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Abstract

The primary goal of this instructive paper is to present various useful identities and explore basic

properties of the two concepts: Schur and Pseudo-Schur complements (named in honor of the

mathematician Isaai Schur) which have been paid attention by some researchers in many fields of

mathematics. Schur and Pseudo-Schur complements play a central role and they serve as a rich

and powerful tool by many authors. I will go over numerous main formulas related with these two

concepts and some of their applications (I will omit the proofs). This paper is intended to familiarize

the reader with the Schur and Pseudo-Schur complements, and this by using a lucid style that will

attract readers from diverse backgrounds. The literature on the subject is vast, and its applications

far reaching. It is highly recommended that one examine more rigorously the references of this

paper.

Keywords: Schur complement; pseudo-Schur complement; Haynsworth inertia formula; Sylvester’s
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1. Introduction

The name Schur is associated with many terms and concepts that are widely used in a number of

diverse fields of mathematics and engineering [34], in particular Schur and Pseudo-Schur complements

are basic and powerful tools (but still quite unknown and not most frequently encountered) and very

useful notions which play a fundamental role in several branches of mathematics including:

• Linear algebra (for instance: for solving linear systems) [100].

• Numerical analysis (Schur complement techniques could be beneficial in sequence transformation

related to fixed point iterations for systems of linear and nonlinear equations and to numerical

methods for differential equations) [16].

• Optimization (in particular, in approximation for PDE constrained optimization, the Schur

complement appeared (in a special symmetric form) as the Hessian of the Lagrangian [66]).
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• Statistics (for example: the Schur complement arises in computation of the probability density

function of multivariate normal distribution [70]).

• Operator theory and applied mathematics. A great deal of work on the topic has been done by a

number of authors [125].

Also, thanks to Schur complement, a class of convex nonlinear inequalities that appears regularly in

control problems is converted into the so-called linear matrix inequalities (LMI) (recognized in the

early 1960’s) [14,109,124]. Likewise, Schur complement occurs frequently in the theory of systems

engineering. Considerable interest in recent work on Schur and Pseudo-Schur complements has been

witnessed. There were some researchers of the 19th and 20th centuries who, implicitly, dealt with these

subjects [89,125]. For further reading on the rich history of the development of the subject and related

topics, several classical references are recommend, from which we mention only [4,5,7,8,10,13,17,22,29,

37,43,45,71,76,79,83,89,91,95,97,99,103,128,129].

The implicit manifestations of the Schur complement appeared early (first published in 1851 as an

idea to study in more detail entries of t he matrix that appears in block Gaussian elimination process

[89]) in the paper (On the relation between the minor determinants of linearly equivalent quadratic

functions) of the British mathematician James Joseph Sylvester (1814—1897) [128], but the concept of

Schur complement which was introduced in 1968 by the American mathematician Emilie Virginia

Haynsworth (1916-–1985) [23] has been since repeatedly discussed [7,49,94].

2. Preliminaries and Mainstays

Let A, B, C, D denote four matrices (complex or real, a greater algebraic generality is also possible) and

p, q ∈ N∗ such that A is a square matrix of order p, B is a matrix of size p × q , C is a matrix of size

q × p and D is a square matrix of order q. Let M be the 2 × 2 matrix block (partitioned) defined by

M =

 A B

C D

 . (1)

Throughout the paper, the matrix M will be assumed to be partitioned as in (2.1). In what follows,

we give a famous definition [7,8,17,22,29,37,40,43,45,71,76,89,91,95,99,128,129]:

Definition 2.1.

• Suppose the square matrix A is invertible. We call the Schur complement of the block entry A in M, the

square matrix S(A,M) of order q defined by

S(A,M) = D − CA−1B. (2)

Analogously
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• Assume that the square matrix D is invertible. We call the Schur complement of the block entry D in M,

the square matrix S(D,M) of order p defined by

S(D,M) = A − BD−1C. (3)

• Suppose the matrix B is invertible (thus p = q). We call the Schur complement of the block entry B in M,

the square matrix S(B,M) of order p defined by

S(B,M) = C − DB−1A. (4)

• Suppose the matrix C is invertible (thus p = q). We call the Schur complement of the block entry C in M,

the square matrix S(C,M) of order p defined by

S(C,M) = B − AC−1D. (5)

Remark 2.2. The square matrix M is of order (p + q).

Remark 2.3. When the matrices A, B, C and D are invertible, their Schur complements are respectively

commonly denoted (in linear algebra) by

M/A,M/B,M/C,M/D. (6)

3. Elementary Properties

• Suppose the square matrix A is invertible and that C = 0 or B = 0 (this is the case where the

square matrix M is upper or lower triangular). Then S(A,M) = D and S(D,M) = A.

• (M is positive definite) =⇒ (S(A,M) is positive definite) [37,99].

• Assume that M is real and positive definite. Then the following statements hold [7]

(1) M−1 is positive definite.

(2) S(A,M) and S(D,M) are both positive definite.

• Assume that the square matrix D is invertible. Then [97,129]

(1) detM = detD.detS(D,M) (Schur’s determinantal formula).

(2) (M is invertible) ⇐⇒ (S(D,M) is invertible).

• Likewise, if the matrix A is invertible. Then [17,30,37,89,129]

(1) detM = detA.detS(A,M) (Schur’s determinantal formula).

(2) (M is invertible) ⇐⇒ (S(A,M) is invertible).
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• Suppose both A and D are invertible. If M is invertible then we have an alternative expression

of M−1 [7,47]

M−1 =

 S−1
(D,M)

−A−1BS−1
(A,M)

−D−1CS−1
(D,M)

S−1
(A,M)

 (Banachiewicz-Frazer-Duncan-Collar) (7)

3.1 Gaussian factorization

Assume that the square matrix A is invertible. Then the block matrix M is factorized as follows

M =

 Ip 0

CA−1 Iq

 .

 A B

0 S(A,M)


from which the Schur’s determinantal formula immediately holds.

Corollary 3.1 ([1,99,128]). Assume that

• p = q.

• The square matrices A and C commute.

• The four square matrices A, B, C and D (which are of order p in this case) are invertible.

Then the square matrix M is also invertible, and we have:

detM = det(AD − CB)

and

M−1 =

 S−1
(D,M)

S−1
(B,M)

S−1
(C,M)

S−1
(A,M)

 (Banacheiwicz inversion formula, 1937).

Theorem 3.2 (Crabtree-Haynsworth [30,49,52,93,97,99]). Suppose the matrix A (the principal submatrix (of

the matrix block M) situated in its upper left-hand corner) is partitioned (two-way block) as follows

A =

 E F

G H


where the four matrices E, F, G and H (complex or real, a greater algebraic generality is also possible), p′, q′ ∈ N∗

such that p = p′ + q′ and:

E is a square matrix of order p′, F is a matrix of size p′ × q′ , G is a matrix of size q′ × p′ and H is a square

matrix of order q′. If A and E are invertible, then:

S(A,M) = S(S(E,A),S(E,M))
(quotient property) [20].
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Definition 3.3 (Hadamard product: Schur product [41,64,104,105]). Let E and F be two matrices of size

m × n. The Hadamard product (Schur product) of E and F, denoted by E ◦ F is a matrix of size m × n, with

elements given by

(E ◦ F)ij = (E)ij(F)ij

(this product is obtained by multiplying the corresponding entries in each matrix).

Remark 3.4. For matrices E and F of different sizes m × n and p × q, where m ̸= p or n ̸= q, then the

Hadamard product of E and F is undefined.

3.2 Properties of Hadamard product

The Hadamard product is:

• Associative.

• Distributive (over addition).

• Commutative.

• Linear.

3.3 Schur Complement and Matrix Inequalities

We present some inequalities on generalized Schur complements [125]. The matrix inequalities are in

elegant forms and have many interesting applications [78]. Schur complements are a powerful tool for

deriving matrix inequalities and further in deducing determinant, trace, norm, eigenvalue, singular

value, majorization, and other matrix inequalities [127].

Definition 3.5. Let A and B be two Hermitian matrices of the same size. If A − B is positive semidefinite, we

write

A ≥ B or B ≤ A.

4. Pseudo-Schur Complement

My purpose in this section is to present a formal treatment covering the Pseudo-Schur complement.

Similarly to Schur complement, the Pseudo-Schur complement is defined as follows:

Definition 4.1. Suppose the matrix A is singular and/or rectangular. We call the Pseudo-Schur complement of

the block entry A in M (the concept reduces to the classical Schur complement), the matrix S̃(A,M) defined by

[80,91]

S̃(A,M) = D − CA†B. (8)
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where, A† is the Moore-Penrose inverse (or pseudo-inverse) of the matrix A [9,18,28,97,118,120,121]. It is the

unique matrix satisfying all of the following four criteria (Penrose’s conditions) [2,3,9,18,27,28,46,55,87]:

AA† A = A

A† AA† = A†

(AA†)∗ = AA†

(A† A)∗ = A† A

(9)

(where ∗ denotes the conjugate transpose of a matrix). These four equations are called the Moore-Penrose

equations and the order in which they are written is crucial for our subsequent development [97].

Definition 4.2 ([33,106]). A matrix which satisfies the first two Penrose’s conditions is called by C. A. Rohde

"a reflexive generalized inverse".

Remark 4.3 ([62]). Similarly, we also define

S̃(B,M) = C − DB† A.

S̃(C,M) = B − AC†D.

S̃(D,M) = A − BD†C.

(10)

4.1 General properties of the pseudo-inverse matrix

We now turn our attention to an exploration of the most important properties of A† [2,3,27,46,87,97]

A : m by n =⇒ A† : n by m

A = 0 =⇒ A† = 0

(A†)† = A

(A†)t = (At)†

A†(A†)t = (At A)†

A† = (At A)† At

A† = At(AAt)†

rank(A†) = rank(A).

(11)

4.2 Famous application of the pseudo-inverse matrix

Let n, m ∈ N∗, N ∈ Rn×m, X ∈ Rm and U ∈ Rn. Let us consider the rectangular linear system

N.X = U. Then the least squares solution of minimum Euclidian norm [53,118] of the problem

argmin
X∈Rm

∥N.X − U∥ (12)
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is given by X = N†.U (N† is the pseudo-inverse of the matrix N).

Notation 4.4. We denote by Hn the set of n × n Hermitian matrices.

5. Special Cases

One of the most elegant results in matrix theory was derived for real symmetric matrices by Cauchy

(or Rayleigh) [26,42,59,75,114]

Theorem 5.1 (Cauchy (eigenvalue) interlacing theorem []). Suppose C = B∗. if M ∈ Hn is partitioned as

M =

 A B

B∗ D

 (13)

in which A is p × p principal submatrix, then for each i = 1, 2, ..., p:

λi(M) ≥ λi(A) ≥ λi+n−p(M). (14)

Theorem 5.2 (Fischer’s inequality [38,57,86,88]). In matrix theory, the well-known Fischer’s inequality asserts

that if the complex matrix M given by (1) is Hermitian and positive semidefinite, then

detM ≤ detA.detD. (15)

6. The Inertia Formula

Definition 6.1 ([12,31,57,58,60,92,120]). Assume that the (generally complex) matrix M is Hermitian. The

inertia of the matrix M (denoted by In(M)) is the ordered triple of nonnegative integers

In(M) = (n+(M), n−(M), n0(M)) (16)

in which n+(M), n−(M) and n0(M)) give the number of positive, negative and zero eigenvalues of M

counted with multiplicities, respectively.

(Recall that all eigenvalues of a Hermitian matrix are real).

Notice that [42,61,63,120]

• The rank of M is equal to

rank(M) = n+(M) + n−(M). (17)

• The signature of M is equal to

sgn(M) = n+(M)− n−(M). (18)

Proposition 6.2 ([42,97]). Let n+(M) and n−(M) denote the number of positive and negative eigenvalues of
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M respectively (and likewise for A). Then:

n+(A) ≤ n+(M),

n−(A) ≤ n−(M).

6.1 The Haynsworth additivity formula for inertia

Assume that the matrix A is invertible. The Haynsworth formula for inertia (1968) of the matrix M is

given by [40,43,51,60,89,95,97,121]

In(M) = In(A) + In(S(A,M)). (19)

6.2 Sylvester’s Law of Inertia

Let A and B be two Hermitian square matrices of order n. Then we have the following statement

[12,31,54,55,63,65,74,107,110]

 ∃G a square invertible matrix of order n such that:

B = G∗AG

 ⇐⇒ (In(A) = In(B)) .

(The inertia of a matrix A is preserved under conjugation).

For further examples and properties, the reader may consult [55].

7. Guttman rank

Assume that the matrix M is Hermitian. Then the Louis Guttman rank additivity formula (first

published in 1946) for the matrix M is defined by [21,39,43,95,97]

rank(M) = rank(A) + rank(S(A,M)) (when the matrix A is invertible)

= rank(D) + rank(S(D,M)) (when the matrix D is invertible).
(20)

8. Schur complements-linear systems

If both A and D are square and invertible, and if we consider the system

M.

 x

y

 =

 u

v

 (21)

then, the solution of 21 is  x

y

 =

 S−1
(D,M)

.(u − BD−1v)

S−1
(A,M)

.(v − CA−1u)

 .
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9. Other concepts

Among other concepts that include Schur complement and Pseudo–Schur complement, we can

mention: Eigenvalue inequalities of Schur complements (see [125]). A great number of inequalities on

eigenvalues and singular values of matrices can be found in the literature (see [123]), Ordinary

products and Schur complements (see [125]), Inequalities related to partitioned positive semi-definite

matrices (one can see [88]), Inequality relating the Schur complement of the Hadamard product and the

Hadamard product of Schur complements for positive definite matrices (see [81]), Inequalities for

inertias of block Hermitian matrices (see [120]) and Inequalities for positive semi-definite Hermitian

matrices (see [20]).

10. Conclusion

This paper highlights and emphasizes on Schur’s and Pseudo-Schur’s complements, it is geared toward

a wide audience of readers, from graduate students to professional mathematicians, interested in

the topic. Several significant results (that characterize Schur’s and Pseudo-Schur’s complements) are

proposed. The reader may examine rigorously the large bibliography (accompanying this paper) that

contains a major contribution to Schur’s and Pseudo-Schur’s complements.
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