈ V1

dG2(x) = K2, ifx ∈ V2

dG3(x) = K3, ifx ∈ V3

Since G1 ⊕G2 ⊕G3 : (σ, µ) is regular, we get K1 = K2 = K3.

Conversely, assume that G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) are K-regular fuzzy graphs such that V1 ∩ V2 ∩ V3 6= φ.

Then the degree of any vertex in the direct sum is given by,

dG1⊕G2⊕G3(x) =


dG1(x) = K1, ifx ∈ V1

dG2(x) = K2, ifx ∈ V2

dG3(x) = K3, ifx ∈ V3

Therefore, dG1⊕G2⊕G3(x) = K, for every x ∈ V1 ∩ V2 ∩ V3. Hence G1 ⊕G2 ⊕G3 : (σ, µ) is regular.

Example 5.2. The following Figure 3 shows the direct sum of three regular fuzzy graphs.

G1 ⊕G2 ⊕G3 (Regular)

Figure 3. The Direct Sum Of Three Regular Fuzzy Graphs
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6. Direct Sum of Three Connected Fuzzy Graphs

If G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) is not a connect fuzzy graphs then their direct sum G1 ⊕G2 ⊕G3 : (σ, µ) can

be a connected fuzzy graph. It is illustrated with the following example.

Example 6.1.

G1 ⊕G2 ⊕G3 : (σ, µ) (Connected)

Figure 4. The Direct Sum of Three Non-Connected Fuzzy Graphs

Remark 6.2. If G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) are three connected fuzzy graphs with n(V1 ∩ V2 ∩ V3) = 1 then

their direct sum G1 ⊕G2 ⊕G3 : (σ, µ) is a connected fuzzy graph. It is illustrated with the following example.

Example 6.3.

G1 ⊕G2 ⊕G3 : (σ, µ) (Connected)

Figure 5. The Direct Sum of Three Connected Fuzzy Graphs
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Theorem 6.4. If G1 : (σ1, µ1), G2 : (σ2, µ2) and G3 : (σ3, µ3) are three connected fuzzy graphs with underlying crisp graphs

G∗1 : (V1, E1)G∗2 : (V2, E2) and G∗3 : (V3, E3) respectively such that E1 ∩ E2 ∪ E3 and V1 ∩ V2 ∩ V3 6= φ then their direct sum

G1 ⊕G2 ⊕G3 : (σ, µ) is connected fuzzy graphs.

Proof. Since G1 : (σ1, µ1) ) is a connected fuzzy graph,µ∞1 (x, y) > 0 for all (x, y) ∈ E1. G2 : (σ2, µ2) ) is a connected

fuzzy graph,µ∞2 (x, y) > 0 for all (x, y) ∈ E2. G3 : (σ3, µ3) ) is a connected fuzzy graph,µ∞3 (x, y) > 0 for all (x, y) ∈ E3. Also

V1 ∩ V2 ∩ V3 6= φ. Therefore there exists at least one vertex which is in V1 ∩ V2 ∩ V3. But there is no edge in E1 ∩ E2 ∪ E3.

Hence there exists a path between any two vertices in the direct sum G1⊕G2⊕G3 : (σ, µ) of G1 : (σ1, µ1), G2 : (σ2, µ2) and

G3 : (σ3, µ3). That is µ∞G1⊕G2⊕G3
(x, y) > 0 for all (x, y) ∈ E. This implies that G1 ⊕G2 ⊕G3 : (σ, µ) is connected.

7. Direct Sum of Three Effective Fuzzy Graphs

Theorem 7.1. If G1, G2 and G3 are three effective fuzzy graphs such that no edge of G1 ⊕ G2 ⊕ G3 has both ends in

V1∩V2∩V3 and every edge xy of G1⊕G2⊕G3 with one end x ∈ V1∩V2∩V3 and xy ∈ E(orE2orE3)such that σ1(x) ≤ σ1(y)

[or σ2(x) ≤ σ2(y), or σ3(x) ≤ σ3(y)] then G1 ⊕G2 ⊕G3 effective fuzzy graph.

Proof. Let x, y be an edge of G1 ⊕G2 ⊕G3. We have two cases to consider.

Case (i): If x, y /∈ V1 ∩ V2 ∩ V3. Then x, y ∈ V1 or x, y ∈ V2 orx, y ∈ V3. Therefore σ(x) = σ1(x), σ(y) = σ1(y) and

µ(xy) = µ1(xy). Since G1 is an effective fuzzy graph, µ(xy) = µ1(xy) = σ1(x)∧σ1(y) = σ(x)∧σ(y). Suppose that x, y ∈ V2.

Then xy ∈ E2. Therefore σ(x) = σ2(x), σ(y) = σ2(y) and µ(xy) = µ2(xy). Since G1 is an effective fuzzy graph. The proof

is similar if x, y ∈ V3.

Case (ii): If x ∈ V1 ∩ V2 ∩ V3, y /∈ V1 ∩ V2 ∩ V3 (or vice versa). Without loss of generality, assume that v ∈ V1. Then

σ(y) = σ1(y). By hypothesis, σ1(x) ≥ σ1(y). Now σ(x) = σ1(x) ≥ σ(y) = σ1(y). So σ(x) ∧ σ(y) = σ(y). Hence,

µ(xy) = µ1(xy) = σ1(x) ∧ σ1(y) = σ(x) ∧ σ(y). Therefore G1 ⊕G2 ⊕G3 is an effective fuzzy graph.

Example 7.2.

G1 ⊕G2 ⊕G3 (Effective)

Figure 6. The Direct Sum of Three Fuzzy Graphs
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If G1, G2 and G3 are three effective fuzzy graphs , their direct sum G1 ⊕G2 ⊕G3 need not be an effective fuzzy graph which

can be seen from the following example.

Example 7.3.

G1, G2 and G3(Not Effective)

8. Conclusion

In this paper, the direct sum G1 ⊕ G2 ⊕ G3 of three fuzzy graphs G1, G2 and G3 is defined. A formula to find the degree

of vertices in the direct sum G1 ⊕ G2 ⊕ G3 of three fuzzy graphs G1, G2 and G3 is obtained with an example. Some of

the property of the direct sum of regular, connected and effective fuzzy graphs have been illustrated. Thus operation on

fuzzy graph plays an important role to consider large fuzzy graph as a combination of small fuzzy graphs. A truly tactical

manoeuvre in that direction on the whole is specifically made through this paper.
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