International Journal of Mathematics And its Applications

On Direct Sum of Three Fuzzy Graphs

T. Henson ${ }^{1, *}$ and N. Devi ${ }^{1}$

PG \& Research Department of Mathematics, St.Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamilnadu, India.

Abstract

In this paper, the direct sum $G_{1} \oplus G_{2} \oplus G_{3}$ of three fuzzy graphs G_{1}, G_{2} and G_{3} is defined. The degree of the vertices in $G_{1} \oplus G_{2} \oplus G_{3}$ is calculated. The regular property, connectedness and effectiveness on the direct sum of three fuzzy graphs are also discussed.

MSC: 05 C 72.

Keywords: Fuzzy graph, Direct sum, Degree of vertices in the direct sum, Regular fuzzy graph, Connected fuzzy graph, Effective fuzzy graph.
(C) JS Publication.

Accepted on: 13 th April 2018

1. Introduction

In 1975, Fuzzy graph theory was introduced by Azriel Rosenfeld. The properties of fuzzy graphs have been studied by Azriel Rosenfeld [1]. Some operations on fuzzy graphs were introduced by Mordeson. J. N and Peng. C. S [2]. Later on, Bhattacharya [3] gave some remarks on fuzzy graphs. Dr. K. Radha and Mr. S. Arumugam [4] defined the direct sum of two fuzzy graphs. In this paper, the degree of vertices in the direct sum of three fuzzy graphs is calculated with an example. The direct sum of three regular, connected and effective fuzzy graphs are discussed with an example. In this paper, the degree of vertices in the direct sum of three fuzzy graphs is calculated with an example. The direct sum of three regular, connected and effective fuzzy graphs are discussed with an example.

2. Preliminaries

Definition 2.1. A fuzzy graph G is a pair of functions $G:(\sigma, \mu)$ where σ is a fuzzy subset of a non-empty set V and μ is a symmetric fuzzy relation on σ. The underlying crisp graph of $G:(\sigma, \mu)$ is denoted by $G^{*}:(V, E)$ where $E \subseteq V \times V$.

Definition 2.2. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The degree of a vertex x is defined as $d_{G}(x)=\sum_{x \neq y} \mu(x y)$.
Definition 2.3. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If each vertex has same degree K, then G is said to be a regular fuzzy graph of degree K.

Definition 2.4. If there is a path between every pair of vertices then Gis said to be a connected fuzzy graph.
Definition 2.5. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. A fuzzy graph G is an effective fuzzy graph ifu $(x y)=$ $\sigma(x) \wedge \sigma(y)$ for all $x, y \in E$.

[^0]
3. Direct Sum

Definition 3.1. Let $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ denote three fuzzy graphs with underlying crisp graphs $G_{1}^{*}:\left(V_{1}, E_{1}\right), G_{2}^{*}:\left(V_{2}, E_{2}\right)$ and $G_{3}^{*}:\left(V_{3}, E_{3}\right)$ respectively. Let $V=V_{1} \cup V_{2} \cup V_{3}$ and let $E=\left\{x y / x, y \in V: x y \in E_{1}\right.$ or $x y \in E_{2}$ or $\left.x y \in E_{3}\right\}$. Define $G_{1}:(\sigma, \mu)$ by

$$
\begin{gathered}
\sigma(x)= \begin{cases}\sigma\left(x_{1}\right), & \text { if } x \in V_{1} \\
\sigma\left(x_{2}\right), & \text { if } x \in V_{2} \\
\sigma\left(x_{3}\right), & \text { if } x \in V_{3} \\
\sigma\left(x_{1}\right) \vee \sigma\left(x_{2}\right) \vee \sigma\left(x_{3}\right), & \text { if } x \in V_{1} \cup V_{2} \cup V_{3} .\end{cases} \\
\text { and } \sigma(x)= \begin{cases}\mu_{1}(x, y) \leq \sigma_{1}(x) \cup \sigma_{1}(y), & \text { if } x, y \in E_{1} \\
\mu_{2}(x, y) \leq \sigma_{2}(x) \cup \sigma_{2}(y), & \text { if } x, y \in E_{2} \\
\mu_{3}(x, y) \leq \sigma_{3}(x) \cup \sigma_{3}(y), & \text { if } x, y \in E_{3} .\end{cases}
\end{gathered}
$$

Therefore $G:(\sigma, \mu)$ is called the direct sum of three fuzzy graphs.
Example 3.2. The following Figure 1 gives an example of the direct sum of three fuzzy graphs.

Figure 1. Direct Sum of Three Fuzzy Graphs

4. Degree of Vertices in $G_{1} \oplus G_{2} \oplus G_{3}$

Theorem 4.1. The degree of a vertex in $G_{1} \oplus G_{2} \oplus G_{3}$ in terms of the degree of the vertices in G_{1}, G_{2} and G_{3} is given by,

$$
d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)= \begin{cases}d_{G_{1}}(x), & \text { if } x \in V_{1} \\ d_{G_{2}}(x), & \text { if } x \in V_{2} \\ d_{G_{3}}(x), & \text { if } x \in V_{3} \\ d_{G_{1}}(x)+d_{G_{2}}(x)+d_{G_{3}}(x), & \text { if } x \in V_{1} \cup V_{2} \cup V_{3} \text { and } E_{1} \cap E_{1} \cap E_{3}=\phi .\end{cases}
$$

Proof. In $G_{1} \oplus G_{2} \oplus G_{3}$ for any vertex we have two cases to consider.
Case (i): If $x \in V_{1}$ or $x \in V_{2}$ or $x \in V_{3}$ the the edge incident at x lies in $E_{1} \cap E_{1} \cap E_{3}$.

$$
\left(\mu_{1} \oplus \mu_{2} \oplus \mu_{3}\right)(x)= \begin{cases}\mu_{1}(x, y), & \text { if } x \in V_{1} x, y \in E_{1} \\ \mu_{2}(x, y), & \text { if } x \in V_{2} x, y \in E_{2} \\ \mu_{3}(x, y), & \text { if } x \in V_{3} x, y \in E_{3}\end{cases}
$$

Hence,
If $x \in V_{1}$ then $d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)=\sum_{x, y \in E_{1}} \mu_{1}(x, y)=d_{G_{1}}(x)$.

If $x \in V_{2}$ then $d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)=\sum_{x, y \in E_{2}} \mu_{2}(x, y)=d_{G_{2}}(x)$.
If $x \in V_{3}$ then $d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)=\sum_{x, y \in E_{3}} \mu_{3}(x, y)=d_{G_{3}}(x)$.
Case (ii): If no edge incident at x lies in $E_{1} \cap E_{1} \cap E_{3}$ but $V_{1} \cap V_{1} \cap V_{3}$. Then any edge incident at x is either E_{1} in or in E_{2} or in E_{3} but not in $E_{1} \cap E_{1} \cap E_{3}$. Also all these edges are included in $G_{1} \oplus G_{2} \oplus G_{3}$ i given by, hence the degree of x in $G_{1} \oplus G_{2} \oplus G_{3}$ is given by,

$$
\begin{aligned}
d_{G_{1} \oplus G_{2} \oplus G_{3}}(x) & =\sum_{x, y \in E}\left(\mu_{1} \oplus \mu_{2} \oplus \mu_{3}\right)(x, y) \\
& =\sum_{x, y \in E_{1}} \mu_{1}(x, y)+\sum_{x, y \in E_{2}} \mu_{2}(x, y)+\sum_{x, y \in E_{3}} \mu_{3}(x, y) \\
& =d_{G_{1}}(x)+d_{G_{2}}(x)+d_{G_{3}}(x) .
\end{aligned}
$$

Example 4.2. The following Figure 2 illustrate the degree of vertices in $G_{1} \oplus G_{2} \oplus G_{3}$.

Figure 2. Degree of Vertices in $G_{1} \oplus G_{2} \oplus G_{3}$

The degree of the vertices in $G_{1} \oplus G_{2} \oplus G_{3}$ is as follows:

$$
\begin{aligned}
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{1}\right)=0.1+0.3+0.6+0.4+0.2=1.6 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{2}\right)=0.1 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{3}\right)=0.3 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{4}\right)=0.2+0.5=0.7 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{5}\right)=0.4+0.5=0.9 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{6}\right)=0.1
\end{aligned}
$$

Now, let us find in terms of degree of the vertices in the fuzzy graphs G_{1}, G_{2} and G_{3}.

$$
\begin{aligned}
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{1}\right)=d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(x_{1}\right)+d_{G_{3}}\left(x_{1}\right)=(0.1+0.3)+(0.2+0.4)+0.6=1.6 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{2}\right)=d_{G_{2}}\left(x_{2}\right)=0.1 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{3}\right)=d_{G_{1}}\left(x_{3}\right)=0.3 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{4}\right)=d_{G_{2}}\left(x_{4}\right)=0.2+0.5=0.7 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{5}\right)=d_{G_{2}}\left(x_{5}\right)=0.4+0.5=0.9 \\
& d_{G_{1} \oplus G_{2} \oplus G_{3}}\left(x_{6}\right)=d_{G_{3}}\left(x_{6}\right)=0.6 .
\end{aligned}
$$

5. Direct Sum of Three Regular Fuzzy Graphs

Theorem 5.1. If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ are regular fuzzy graphs with degrees K_{1}, K_{2} and K_{3} respectively and $V_{1} \cap V_{2} \cap V_{3} \neq \phi$ then $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is regular if and only if $K_{1}=K_{2}=K_{3}$.

Proof. Let $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ be a K_{1}-regular fuzzy graph with underlying crisp graph $G_{1}^{*}:\left(V_{1}, E_{1}\right)$ and let $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ be a K_{2}-regular fuzzy graph with underlying crisp graph $G_{2}^{*}:\left(V_{2}, E_{2}\right)$ and let $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ be a K_{3}-regular fuzzy graph with underlying crisp graph $G_{3}^{*}:\left(V_{3}, E_{3}\right)$ respectively such that $V_{1} \cap V_{2} \cap V_{3} \neq \phi$. Assume that $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is regular,

$$
d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)= \begin{cases}d_{G_{1}}(x), & \text { if } x \in V_{1} \\ d_{G_{2}}(x), & \text { if } x \in V_{2} \\ d_{G_{3}}(x), & \text { if } x \in V_{3} \\ d_{G_{1}}(x)+d_{G_{2}}(x)+d_{G_{3}}(x), & \text { if } x \in V_{1} \cap V_{2} \cap V_{3} \text { and } E_{1} \cap E_{1} \cap E_{3}=\phi\end{cases}
$$

Since $V_{1} \cap V_{2} \cap V_{3} \neq \phi$,

$$
d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)= \begin{cases}d_{G_{1}}(x)=K_{1}, & \text { if } x \in V_{1} \\ d_{G_{2}}(x)=K_{2}, & \text { if } x \in V_{2} \\ d_{G_{3}}(x)=K_{3}, & \text { if } x \in V_{3}\end{cases}
$$

Since $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is regular, we get $K_{1}=K_{2}=K_{3}$.
Conversely, assume that $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ are K-regular fuzzy graphs such that $V_{1} \cap V_{2} \cap V_{3} \neq \phi$. Then the degree of any vertex in the direct sum is given by,

$$
d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)= \begin{cases}d_{G_{1}}(x)=K_{1}, & \text { if } x \in V_{1} \\ d_{G_{2}}(x)=K_{2}, & \text { if } x \in V_{2} \\ d_{G_{3}}(x)=K_{3}, & \text { if } x \in V_{3}\end{cases}
$$

Therefore, $d_{G_{1} \oplus G_{2} \oplus G_{3}}(x)=K$, for every $x \in V_{1} \cap V_{2} \cap V_{3}$. Hence $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is regular.

Example 5.2. The following Figure 3 shows the direct sum of three regular fuzzy graphs.

Figure 3. The Direct Sum Of Three Regular Fuzzy Graphs

6. Direct Sum of Three Connected Fuzzy Graphs

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ is not a connect fuzzy graphs then their direct sum $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ can be a connected fuzzy graph. It is illustrated with the following example.

Example 6.1.

Figure 4. The Direct Sum of Three Non-Connected Fuzzy Graphs

Remark 6.2. If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ are three connected fuzzy graphs with $n\left(V_{1} \cap V_{2} \cap V_{3}\right)=1$ then their direct sum $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is a connected fuzzy graph. It is illustrated with the following example.

Example 6.3.

Figure 5. The Direct Sum of Three Connected Fuzzy Graphs

Theorem 6.4. If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ are three connected fuzzy graphs with underlying crisp graphs $G_{1}^{*}:\left(V_{1}, E_{1}\right) G_{2}^{*}:\left(V_{2}, E_{2}\right)$ and $G_{3}^{*}:\left(V_{3}, E_{3}\right)$ respectively such that $E_{1} \cap E_{2} \cup E_{3}$ and $V_{1} \cap V_{2} \cap V_{3} \neq \phi$ then their direct sum $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is connected fuzzy graphs.

Proof. Since $\left.G_{1}:\left(\sigma_{1}, \mu_{1}\right)\right)$ is a connected fuzzy graph, $\mu_{1}^{\infty}(x, y)>0$ for all $\left.(x, y) \in E_{1} . G_{2}:\left(\sigma_{2}, \mu_{2}\right)\right)$ is a connected fuzzy graph,$\mu_{2}^{\infty}(x, y)>0$ for all $\left.(x, y) \in E_{2} . G_{3}:\left(\sigma_{3}, \mu_{3}\right)\right)$ is a connected fuzzy graph,$\mu_{3}^{\infty}(x, y)>0$ for all $(x, y) \in E_{3}$. Also $V_{1} \cap V_{2} \cap V_{3} \neq \phi$. Therefore there exists at least one vertex which is in $V_{1} \cap V_{2} \cap V_{3}$. But there is no edge in $E_{1} \cap E_{2} \cup E_{3}$. Hence there exists a path between any two vertices in the direct sum $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ of $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ and $G_{3}:\left(\sigma_{3}, \mu_{3}\right)$. That is $\mu_{G_{1} \oplus G_{2} \oplus G_{3}}^{\infty}(x, y)>0$ for all $(x, y) \in E$. This implies that $G_{1} \oplus G_{2} \oplus G_{3}:(\sigma, \mu)$ is connected.

7. Direct Sum of Three Effective Fuzzy Graphs

Theorem 7.1. If G_{1}, G_{2} and G_{3} are three effective fuzzy graphs such that no edge of $G_{1} \oplus G_{2} \oplus G_{3}$ has both ends in $V_{1} \cap V_{2} \cap V_{3}$ and every edge $x y$ of $G_{1} \oplus G_{2} \oplus G_{3}$ with one end $x \in V_{1} \cap V_{2} \cap V_{3}$ and $x y \in E\left(o r E_{2}\right.$ or $\left.E_{3}\right)$ such that $\sigma_{1}(x) \leq \sigma_{1}(y)$ [or $\sigma_{2}(x) \leq \sigma_{2}(y)$, or $\sigma_{3}(x) \leq \sigma_{3}(y)$] then $G_{1} \oplus G_{2} \oplus G_{3}$ effective fuzzy graph.

Proof. Let x, y be an edge of $G_{1} \oplus G_{2} \oplus G_{3}$. We have two cases to consider.
Case (i): If $x, y \notin V_{1} \cap V_{2} \cap V_{3}$. Then $x, y \in V_{1}$ or $x, y \in V_{2}$ or $x, y \in V_{3}$. Therefore $\sigma(x)=\sigma_{1}(x), \sigma(y)=\sigma_{1}(y)$ and $\mu(x y)=\mu_{1}(x y)$. Since G_{1} is an effective fuzzy graph, $\mu(x y)=\mu_{1}(x y)=\sigma_{1}(x) \wedge \sigma_{1}(y)=\sigma(x) \wedge \sigma(y)$. Suppose that $x, y \in V_{2}$. Then $x y \in E_{2}$. Therefore $\sigma(x)=\sigma_{2}(x), \sigma(y)=\sigma_{2}(y)$ and $\mu(x y)=\mu_{2}(x y)$. Since G_{1} is an effective fuzzy graph. The proof is similar if $x, y \in V_{3}$.
Case (ii): If $x \in V_{1} \cap V_{2} \cap V_{3}, y \notin V_{1} \cap V_{2} \cap V_{3}$ (or vice versa). Without loss of generality, assume that $v \in V_{1}$. Then $\sigma(y)=\sigma_{1}(y)$. By hypothesis, $\sigma_{1}(x) \geq \sigma_{1}(y)$. Now $\sigma(x)=\sigma_{1}(x) \geq \sigma(y)=\sigma_{1}(y)$. So $\sigma(x) \wedge \sigma(y)=\sigma(y)$. Hence, $\mu(x y)=\mu_{1}(x y)=\sigma_{1}(x) \wedge \sigma_{1}(y)=\sigma(x) \wedge \sigma(y)$. Therefore $G_{1} \oplus G_{2} \oplus G_{3}$ is an effective fuzzy graph.

Example 7.2.

Figure 6. The Direct Sum of Three Fuzzy Graphs

If G_{1}, G_{2} and G_{3} are three effective fuzzy graphs, their direct sum $G_{1} \oplus G_{2} \oplus G_{3}$ need not be an effective fuzzy graph which can be seen from the following example.

Example 7.3.

G_{1} (Effective)

8. Conclusion

In this paper, the direct sum $G_{1} \oplus G_{2} \oplus G_{3}$ of three fuzzy graphs G_{1}, G_{2} and G_{3} is defined. A formula to find the degree of vertices in the direct sum $G_{1} \oplus G_{2} \oplus G_{3}$ of three fuzzy graphs G_{1}, G_{2} and G_{3} is obtained with an example. Some of the property of the direct sum of regular, connected and effective fuzzy graphs have been illustrated. Thus operation on fuzzy graph plays an important role to consider large fuzzy graph as a combination of small fuzzy graphs. A truly tactical manoeuvre in that direction on the whole is specifically made through this paper.

References

[1] A.Rosenfeld, Fuzzy Graphs, In L.A.Zadeh, K.S.Fu, K.Tanaka, M.Shimura, Fuzzy Sets and their Application to cognitive and Decision processes, Academic press, New York, (1975), 77-95
[2] J.N.Mordeson and C.S.Peng, Operations on Fuzzy Graphs, Information Sciences, 79(1994), 159-170.
[3] P.Bhattacharya, Some remarks on Fuzzy graphs, Pattern Recognition Letter, 6(1987), 297-302.
[4] K.Radha and S.Arumugam, On Direct Sum of Two Fuzzy Graphs, International Journal of Scientific and Research Publications, 3(5)(2013).
[5] Frank Hararay, Graph Theory, Narosa Addison Wesley, Indian student Edition, (1988).
[6] A.Nagoorgani and K.Radha, Conjunction of Two Fuzzy Graphs, International Review of Fuzzy Mathematics, 3(2008), 95-105.

[^0]: * E-mail: thenson1967@mail.com

