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Abstract

In this paper, we describe and discuss the new concept of trifunctional variational inequality. We

propose and examine implicit iterative approaches for solving trifunction variational inequalities

using the auxiliary principle methodology and nonlinear operator. The convergence conditions of

this novel approach are investigated under the pseudomonotonicity requirement, which is a weaker

criterion than monotonicity. Some special cases are also taken into account as well.
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1. Introduction

Variational inequalities are being utilised as a mathematical tool to study a wide range of issues in the

mathematics and engineering sciences. The variational inequality is widely known to specify the

optimality requirement for the differentiable convex function on the convex set. Nevertheless, it has

been demonstrated that the optimality condition of a directionally differentiable convex function may

be described by a type of variational inequality known as the bifunction variational inequality

see [1–4, 6, 12, 14, 15, 17–22]. Inspired and motivated by ongoing research in this field, we define and

investigate a novel class of variational inequalities known as trifunction variational inequalities.

We find bifunction variational inequalities and various related optimization problems as special

instances. There are several numerical approaches for solving variational inequalities, including the

projection technique and its variant forms, Wiener-Hopf equations, the auxiliary principle, and

resolvent equations. Nevertheless, due to the nature of the issue, projection, Wiener-Hopf equations,

proximal and resolvent equations approaches cannot be extended and adapted to suggest and

evaluate comparable iterative methods for solving trifunction variational inequalities. This feature has

prompted the application of the auxiliary principle technique, owing primarily to Glowinski, Lions,
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and Tremolieres [7]. Noor [9–11] and Noor et al. [23] have extensively used this method to propose

and investigate an implicit iterative method for solving variational inequalities and related problems.

We propose and analyse an implicit iterative method for solving the trifunction variational

inequalities using this method in conjunction with the Bregman function. We also investigate the

convergence of this novel approach under the assumption of pseudomonotonicity. It is common

knowledge that pseudomonotonicity implies monotonicity, while the opposite is not true. This

demonstrates that pseudomonotonicity is a less strong condition than monotonicity. In this way, our

result is a refinement of previously known results. These findings represent a fresh and significant

use of the auxiliary principle approach. We expect that this paper’s ideas and techniques may open

further research opportunities and applications of the trifunction variational inequalities. For the

recent developments in this direction, see [12–22] and the references therein.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨., .⟩ and ∥.∥ respectively.

Let K be a nonempty closed set in H and T be a nonlinear operator. For a given continuous trifunction

function F : K ×K ×K → H and the non linear operator g : K → K, we consider the problem of finding

u ∈ K such that

F(g(u), Tu, g(v)− g(u)) ≥ 0, ∀ v ∈ K (1)

which is called an trifunction variational inequality. A number of problems arising in various

branches of pure and applied sciences can be studied via the trifunction variational inequalities. If

F(g(u), Tu, g(v) − g(u)) = B(g(u), g(v) − g(u)), where B(., .) : K × K → H is a bifunction, then

problem (1) is equivalent to finding u ∈ K such that

(g(u), g(v)− g(u)) ≥ 0, ∀ v ∈ K (2)

It is known as the bifunction variational inequality. The bifunction variational inequalities may be

used to study a variety of problems in pure and applied sciences. It has been demonstrated [12] that

the bifunction variational inequality can characterise the minimum of a directionally differentiable

convex function on a convex set (2). Similarly, one may demonstrate that the minimum of a Lipschitz

continuous nonconvex meets the bifunction variational inequality (2). See [1–6, 12, 17–22] and the

references therein for the formulation, well-posedness, and existence findings for bifunction

variational inequalities.

If F(g(u), Tu, g(v) − g(u)) = ⟨Tu, g(v) − g(u)⟩, then the trifunction variational inequality (1) is

equivalent to finding u ∈ K such that

⟨Tu, g(v)− g(u)⟩ ≥ 0, v ∈ K
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and if we take g = I in the above inequality reduces to finding u ∈ K such that

⟨Tu, v − u⟩ ≥ 0, v ∈ K (3)

Which is known as the classical variational inequality introduced by Stampacchia [24].

Definition 2.1. The bifuction T(., .) : H × H → R is said to be monotone type(I) with respect to the operator

g, iff

T(u, g(v)− g(u)) + T(v, g(u)− g(v)) ≥ 0, ∀ u, v ∈ H

Definition 2.2. The bifuction F : H × H → R is said to be monotone type(II) with respect to the operator g, iff

F(g(u), g(v)) + F(g(v), g(u)) ≤ 0, ∀ u, v ∈ H

Definition 2.3. The trifunction F(., ., .) and the operator T is said to be jointly pseudomonotone, iff,

F(g(u), Tu, g(v)− g(u)) ≥ 0

⇒ −F(g(v), Tv, g(u)− g(v)) ≥ 0, ∀ u, v ∈ K

3. Main Result

In this part, we study at an iterative method for solving the trifunction variational inequality (1) by the

auxiliary principle method, which was established by Noor [9–11] and Noor et al. [23]. For a given

u ∈ K satisfying (1), we consider the problem of finding w ∈ K such that

ρF(g(w), Tw, g(v)− g(w)) + ⟨E′(w)− E′(u), g(v)− g(w)⟩ ≥ 0 ∀ v ∈ K (4)

It is called the auxiliary trifunction variational inequality. Here ρ > 0 is a constant and E’(u) is the

differential of a strongly convex function E at u ∈ K. From the strongly convexity of the differentiable

function E(u), it follows that problem (4) has a unique solution. It is clear that if w = u, then w

is a solution of problem (1). This observation enables to suggest and analyze the following iterative

method for solving the problems (1).

Algorithm 1. For a given u0 ∈ H, calculate the approximate solution un+1 by the iterative scheme

ρF(g(un+1), Tun+1, g(v)− g(un+1)) + ⟨E′(un+1)− E′(un), g(v)− g(un+1)⟩ ≥ 0 ∀ v ∈ K (5)

where ρ > 0 is a constant.

Algorithm 1 is known as the implicit method for solving the trifunction variational inequality (1). If

F(g(u), Tu, g(v)− g(u)) = B(g(u), g(v)− g(u)), then Algorithm 1 reduces to:
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Algorithm 2. For a given u0 ∈ H, calculate the approximate solution un+1 by the iterative scheme

ρB(g(un+1), g(v)− g(un+1)) + ⟨E′(un+1)− E′(un), g(v)− g(un+1)⟩ ≥ 0 ∀ v ∈ K

for solving the bifunction variational inequalities (2), see [14,15,17-22] and the references therein.

Note that, if F(g(u), Tu, g(v)− g(u)) = ⟨Tu, g(v)− g(u)⟩, then Algorithm 1 reduces to the following

iterative scheme for variational inequalities (3) and appears to be a new one.

Algorithm 3. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

⟨ρTun+1 + E′(un+1)− E′(un), g(v)− g(un+1)⟩ ≥ 0 ∀ v ∈ K

where ρ > 0 is a constant.

A number of iterative approaches for addressing bifunction variational inequalities and associated

optimization issues may be obtained by selecting the bifunction and the spaces properly. We now

study the convergence criteria of Algorithm 1 and this is the main motivation of next result.

Theorem 3.1. Let the function F(., ., .) be jointly pseudomonotone with respect to the operator T and let E(u) be

strongly convex function with modulus β > 0. Then the approximate solution g(un+1) obtained from Algorithm

1 converges to a solution u ∈ K of the trifunction variational inequality (1).

Proof. Let u ∈ K be a solution of (1). Then, using the jointly pseudomonotonicity of F(., ., .), we have

−F(g(v), Tv, g(u)− g(v)) ≥ 0, ∀ v ∈ K (6)

Taking u = un+1 in (6) and v = u in (5), we have

−F(g(un+1), Tun+1, g(u)− g(un+1)) ≥ 0, ∀ v ∈ K (7)

ρF(g(un+1), Tun+1, g(u)− g(un+1)) + ⟨E′(un+1)− E′(un), g(u)− g(un+1)⟩ ≥ 0, ∀ v ∈ K (8)

Now we consider the generalized Bregman function as

B(g(u), g(z)) = E(u)− E(z)− ⟨E′(z), u − z⟩ ≥ β∥g(u)− g(z)∥2 (9)

Where we have used the fact that the function E(u) is strongly convex. Combining (7) - (8), we have

B(g(u), g(un))− B(g(u), g(un+1)) = E(un+1)− E(un)− ⟨E′(un), g(u)− g(un)⟩

+ ⟨E′(un+1), g(u)− g(un+1)⟩

= E(un+1)− E(un)− ⟨E′(un)− E′(un+1), g(u)− g(un+1)⟩
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− ⟨E′(un), g(un+1)− g(un)⟩

≥ β∥g(un+1)− g(un)∥2 + ⟨E′(un+1)− E′(un), g(u)− g(un+1)⟩

≥ β∥g(un+1)− g(un)∥2 − ρF(g(un+1), Tun+1, g(u)− g(un+1))

≥ β∥g(un+1)− g(un)∥2

If g(un+1) = g(un), then clearly un is a solution of (1). Otherwise, for β > 0, the sequences

B(g(u), g(un))− B(g(u), g(un+1)) is nonnegative and we must have

lim
x→∞

(| g(un+1)− g(un)∥) = 0

As a result, the sequence g(un) is bounded. Let ū be a cluster point of the subsequence uni, let uni

be a subsequence converging towards ū. Using Zhu and Marcotte’s [25] approach, it is now possible

to demonstrate that the whole sequence un converges to the cluster point ū, satisfying the trifunction

variational inequality (1).

4. Conclusion

We introduced and investigated a new class of variational inequalities known as the trifunction

variational inequality in this paper. We proposed and analysed an implicit iterative method to solve

the trifunction variational inequalities using the auxiliary principle technique. This approach is quite

adaptable. We also investigated the convergence analysis of the suggested implicit iterative approach

under appropriate conditions. We hope that the problem addressed in this paper may inspire further

research and applications in this field.
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