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Abstract

This paper deals with study of the nonlinear singular elliptic equations in a bounded domain Ω ⊂

RN , (N ≥ 2) with Lipschitz boundary ∂Ω:

Au =
f

uγ(·) + µ,

Where A := −div (â(·, Du)) is a Leray-Lions type operator which maps continuously W1,p(·)
0 (Ω)

into its dual W−1,p′(·)(Ω) whose simplest model is the p(·)-laplacian type operator (i.e.

â(·, ξ) = |ξ|p(·)−2ξ) such that f is a nonnegative function belonging to the Lebesgue space with

variable exponents Lm(·)(Ω) with m(·) being small (or L1(Ω)) and µ is a nonnegative function

belongs to L1(Ω) as nonhomogeneous datum while m : Ω → (1,+∞), γ : Ω → (0, 1) are

continuous functions satisfying certain conditions depend on p(·). We prove the existence,

uniqueness, and regularity of nonnegative weak solutions for this class of problems with

p(·)-growth conditions. More precisely, we will discuss that the nonlinear singular term has some

regularizing effects on the solutions of the problem which depends on the summability of f , m(·),

and the value of γ(·). The functional framework involves Sobolev spaces with variable exponents

as well as Lebesgue spaces with variable exponents. Our results can be seen as a generalization of

some results given in the constant exponents case.
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1. Introduction

This paper is devoted to studying the existence, uniqueness, and regularity of nonnegative weak

solutions for a class of nonlinear singular elliptic equations with variable exponents. A prototype
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example is 
−∆p(·)(u) =

f
uγ(·) + µ, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1)

where Ω is a bounded open subset of RN (N ≥ 2) with Lipchitz boundary ∂Ω, 0 ≤ µ ∈ L1(Ω),

0 ≤ f ∈ Lm(·)(Ω), m(·) as in (7), and γ as in (8). The problem (1) is called p(·)-Laplacian problem

with singular nonlinearity having variable exponents while the operator −div (â(·, Du)) is called p(·)-

Laplacian type operator and is a generalization of the p(x)-Laplace operator

−∆p(·)(u) := −div(|Du|p(·)−2Du)

which appears in problem (1). Instead of (1) we will consider more general nonlinear singular elliptic

equations with variable exponents of the form


−div (â(x, Du)) = f

uγ(·) + µ, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(2)

With 0 ≤ µ ∈ L1(Ω) and 0 ≤ f ∈ Lm(·)(Ω). Recall that a Leray-Lions type operator is a Caratheodory

function â : Ω × RN → RN satisfying: a.e x ∈ Ω and for all ξ, ξ ′ ∈ RN the following:

â(x, ξ)ξ ≥ α|ξ|p(x), â(x, ξ) = (a1, . . . , aN) (3)

|â(x, ξ)| ≤ β
(

h + |ξ|p(x)−1
)

(4)

(â(x, ξ)− â(x, ξ ′))(ξ − ξ ′) > 0, ξ ̸= ξ ′, (5)

where α, β are strictly nonnegative real numbers, h is a given nonnegative function in Lp′(·)(Ω), where,

p′(·) := p(·)
p(·)−1 while γ : Ω → (0, 1), m : Ω → (1,+∞), and the variable exponents p : Ω → (1,+∞) are

continuous functions such that: for all x ∈ Ω

1 − γ(x) +
1

m(x)
− 1 − γ(x)

N
< p(x) < N, |∇m| ∈ L∞(Ω), |∇γ| ∈ L∞(Ω), (6)

1 < m(x) < m̂1(x), |∇m| ∈ L∞(Ω), (7)

where

m̂1(x) =
Np(x)

Np(x)− (N − p(x))(1 − γ(x))
=
( p⋆(x)

1 − γ(x)

)′

,

|∇γ| ∈ L∞(Ω), p⋆(x) =
Np(x)

N − p(x)
,
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with γ : Ω −→ (0, 1) is a continuous function satisfies:

0 < γ− := min
x∈Ω

γ(x) ≤ γ+ := max
x∈Ω

γ(x) < 1, |∇γ| ∈ L∞(Ω), for all x ∈ Ω. (8)

Closely observe that, the assumptions (7) and (8) guarantee that (8) is clear-cut. More elaborate, we

consider the simplest model 
−∆p(·)u = f

uγ(·) + µ, in B,

u > 0, in B,

u = 0, on ∂B,

(9)

where 0 ≤ f ∈ L1(Ω), 0 ≤ µ ∈ L1(Ω), p(·) as in (6), γ as in (8), and

B = {x ∈ RN | |x| < 1}.

In recent years, boundary value problems with variable exponents has received a lot of attention,

reader can look at [1], the nice surveys books [17,19,23,40], and the references therein. While the

study of the elliptic and parabolic problems involving singular nonlinearities with variable exponents

is still developing with slowness because there are a very limited number of results exist on this topic,

reader can have the opportunity to look at the new marvellous works [9,25,29,42]. We mention also

that much attention has been devoted to nonlinear elliptic equations with singularities because of their

wide application to physical models such as Non-Newtonian fluids, boundary layer phenomena for

viscous fluids, chemical heterogenous, etc.(we refer to [10]).

Problem (2) has been extensively studied in the past. In the constant exponent cases. A remarkable

paper on the topic published in 1987, is due to the authors in [18], they investigated a problem whose

prototype like (2) with p(·) = p = 2, µ = 0, γ(·) = γ > 0, and f ≡ 1. A classical solution

u ∈ C2(Ω) ∩ C0(Ω) has been obtained via shifting method. Also, a priori estimates and regularity

results have been established, as u ∈ C0, 2
1+γ (Ω) provided γ > 1 which is called strongly singular

case. In their work [24], the authors obtained existence and nonexistence results for problem (2) when

p(·) = p = 2, µ ∈ L1(Ω), µ ≥ 0 in Ω, 0 < γ(·) = γ < 1, and f ≡ −1. They emphasized the role of

variational techniques in this context and also delineated the connection between the solutions of (2)

and ϕ1, (ϕ1 denotes the first eigenfunction of (−∆; W1,2
0 (Ω))). The latter consideration will turn out

to be very useful in the analysis of behavior of solutions to (2) near the boundary: indeed, few years

later, the authors in [30] have been discussed the case when p(·) = p = 2, µ = 0, γ(·) = γ > 0 and

f is a nonnegative regular function in Ω. They proved that the solution u of problem (2) in H1
0(Ω)

if and only if γ(·) = γ < 3 and if γ(·) = γ > 1 then u is not in C1(Ω). All results of [30] has been

extended in [31], the authors have been proved that the problem (2) when p(·) = p = 2, µ = 0 with

0 < γ(·) = γ < 1 has a unique nonnegative weak solution in H1
0(Ω) if f is a nonnegative nontrivial

function in L2(Ω).
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Furthermore, in the case where p(·) = p = 2, µ = 0, γ(·) = γ > 0, and m(·) = m ≥ 1, the existence and

nonexistence of solutions for problem (2) has been proved in [7]. Similar results, with different proofs,

were obtained in [6,13,14,21,22,34,38,45]. In [12] the authors studied problem (2) when p(·) = p = 2,

µ = 0, m(·) = m > 1. They proved that there exists a solution to problem (2) in the natural energy

space H1
0(Ω) when γ(·) ≤ 1 in a strip around the boundary, also for another case, belongs to H1

loc(Ω).

Moreover, the authors in [15] generalized the results in [16] to the case when p(·) = p, γ(·) as in (8),

µ = 0, m(·) = m ≥ 1 and the left-hand side is a p-Laplace operator. They proved the existence of a

nonnegative solution u of problem (2) and discussed the relationship among the regularity of solutions,

the summability of f and the value of γ(·). If p(·) = p, γ(·) = γ > 0, f is a nonnegative function which

has some Lebesgue regularity and µ is a nonnegative bounded Radon measure, then problem (2) has

been considered and extensively studied in [37], the authors proved the existence of nonnegative weak

solutions for problem (2) in the general case through an approximation argument.

Recently, in the variable exponents cases, the authors in [25] improved the results of [7,31] and studied

the problem (2) in general form depending on γ(·) > 0, µ = 0, m(·) = m ≥ 1, 2 < p(·) ≤ N, and

p(·)-Laplace operator. They proved the existence and regularity results of problem (2) by adapting

some techniques used in [15], nevertheless it was a new spirit of idea different from that used in

[13], ( when γ(·) = γ ≥ 1, see [26] for a similar paper ). In [29], the authors generalized the work

[3] by considering nonlinear elliptic equations with a singular nonlinearity, lower order terms and

L1 datum in the setting of Sobolev spaces with variable exponents. They proved that the lower order

term has some regularizing effects on the solutions. For more and different aspects concerning singular

problems see [36]), whereas the elliptic operator A depends on u and Du with the degenerate coercivity,

we refer to [41] for the existence and regularity results of the solutions.

In this paper, we consider a new condition on m(·) which depends on γ(·), p(·) and a nonnegative

measure as nonhomogeneous datum which allows us to show that the nonlinear singular term has

regularizing effects on the solutions of the problem (2) that depends on the summability of f , m(·)

and the value of γ(·). We will further assume greater regularity on f in problem (2) to guarantee the

existence of a very weak solution. Here we use a new fresh ideas different from that used in [9,25,42]

to generalize the previously obtained some results in [7,11,12,15,20,37,39] to the setting of variable

exponents p, m and γ which appear in (6)-(7)-(8) respectively depends on the variable x. Obviously,

the nonlinearity of (1) (resp. (2)) is more complicated than nonlinearity of the p-Laplacian (resp. the

operator appears in (2)) as the exponent, which appears in (1) (resp. (2)), depends on the variable x, due

to the nonlinearity of a p(·)-Laplace operator (resp. the operator appears in (2)) and the assumptions

(6)-(7)-(8) (see Remark 3.15), some classical methods for elliptic operators which investigated in [33]

may not directly be applied to solve the problem (1) (resp. (2)). Distinctly, this motivated us to propose

the study of the problem (2) and get new uniquely results which were not considered in the literature.

Inspired by [35], we will prove the existence, uniqueness and regularity of nonnegative weak solution

for the problem (2) by applying the method of approximations, Schauder fixed point theorem and
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adopting some techniques used in [29], make sure we will show that how the nonlinear singular term

has regularizing effects on the solutions of the problem (2). More precisely, we will prove (Theorems

3.3-3.6-3.11 below). In particular, Theorems 3.3-3.6-3.11 below can be viewed as a generalization of the

existence results in [7, Theorem 5.2; Theorem 5.6], [15, Theorem 3.1; Theorem 3.2], [25, Theorem 3.1;

Theorem 3.2], [37, Theorem 2.6; Theorem 3.2.(i)], [39, Theorem 2.6]) respectively.

The main difficulties are the facts that the elliptic operator A depends on Du and the nonlinear

singular term has regularizing effects on solutions. To overcome these difficulties we will work by

approximation and truncating the singular term 1
uγ(·) , so that it becomes not singular at the origin.

Furthermore, we will get some an uniform estimates on the nonnegative weak solutions un of the

approximating problems which will allow us to pass to the limit and find a unique nonnegative weak

solution to problem (2). To be more precise, we will be able to prove that the model problem (20) has

a suitable solution u for every f in Lm, m ≥ 1 and for every γ and how the regularity of u depends on

the summability of f , on p and on γ which are restricted as in (6)-(7)-(8) respectively.

To analyse the problem more clearly, we point out that our estimates on the gradients of u (see Lemma

5.3) are new compared to [15,25]. In fact, it follows from Remarks 3.8-3.10 that the regularity given

in Theorem 3.6 is better than ([15, Theorem 3.2]; [25, Theorem 3.2]). To prove Theorem 3.6, a key

result (Lemma 5.3) about an Lp(·) estimate for the gradients of solution to problem (2). For the sake

of exposition, we assumed that the elliptic operator A was chosen to be independent of u. In any

way whatever one can easily realize that the same proof of Theorems 3.3-3.6-3.11 can be forthrightly

extended to more general case when the operator A depends of u and Du with a general nonlinear

singular term under the above assumptions (6)-(7)-(8) (see Remark 6.2).

Throughout this paper, C will indicate any nonnegative constant which depends only on data and

whose value may change from line to line.

2. Mathematical Background and Auxiliary Results

This section is devoted to preliminary ideas which will be helpful to advance towards establishing our

principle results. We first recall some definitions and basic properties of the generalized Lebesgue-

Sobolev spaces Lp(·)(Ω), W1,p(·)(Ω) and W1,p(·)
0 (Ω), where Ω is an open subset of RN . We refer to [2],

[17], [19], [23] and [40] for further properties of variable exponents Lebesgue-Sobolev spaces. Second,

we briefly recall some auxiliary results, reader can easily look at the nice surveys [27] and [28].

Let p : Ω → [1, ∞) be a continuous function. We denote by Lp(·)(Ω) the space of measurable function

u(x) on Ω such that

ρp(·)(u) =
∫

Ω
|u(x)|p(x)dx < +∞.

The space Lp(·)(Ω) equipped with the norm

∥u∥p(·) := ∥u∥Lp(·)(Ω) = inf
{

λ > 0 | ρp(·)(u/λ) ≤ 1
}
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becomes a Banach space. Moreover, if p− := min
x∈Ω

p(x) > 1, then Lp(·)(Ω) is reflexive and the dual of

Lp(·)(Ω) can be identified with Lp′(·)(Ω), where p′(x) := p(x)
p(x)−1 .

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the Hölder type inequality:

∣∣∣∣∫Ω
uv dx

∣∣∣∣ ≤ ( 1
p−

+
1

p′−

)
∥u∥p(·)∥v∥p′(·) ≤ 2∥u∥p(·)∥v∥p′(·).

holds true.

We define also the Banach space W1,p(x)
0 (Ω) by

W1,p(·)
0 (Ω) =

{
u ∈ Lp(·)(Ω), |Du| ∈ Lp(·)(Ω) and u = 0 on ∂Ω

}
endowed with the norm ∥u∥

W1,p(·)
0 (Ω)

= ∥Du∥p(·).

The space W1,p(·)
0 (Ω) is separable and reflexive provided that with 1 < p− ≤ p+ < ∞. The smooth

functions are in general not dense in W1,p(·)
0 (Ω), but if the exponent variable p(x) > 1 is logarithmic

Hölder continuous, that is

|p(x)− p(y)| ≤ − M
ln(|x − y|) ∀x, y ∈ Ω such that |x − y| ≤ 1/2, (10)

then the smooth functions are dense in W1,p(·)
0 (Ω). For u ∈ W1,p(·)

0 (Ω) with p ∈ C(Ω, [1,+∞)), the

Poincaré inequality holds

∥u∥p(·) ≤ C∥Du∥p(·), (11)

for some constant C which depends on Ω and the function p. An important role in manipulating the

generalized Lebesgue and Sobolev spaces is played by the modular ρp(·) of the space Lp(·)(Ω) was

showed in the following result

Lemma 2.1 ([28]). If (un), u ∈ Lp(·)(Ω), then the following relations hold

• ∥u∥p(·) < 1(> 1;= 1) ⇔ ρp(·)(u) < 1(> 1;= 1),

• min
(

ρp(·)(u)
1

p− ; ρp(·)(u)
1

p+

)
< ∥u∥p(·) < max

(
ρp(·)(u)

1
p− ; ρp(·)(u)

1
p+

)
,

• min
(
∥u∥p−

p(·), ∥u∥p+

p(·)
)
≤ ρp(·)(u) ≤ max

(
∥u∥p−

p(·), ∥u∥p+

p(·)

)
,

• ∥u∥p(·) ≤ ρp(·)(u) + 1,

• ∥un − u∥p(·) → 0 ⇔ ρp(·)(un − u) → 0,

since p+ < ∞.

Remark 2.2. As in [28], the following inequality

∫
Ω
|u|p(x) dx ≤ C

∫
Ω
|Du|p(x) dx,



Singular Elliptic Equations with Variable Exponents / Abdelaziz Hellal 147

in general does not hold. So, thanks to Lemma 2.1 and (11), we get the following inequality which will be used

later

min
{
∥Du∥p−

p(·); ∥Du∥p+

p(·)

}
≤
∫

Ω
|u(x)|p(x) dx ≤ max

{
∥Du∥p−

p(·); ∥Du∥p+

p(·)

}
. (12)

An important embedding as follows:

Lemma 2.3 (Sobolev embedding,[27]). Let Ω ⊂ RN be an open bounded set, with Lipschitz boundary, and

let p : Ω → (1, N) satisfy the log-Hölder continuity condition (10). Then we have the following continuous

embedding:

W1,p(·)(Ω) ↪→ Lp⋆(·)(Ω),

where p⋆(·) = Np(·)
N−p(·) .

Henceforth, we will denote by Ω a bounded open subset of RN (N ≥ 2) with Lipchitz boundary ∂Ω,

we will use through this paper, the truncation function Tk at height k (k > 0) which denoted by, for

every t ∈ R

Tk(t) = max
{
− k, min{k, t}

}
, (13)

It is obvious that Tk is Lipschitz functions satisfying |Tk(t)| ≤ k.

We will often use the Young inequality in the following form, for every η > 0, p ∈ (1,+∞) and for all

nonnegative real numbers U, V:

U · V =
(
(ηp)

1
p U · (ηp)−

1
p V
)
≤ ηUp +

(p − 1)η− 1
p−1

pp′ Vp′ , where p′ =
p

p − 1
. (14)

3. Main Results and Some Remarks

Our aim is to prove the existence of nonnegative weak solutions to problem (2). Here we give two

important definitions which are essential to our study of the problem (2).

Definition 3.1. Let (µn)n be the sequence of nonnegative measurable functions in L1(Ω). We say (µn)n

converges weakly to the nonnegative function µ in L1(Ω), if

∫
Ω

µnψ d x →
∫

Ω
µψ d x for all ψ ∈ L∞(Ω). (15)

i.e. µn ⇀ µ in L1(Ω).

Definition 3.2. If 0 < γ+ < 1 and 0 ≤ µ ∈ L1(Ω) then we say A nonnegative function u ∈ W1,p(·)
0 (Ω)

is a weak solution for problem (2) if the following conditions are satisfied:

1. u ∈ W1,1
0 (Ω), â(x, Du) ∈

(
L1(Ω)

)N
, f

uγ(·) ∈ L1
loc(Ω),

2. ∫
Ω

â(x, Du) · Dφ dx =
∫

Ω

f
uγ(·) · φ dx +

∫
Ω

µ · φ dx, (16)
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for every φ ∈ C∞
0 (Ω).

The main results of the paper are the following theorems:

Theorem 3.3. Under the assumptions (3)-(6) and (8). If 0 ≤ µ ∈ L1(Ω) and f ∈ Lm(·)(Ω) is a nonnegative

function ( f ̸= 0) such that m(·) = m̂1(·) with m̂1(·) as in (7). Then the problem (2) has a nonnegative solution

u ∈ W1,p(·)
0 (Ω) satisfying (16).

In Theorem 3.3 a point that is worth paying attention are the following remarks,

Remark 3.4. The result of Theorem 3.3 coincides with regularity result of [7, Theorem 5.2 ], if and only if µ = 0,

p(·) = p = 2, γ(·) = γ and m(·) = m.

The result of Theorem 3.3 coincides with regularity result of [11, Theorem 1.3 ] as long as µ = 0, p(·) = p,

γ(·) = γ, and m(·) = m.

Remark 3.5. In Theorem 3.3, in the case where µ = 0, p(·) = p = 2 and γ(·) tends to be 0, gives us

m(·) = m = 2N
N+2 . So, the regularity result of Theorem 3.3 has been obtained in [12, Theorem 1.1 ]. If µ = 0

and γ(·) tends to be γ−, then the regularity result of Theorem 3.3 has been obtained in [25, Theorem 3.1] and

[16, Theorem 7].

The regularity of u depends on the summability of f and on γ(·), which is presented in the next

Theorem.

Theorem 3.6. Under the assumptions (3)-(6) and (8). If 0 ≤ µ ∈ L1(Ω) and f ∈ Lm(·)(Ω) is a nonnegative

function with m(·) = m as in (7). Then problem (2) has at least one nonnegative solution u ∈ W1,q(·)
0 (Ω)

satisfying (16), where q(·) is a continuous function on Ω satisfying

1 ≤ q(x) <
Nm

(
p(x)− 1 + γ−

)
(

N − m(1 − γ−)
) , for all x ∈ Ω, γ− := min

x∈Ω
γ(x), (17)

The regularity result of this Theorem leads to make some remarks as below:

Remark 3.7. Observe that in Theorem 3.6, the assumption (6) guarantees that

1 <
Nm

(
p(·)− 1 + γ−

)
(

N − m(1 − γ−)
) ,

So, the assumption (17) is well defined. Remark that the condition (17) is the key to prove the Lemma 5.3.

Remark 3.8. The regularity result of Theorem 3.6 has been treated in [7, Theorem 5.6], in the case where

p(·) = p = 2, µ = 0, m(·) = m and γ(·) = γ. The result of Theorem 3.6 coincides with regularity result of

[15, Theorem 3.2] provided that µ = 0, p(·) = p and m(·) = m.
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Remark 3.9. If µ = 0 and p(·) tends to be p−, then
Nm
(

p(x)−1+γ−
)

(
N−m(1−γ−)

) tends to be Nm(p−−1+γ−)
N−m(1−γ−) , which is bound

on q(·) obtained in [25, Theorem 3.2]. In the case where p(x) = p = 2, m tends to be 1 and γ− tends to be

0, we have
Nm
(

p(x)−1+γ−
)

(
N−m(1−γ−)

) tends to be N
N−1 , which is bound on q(·) obtained in [37, Theorem 2.6]. The case

p(x) = p, m tends to be 1 and γ− tends to be 0, then
Nm
(

p(x)−1+γ−
)

(
N−m(1−γ−)

) tends to be N(p−1)
N−1 , which is bound on

q(·) obtained in [37, Theorem 3.2-(i)].

Remark 3.10. Note that the condition on p(·) in (6) is stronger than in [15,25], but is an outcome of the

condition on q(·) in (17). This condition is important to prove Lemma 5.3 below.

Theorem 3.11. Under the assumptions (3)-(6) and (8). If 0 ≤ µ ∈ L1(Ω) and f ∈ L1(Ω) is a nonnegative

function. Then problem (2) has at least one nonnegative solution u ∈ W1,q(·)
0 (Ω) satisfying (16), where q(·) is a

continuous function on Ω satisfying

1 ≤ q(x) <
N
(

p(x)− 1 + γ−
)

(
N − 1 + γ−

) , for all x ∈ Ω, γ− := min
x∈Ω

γ(x), (18)

Remark 3.12. In Theorem 3.11. If p(·) = p and γ− tends to be 0, then
N
(

p(x)−1+γ−
)

(
N−1+γ−

) tends to be N(p−1)
N−1

which is bound on q(·) obtained in [37].

Remark 3.13. The result of Theorem 3.11 coincides with regularity result of [37, Theorem 2.6 ] and [39, Theorem

2.6] on condition that p(·) = p = 2 and γ− → 0. Also, the result of Theorem 3.11 coincides with regularity

results of [37, Theorem 3.2 (i)] providing that p(·) = p and γ− → 0.

Remark 3.14. In Theorem 3.11, it is clear that the assumption (6) imply that (18) holds since we have

1 <
N
(

p(x)− 1 + γ−
)

(
N − 1 + γ−

) <
Nm

(
p(·)− 1 + γ−

)
(

N − m(1 − γ−)
) , ∀x ∈ Ω.

So, Theorem 3.6 improves Theorem 3.11 (and [37, Theorem 2.6;Theorem 3.2 (i)], [39, Theorem 2.6]).

Remark 3.15. Under the assumptions µ ∈ L1(Ω) and f ∈ Lm(·)(Ω) in Theorems 3.3-3.6, we can deduce that
f

uγ(·) + µ is never in the dual space
(

W1,p(·)
0 (Ω)

)′

, so that the result of this paper deals with nonlinear singular

term that has regularizing effects on the solutions of the problem (2).

4. Approximation of Problem (2)

In order to prove the previous results, we will work by truncating the singular term 1
uγ(·) so that, it

becomes not singular at the origin and we study the behaviour of a sequence un of solutions of the
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approximated problems. Due to (15) in definition (3.1), we can suppose that { fn}n∈N, {µn}n∈N are

sequences of functions satisfying



fn := Tn( f ), ∀n ≥ 1,

0 < { fn}n∈N ∈ C∞
0 (Ω), ∥ fn∥Lm(Ω) ≤ ∥ f ∥Lm(Ω),(m ≥ 1),

fn −→ f strongly in Lm(Ω), as n → +∞,

0 ≤ {µn}n∈N ∈ L1(Ω), ∥µn∥L1(Ω) ≤ ∥µ∥L1(Ω), ∀n ≥ 1,∫
Ω ψ dµn →

∫
Ω ψ dµ, ∀ψ ∈ L∞(Ω), as n → +∞,

(19)

Where fn is the truncation at level n of f as in (13). Here let us consider the following scheme of

approximation

−div (â(x, Dun)) =
fn

(un +
1
n )

γ(x)
+ µn in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(20)

First of all we need to show the existence of a nonnegative weak solution to (20). The proof which is

based on the Schauder fixed point theorem.

Lemma 4.1. For every n ∈ N⋆, there exists a unique nonnegative solution un ∈ W1,p(·)
0 (Ω) ∩ L∞(Ω) to

problem (20) in the sense that

∫
Ω

â(x, Dun)Dϕ dx =
∫

Ω

fn

(un +
1
n )

γ(x)
ϕ dx +

∫
Ω

µnϕ dx, (21)

for every ϕ ∈ W1,p(·)
0 (Ω) ∩ L∞(Ω). Moreover, the sequence (un)n is increasing with respect to n, un > 0 in Ω,

and for every ω ⊂⊂ Ω, there exists Cω > 0 (independent of n ) satisfied

un(x) ≥ Cω > 0, for every x ∈ ω, for every n ∈ N⋆. (22)

In particular, there exists the pointwise limit u of the sequence un, with u that satisfies (22). Furthermore, for all

γ as in (8) and for all ϕ ∈ C∞
0 (Ω), we have

∫
Ω

fnϕ

(un +
1
n )

γ(x)
dx →

∫
Ω

f ϕ

uγ(x)
dx, as n → +∞. (23)

Proof. Let n ∈ N be fixed, v ∈ Lp(·)(Ω) and consider the following non singular problem

−div (â(x, Dw)) =
fn

(|v|+ 1
n )

γ(x)
+ µn in Ω,

w = 0 on ∂Ω.

(24)

It follows from [37] (see also [4,8,32]) that the problem (24) has a unique solution w ∈ W1,p(·)
0 (Ω).
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Furthermore, since the datum fn

(|v|+ 1
n )

γ(·) + µn is bounded, we have that w ∈ L∞(Ω) and there exists a

positive constant ν, independents of v and w ( but possibly depending in n), such that ∥w∥L∞(Ω) ≤ ν.

Our aim is to prove the existence of fixed point of the map

G̃ : Lp(·)(Ω) −→ Lp(·)(Ω)

where G̃(v) = w ∈ W1,p(·)
0 (Ω) and w the weak solution of problem (24). We know that G̃ is compact

if and only of it is continuous and it maps every bounded subset of Lp(·)(Ω) into a relatively compact

set. We will show that G̃ maps the ball Bc(0) ⊂ Lp(·)(Ω) of radius C into itself, the constant C is

independent of v. Thanks to the regularity of the datum fn

(|v|+ 1
n )

γ(·) + µn, allows us to take w as test

function in the weak formulation of (24) which gives

∫
Ω

â(x, Dw) · Dw dx =
∫

Ω

fn

(|v|+ 1
n )

γ(x)
· w dx +

∫
Ω

µnw dx,

By using (3) and (19), we find

α

(nγ++1 + ∥µ∥L1(Ω))

∫
Ω
|Dw|p(x) dx ≤

∫
Ω
|w| dx,

Using Young’s inequality (14) for all η > 0, Poincaré inequality and the fact that |Dun|p
− ≤ |Dun|p(·)+ 1

on the left hand side, we obtain

α

(nγ++1 + ∥µ∥L1(Ω))

∫
Ω
|Dw|p(x) dx ≤ η

∫
Ω
|w|p− dx +

(p− − 1)η− 1
p−−1

(p−)(p−)′
|Ω|

≤ ηCp−

p−

∫
Ω
|Dw|p− dx +

(p− − 1)η− 1
p−−1

(p−)(p−)′
|Ω|

≤ ηCp−

p−

∫
Ω
|Dw|p(x) dx +

(
ηCp−

p− +
(p− − 1)η− 1

p−−1

(p−)(p−)′

)
|Ω|,

Which implies

∫
Ω
|Dw|p(x) dx ≤ η

Cp−

p− (n
γ++1 + ∥µ∥L1(Ω))

α

∫
Ω
|Dw|p(x) dx

+
(nγ++1 + ∥µ∥L1(Ω))

α
·
(

ηCp−

p− +
(p− − 1)η− 1

p−−1

(p−)(p−)′

)
|Ω|,

So,

∫
Ω
|Dw|p(x) dx ≤ ηC1

∫
Ω
|Dw|p(x) dx + C2,
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where C1 =
Cp−

p− (nγ++1+∥µ∥L1(Ω)
)

α ,

C2 =
(nγ++1 + ∥µ∥L1(Ω))

α
·
(

ηCp−

p− +
(p− − 1)η− 1

p−−1

(p−)(p−)′

)
|Ω|

are nonnegative constants and Cp− is the constant of Poincaré.

Now, we can choose η = 1
2C1

, we obtain

∫
Ω
|Dw|p(x) dx ≤ C3,

with C3 is independent from v. Thanks to Lemma 2.1, we have

∥Dw∥Lp(·)(Ω) ≤ C4,

for some constant C4 independent on v. By another application of Poincaré inequality (11), we obtain

∥w∥Lp(·)(Ω) ≤ Cn,p, (25)

where Cn,p is a nonnegative constant independent form v.

In particular, we have that the ball B := BCn(0) of Lp(·)(Ω) of large enough radius Cn,p is invariant

for the map G̃. Moreover, from the compact Sobolev embedding, we deduce that G̃ is continuous and

compact on Lp(·)(Ω).

Indeed, first we prove that the map G̃ is continuous in B. Let us choose a sequence (vk) that converges

strongly to v in Lp(·)(Ω), implies that vk → v a.e in Ω, hence fn

(|vk |+ 1
n )

γ(x) + µn → fn

(|v|+ 1
n )

γ(x) + µn a.e in Ω,

going back to (19), the dominated convergence theorem gives

fn

(|vk|+ 1
n )

γ(x)
+ µn → fn

(|v|+ 1
n )

γ(x)
+ µn strongly in Lp(·)(Ω),

then we need to prove that G̃(vk) converge to G̃(v) in Lp(·)(Ω). By compactness we already know that

the sequence wk = G̃(vk) converge to some function w in Lp(·)(Ω). So we only need to prove that

w = G̃(v). Since the sequence wk is bounded in W1,p(·)
0 (Ω) and by uniqueness of the weak solution for

the problem (24), we deduce the desired.

Second we need to check that the set G̃(B) is relatively compact. Let vk be a bounded sequence in B

and let wk = G̃(vk). Analogously to (25), for any vk ∈ Lp(·)(Ω), we get

∥wk∥Lp(·)(Ω) = ∥G̃(vk)∥Lp(·)(Ω) ≤ Cn,p,

for some constant Cn,p independent on vk. So that, wk = G̃(vk) is relatively compact in Lp(·)(Ω).

Thus, we can use Schauder’s fixed point theorem to prove the existence of un ∈ W1,p(·)
0 (Ω) solving the
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problem (20). Here fn

(un+
1
n )

γ(x) + µn ≥ 0, using as a test function u−
n = min{un, 0} in problem (21), one

has un ≥ 0. Moreover, by proceeding as in [5,43], we deduce un ∈ L∞(Ω) because the righthand side

of (20) is in L∞(Ω).

Now, we will closely follow the proof of (Lemma 2.1, Lemma 2.2, [7]), (Lemma 2.1, [21]), (Lemma 4.2,

[25]) and of (Lemma 2, [29]) hence we will omit the details, giving only a sketch of the passages. By

(5), (8) and the fact that 0 ≤ fn ≤ fn+1, we can prove that the sequence un is increasing with respect to

n. knowing that, for n ∈ N⋆ fixed, un ∈ L∞(Ω). So, in particular for n = 1, we have that

−div (â(x, Du1)) =
f1

(u1 + 1)γ(x)
+ µ1 ≥ f1

(∥u1∥L∞(Ω) + 1)γ(x)
+ µ1 ≥ 0,

Since f1

(∥u1∥L∞(Ω)+1)γ(x) + µ1 is not identically zero, we apply the strong maximum principle (As in [44]),

which ensures that, for all ω ⊂⊂ Ω, there exists Cω > 0 (independent of n) such that

u1(x) ≥ Cω in ω,

Thus, (22) holds, because un ≥ u1 for all n ∈ N⋆. Since un is increasing in n, we can define u as the

pointwise limit of un. It follows that u ≥ un and by (22) we get, for every ω ⊂⊂ Ω, there exists Cω > 0

(independent of n ) satisfied

u(x) ≥ Cω > 0, for every x ∈ ω, for every n ∈ N⋆.

Observe that for all γ as in (8) and for all ϕ ∈ C∞
0 (Ω), if ω =

{
x ∈ Ω : |ϕ| > 0

}
, we get

∣∣∣∣∣ fnϕ

(un +
1
n )

γ(x)

∣∣∣∣∣ ≤ f ∥ϕ∥L∞(Ω)

min
{

Cγ−
ω ; Cγ+

ω

} ∈ L1(Ω),

If u = +∞ then f ϕ

uγ(x) = 0 and that, for n → +∞, we have

fnϕ

(un +
1
n )

γ(x)
→ f ϕ

uγ(x)
, a.e. in Ω,

Therefore, by Lebesgue dominated convergence theorem, it follows that (23) holds.

Finally we shall prove the uniqueness of the solution un of (20), let us consider un and vn two different

solutions of problem (20). For every fixed n ∈ N⋆, we have

−div (â(x, Dun)) =
fn

(un +
1
n )

γ(x)
+ µn,

and

−div (â(x, Dvn)) =
fn

(vn +
1
n )

γ(x)
+ µn,
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By subtracting the two previous equality, we obtain that

−div (â(x, Dun)− â(x, Dvn)) = fn
(vn +

1
n )

γ(x) − (un +
1
n )

γ(x)

(un +
1
n )

γ(x)(vn +
1
n )

γ(x)
,

We take ϕ = (un − vn)+ := max
{
(un − vn); 0

}
as test function in the weak formulation of the previous

equality and using that

(
â(x, Dun)− â(x, Dvn)

)
· D(un − vn)

+ ≥ 0,(
(vn +

1
n
)γ(x) − (un +

1
n
)γ(x)

)
· (un − vn)

+ ≤ 0,

We find

0 ≤
∫

Ω

(
â(x, Dun)− â(x, Dvn)

)
· D(un − vn)

+ dx ≤ 0,

From (3), we get

0 ≤ α
∫

Ω
|D(un − vn)

+|p(x) dx ≤ 0,

Thus, for every n ∈ N⋆, we have (un − vn)+ = 0, a.e. in Ω, so un ≤ vn. By substituting un with vn and

repeating the same proof, we get that vn ≤ un, so that un ≡ vn. This concludes the proof.

Lemma 4.2. The solution u1 to problem (20) with n = 1 satisfies, for all γ as in (8), there exists a constant

C > 0 such that ∫
Ω

1

uγ(x)
1

dx ≤ C, (26)

Proof of Lemma 4.2. The proof based on adapting the approach of ([15], Lemma 2.3) with similar

arguments as in the proof of Lemma 4.3 in [25], we deduce (26).

5. Uniform Estimates

In this section, we state and prove an uniform estimates for the solutions un of the problem (20).

Lemma 5.1. Suppose that the assumptions of Theorem 3.3 are satisfied and assume that m < p′(·). Then there

exists a constant C > 0 such that

∥un∥W1,p(·)
0 (Ω)

≤ C, (27)

Proof of Lemma 5.1. Choosing un as test function in the weak formulation of (20), by (3), Hölder’s

inequality, Young’s inequality with η > 0, Poincaré’s inequality and the fact that fn ≤ f , we get

α
∫

Ω
|Dun|p(x) dx ≤

∫
Ω

f u1−γ(x)
n dx +

∫
Ω

µnun dx,

≤ ∥ f ∥Lm(Ω)

( ∫
Ω

u(1−γ(x))m′
n dx

) 1
m′
+ η

∫
Ω
|un|p

−
dx
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+
(p− − 1)η− 1

p−−1

(p−)(p−)′

∫
Ω
(µn)

(p−)′ dx

≤ ∥ f ∥Lm(Ω)

( ∫
Ω

u(1−γ(x))m′
n dx

) 1
m′
+ ηCp−

p−

∫
Ω
|Dun|p

−
dx

+
(p− − 1)η− 1

p−−1

(p−)(p−)′

∫
Ω
(µn)

(p−)′ dx

≤ ∥ f ∥Lm(Ω)

( ∫
Ω

u(1−γ(x))m′
n dx

) 1
m′
+ ηCp−

p−

∫
Ω
|Dun|p(x) dx + C1

where Cp− is the constant of Poincaré and

C1 =
(p− − 1)η− 1

p−−1

(p−)(p−)′
∥µ∥(p−)′

L1(Ω)
+ ηCp−

p− |Ω|

Choosing η = α

2Cp−
p−

, we have

α

2

∫
Ω
|Dun|p(x) dx ≤ ∥ f ∥Lm(Ω)

( ∫
Ω

u(1−γ(x))m′
n dx

) 1
m′
+ C1,

By (7), we have

(1 − γ(·))m′ = p⋆(·),

According to Lemma 2.3 (Sobolev Embedding applied on the right hand side) and Lemma 2.1, we

obtain

α

2
δ
( ∫

Ω
up⋆(x)

n dx
) p−

p⋆− ≤ ∥ f ∥Lm(Ω)

( ∫
Ω

up⋆(x)
n dx

) 1−γ(x)
p⋆(x)

+ C1,

where p⋆− := min
x∈Ω

p⋆(x) and δ is the best constant of the Sobolev embedding. Going back to (8), since

1 − γ(·) < p−, we have 1−γ(·)
p⋆(·) < p−

p⋆−
, by Lemma 2.1, we obtain that un is bounded in Lp⋆(·)(Ω) which

finishes the proof.

It is convenient to mention also here the following lemma.

Lemma 5.2. Suppose that the assumptions of Theorem 3.6 are satisfied. Then, there exists a constant Cγ−

independent of n such that

∫
Ω

|Dun|p(x)

(1 + |un|)(1−γ−)
dx ≤ Cγ−

(
1 +

( ∫
Ω
(1 + |un|)

mγ−
m−1 dx

)1− 1
m
)

, γ− := min
x∈Ω

γ(x). (28)

Proof of Lemma 2.1. We define the function ϕγ− : R → R by

ϕγ−(z) =
∫ z

0

dx
(1 + |x|)(1−γ−)

.
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Since ϕγ− is a continuous function, it is easy to see that

ϕγ−(z) =
−1
γ−

(
1 − (1 + |z|)γ−

)
sign(z),

ϕγ−(0) = 0 and |ϕ′
γ−(z)| ≤ 1. We take ϕγ−(un) as a test function in (20), by (3), (19), Hölder’s inequality,

we obtain

α
∫

Ω

|Dun|p(x)

(1 + |un|)(1−γ−)
dx ≤

∥∥∥∥∥ f

uγ(x)
n

∥∥∥∥∥
Lm(Ω)

+ ∥µ∥L1(Ω)

 ∥ϕγ−(un)∥Lm′ (Ω),

In view of Lemma 4.1, we know that un ≥ u1 and there exists a constant M > 0 such that u1 ≤ M, we

have (M
u1
)γ(·) ≤ (M

u1
)γ+

. Hence, it follows from (26), the sequence (un)n is increasing with respect to n

and Hölder’s inequality that ∥∥∥∥∥ f

uγ(x)
n

∥∥∥∥∥
Lm(Ω)

≤ C1∥ f ∥Lm(Ω),

It follows that, ∫
Ω

|Dun|p(x)

(1 + |un|)(1−γ−)
dx ≤ C2

( ∫
Ω
|ϕγ−(un)|

m
m−1 dx

)1− 1
m

, (29)

Since |ϕγ−(z)| = 1
γ−

(
(1 + |z|)γ− − 1

)
, we can write

|ϕγ−(un)|
m

m−1 ≤ C3

(
1 + (1 + |un|)

mγ−
m−1

)

Thanks to this estimate and (29), we deduce that (28) hold.

The estimates on the gradients of un in Lq(·)(Ω) which is proved in the next Lemma.

Lemma 5.3. Suppose that the assumptions of Theorem 3.6 are satisfied. Then there exists a constant C > 0 such

that

∥un∥W1,q(·)
0 (Ω)

≤ C, (30)

for all continuous functions q(·) as in (17).

Proof. In the previous Remark 3.7, we have seen that

1 <
Nm

(
p(x)− 1 + γ−

)
(

N − m(1 − γ−)
) , for all x ∈ Ω.

Now, we discuss two cases:

Case (a): In a first step, let q+ be a constant satisfying

q+ <
Nm

(
p− − 1 + γ−

)
(

N − m(1 − γ−)
) , (31)
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We set θ = q+
p− , due to (7), we see that

Nm
(

p− − 1 + γ−
)

(
N − m(1 − γ−)

) < p−, (32)

So, (31) and (32) imply

θ ∈ (0, 1), and θ < m, (33)

We can apply Hölder’s inequality and using (28), we obtain

∫
Ω
|Dun|q

+
dx =

∫
Ω

|Dun|q
+

(1 + |un|)θ(1−γ−)
(1 + |un|)θ(1−γ−) dx

≤
(∫

Ω

|Dun|p
−

(1 + |un|)(1−γ−)
dx

)θ

·
(∫

Ω
(1 + |un|)

θ
1−θ (1−γ−) dx

)1−θ

≤
(

Cγ−

(
1 +

( ∫
Ω
(1 + |un|)

mγ−
m−1 dx

)1− 1
m
))θ

·
(∫

Ω
(1 + |un|)

θ
1−θ (1−γ−) dx

)1−θ

≤ Cθ
γ

(
1 +

( ∫
Ω
(1 + |un|)

mγ−
m−1 dx

))(1− 1
m )θ

×
(

1 +
( ∫

Ω
(1 + |un|)

θ
1−θ (1−γ−) dx

))1−θ

(34)

By (31) and (32), we get

0 <
(m − 1)q+

(m − 1)q+ + m(p− − q+)
< 1,

The inequalities (31), (32), (33) and the assumption (8) guarantee that

θ

1 − θ
(1 − γ−) <

mγ−

m − 1
< q+⋆ :=

Nq+

N − q+
, (35)

Indeed, since q+ <
N
(

p−−1+γ−
)

(
N−1+γ−

) , we have

θ

1 − θ
(1 − γ−) < q+⋆ :=

Nq+

N − q+
,

From (31), (32) and (8), we obtain

(m − 1)q+

(m − 1)q+ + m(p− − q+)
< γ− < 1 − q+⋆

(m − 1
m

)
,

On the other hand, since m < Np−

Np−−(N−p−)(1−γ−) =
(

p−⋆

1−γ−

)′

we have

p− <
mN(1 − γ−)

N(m − 1) + m(1 − γ−)
,
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This inequality equivalent to (32), which gives

γ− < 1 − q+⋆
(m − 1

m

)
So, by (8), we have p− < mN

N(m−1)+m and using (33) we find q+ < mN
N(m−1)+m , which is equivalent to

0 < 1 − q+⋆
(m − 1

m

)
.

Therefore, by (34), (35), we can write

∫
Ω
|Dun|q

+
dx ≤ C1

(
1 +

∫
Ω
(1 + |un|)

mγ−
m−1 dx

)1+(1− 1
m )θ−θ

≤ C2

(
1 +

∫
Ω
|un|

mγ−
m−1 dx

)1− θ
m

≤ C3

(
1 +

∫
Ω
|un|q

+⋆
dx
)1− θ

m

,

(36)

Due to the Sobolev inequality with q+⋆, we see that

∫
Ω
|Dun|q

+
dx ≤ C4

(
1 +

∫
Ω
|Dun|q

+
dx
)( N

N−q+
)(1− θ

m )

,

Consequently

∫
Ω
|Dun|q

+
dx ≤ C5 + C6

(∫
Ω
|Dun|q

+
dx
)η

, η =
( N

N − q+
)(

1 − θ

m

)
, (37)

Thanks to (7) and (8), which gives

m <
Np−

Np− − (N − p−)(1 − γ−)
<

Np−

Np− − N + p−
<

N
p−

, (38)

together with the assumption (31) and (33), this implies that η ∈ (0, 1). Hence, by (37) and applying

|Dun|q(·) ≤ |Dun|q
+
+ 1, we deduce that (30) hold. This completes the proof in case (a).

Case (b): In a second step, we suppose that (17) hold and

q+ ≥
Nm

(
p− − 1 + γ−

)
(

N − m(1 − γ−)
) ,

By the continuity of p(·) and q(·) on Ω, there exists a constant δ > 0 such that

max
z∈B(x,δ)∩Ω

q(z) < min
z∈B(x,δ)∩Ω

Nm(p(z)− 1 + γ−)

(N − m(1 − γ−))
, for all x ∈ Ω, (39)

Where B(x, δ) is a ball with center x and diameter δ.
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Note that Ω is compact and therefore we can cover it with a finite number of balls (Bi)i=1,...,k. Moreover,

there exists a constant ρ > 0 such that

|Ωi| = meas(Ωi) > ρ, Ωi := Bi ∩ Ω, for all i = 1, . . . , k. (40)

We denote by q+i the local maximum of q on Ωi (respectively p−i the local minimum of p on Ωi ) i.e.

q+i := max
t∈Ω

q(t), p−i := min
t∈Ω

p(t), such that

q+i <
Nm

(
p−i − 1 + γ−

)
(

N − m(1 − γ−)
) , for all i = 1, . . . , k. (41)

Arguing locally as in (36), we obtain

∫
Ωi

|Dun|q
+
i dx ≤ C7

(
1 +

∫
Ωi

|un|q
+⋆
i dx

)(1− θi
m )

, for all i = 1, . . . , k. (42)

Where q+⋆
i := Nq+i

N−q+i
and θi =

q+i
p−i

. Thanks to the Poincaré-Wirtinger inequality, it results

∥un − ũn∥
Lq+i

⋆

(Ωi)
≤ C8∥Dun∥Lq+i (Ωi)

, (43)

Where

ũn =
1

|Ωi|

∫
Ωi

un(x) dx,

Since (un)n is bounded in L1(Ω). So, in view of (40), we find

∥ũn∥L1(Ω) ≤ C9,

Moreover it follows from (43) that

∥un∥
Lq+i

⋆

(Ωi)
≤ ∥un − ũn∥

Lq+i
⋆

(Ωi)
+ ∥ũn∥

Lq+i
⋆

(Ωi)

≤ C8∥Dun∥Lq+i (Ωi)
+ C9, for all i = 1, · · · , k.

Therefore, from (42), we derive

∫
Ωi

|Dun|q
+
i dx ≤ C10 + C11

(∫
Ωi

|Dun|q
+
i dx

)( N
N−q+i

)(
1− θi

m

)
,

Going back to (41) and we reason locally as in (38), we conclude that

0 <
( N

N − q+i

)(
1 − θi

m

)
< 1,
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Hence, we have

∫
Ωi

|Dun|q
+
i dx ≤ C12, for all i = 1, . . . , k.

Knowing that

q(x) ≤ q+i , for all x ∈ Ωi and for all i = 1, . . . , k.

We conclude that

∫
Ωi

|Dun|q(x) dx ≤
∫

Ωi

|Dun|q
+
i dx + |Ωi| ≤ C13.

Since Ω ⊂
N⋃

i=1

Ωi, for all i = 1, . . . , k. So that

∫
Ω
|Dun|q(x) dx ≤

k

∑
i=1

∫
Ωi

|Dun|q(x) dx ≤ C13.

where C13 is a constant independent of u. This finishes the proof of the Lemma 5.3.

Remark 5.4. Remark that the result given in Lemma 5.3 also holds for any measurable function q : Ω → R

such that

ess inf
x∈Ω

(
Nm(p(x)− 1 + γ−)

N − m(1 − γ−)
− q(x)

)
> 0, γ− := min

x∈Ω
γ(x),

Indeed, there exists a continuous function r : Ω → R such that for almost every x ∈ Ω:

q(x) ≤ r(x) ≤ Nm(p(x)− 1 + γ−)

N − m(1 − γ−)
.

Moreover, from Lemma 5.3, we deduce that (un)n is bounded in W1,r(·)
0 (Ω). So, thanks to the continuous

embedding W1,r(·)
0 (Ω) ↪→ W1,q(·)

0 (Ω), we get the desert result.

To continue we need the following lemma.

Lemma 5.5. Suppose that the assumptions of Theorem 3.11 are satisfied. Then there exists a constant C > 0

such that

∥un∥W1,q(·)
0 (Ω)

≤ C, (44)

for all continuous functions q(·) as in (18).

Proof. Let ν > 1, we define the function ϱν(·) : R 7−→ R given by

ϱν(t) =
∫ t

0

dx
(1 + |x|)(ν−γ−)

, γ− := min
x∈Ω

γ(x),
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It is clear that

ϱν(t) =
1

1 + γ− − ν

(
(1 + |t|)1+γ−−ν − 1

)
sign(t),

Note that ϱν is a continuous function satisfies ϱν(0) = 0 and |ϱ′ν(·)| ≤ 1. We take ϱν(un) as a test

function in weak formulation of (20), using the assumption (3), (19) and the fact that

∥ϱν(t)∥L∞(Ω) ≤
∫ +∞

−∞

dx
(1 + |x|)(ν−γ−)

< +∞,

we obtain ∫
Ω

|Dun|p(x)

(1 + |un|)(ν−γ−)
dx ≤ 1

α

(
Cν∥ f ∥L1(Ω) + ∥µ∥L1(Ω)

)
, (45)

In particular, there exists C1 > 0 such that

∫
Ω

|Dun|p
−

(1 + |un|)(ν−γ−)
dx ≤ C1, (46)

Observe that (18), (6) and (7) imply that

q(x) <
N
(

p(x)− 1 + γ−
)

(
N − 1 + γ−

) < p(x), for all x ∈ Ω, γ− := min
x∈Ω

γ(x), (47)

Let us write ∫
Ω
|Dun|q(x) dx =

∫
Ω

|Dun|q(x)

(1 + |un|)
q(x)
p(x) (ν−γ−)

(1 + |un|)
q(x)
p(x) (ν−γ−) dx.

Then, by (45) and Young’s inequality, we obtain

∫
Ω
|Dun|q(x) dx ≤ C2 + C3

∫
Ω
(1 + |un|)

q(x)(ν−γ−)
p(x)−q(x) dx, (48)

The assumption (18) guarantees that q⋆(x)(p(x)−q(x))
q(x) + γ− > 1„ where

q⋆(·) = Nq(·)
N − q(·) ,

Choosing

ν = min
x∈Ω

(q⋆(x)(p(x)− q(x))
q(x)

+ γ−
)
> 1,

Again, thanks to the choice of ν and (18), we find

q(x)(ν − γ−)

p(x)− q(x)
≤ q⋆(x), ∀x ∈ Ω, (49)

Hence, it follows from (48), (49) that

∫
Ω
|Dun|q(x) dx ≤ C2 + C4

∫
Ω

uq⋆(x)
n dx, (50)
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From Lemma 2.3 ( Sobolev Embedding applied on the right hand side ) and Lemma 2.1, we get

δ
( ∫

Ω
uq⋆(x)

n dx
)
≤ C2 + C4

( ∫
Ω

uq⋆(x)
n dx

)1− q−
N

,

where q⋆− := min
x∈Ω

p⋆(x) and δ is the best constant of the Sobolev embedding. Using Lemma 2.1, we

obtain that un is bounded in Lp⋆(·)(Ω), hence (44) holds.

Remark 5.6. By the same manner as the proof of Lemma 5.3 with similar reasoning, we can easily prove lemma

5.5.

6. Proof of Main Results

In this section, using the uniform estimates of Section 5, we prove Theorems 3.3-3.6-3.11.

Remark that the proof of Theorem 3.3 by using Lemma 5.1 is similar to that of Theorem 3.6, here we

only give the proof of Theorem 3.6 and Theorem 3.11.

Proof of Theorem 3.6. According to Lemma 5.3, the sequence (un) is bounded in W1,p(·)
0 (Ω), where p(·)

is defined as (6). we can therefore deduce that

un ⇀ u weakly in W1,p(·)
0 (Ω),

un → u strongly in Lp(·)(Ω),

un → u a.e. in Ω,

Dun ⇀ Du weakly in Lp(·)(Ω),

(51)

By the assumption (5), Lebesgue’s dominated convergence theorem, with the help of techniques used

in [35] and adapting the approach of [33], we obtain, there exists a subsequence (still denoted (un))

such that

Dun → Du a.e in Ω, (52)

From (52), we get

â(x, Dun) → â(x, Du) a.e in Ω, (53)

Now, we prove that

â(x, Dun) → â(x, Du) strongly in Lr(·)(Ω), (54)

where r is a continuous function on Ω such that

1 < r(x) <
Nm(

N − m(1 − γ−)
) , for all x ∈ Ω, γ− := min

x∈Ω
γ(x), (55)

Note that the choice of r(·) > 1 is possible since we have (6), (7) and (8). By (55), we can choose σ a
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continuous function on Ω such that

1 < r(x) < σ(x) <
Nm(

N − m(1 − γ−)
) , for all x ∈ Ω,

and
1

p(·)− 1 + γ− < σ(x) <
Nm(

N − m(1 − γ−)
) , for all x ∈ Ω,

Then

1 < σ(x)
(

p(·)− 1 + γ−
)
<

Nm
(

p(·)− 1 + γ−
)

(
N − m(1 − γ−)

) , and σ(·) < Nm(
N − m(1 − γ−)

) < p′(·), (56)

Using the assumption (4), we get

|â(·, Dun)|σ(·) ≤ C1

(
hσ(·) + |Dun|σ(·)(p(·)−1)

)
,

Therefore, by the last estimate together with (56), Lemma 5.3, Lemma 2.1, (12) and the Poincaré

inequality, we conclude that (â(·, Dun))n is bounded in Lr(·)(Ω).

To establish the equi-integrability of (â(·, Dun))n on Ω, We can apply Hölder’s inequality and using

Lemma 2.1, we obtain

∫
E
|â(x, Dun)|r(x) dx ≤ ∥|â(x, Dun)|r(x)∥

L
σ(·)
r(·) (Ω)

· ∥1∥
L
(

σ(·)
r(·) )

′
(Ω)

≤ C2 max
{
|E|

1
ν+ ; |E|

1
ν−
}

, ν =
σ(·)

σ(·)− r(·) ,

Hence, thanks to (53) and Vitali’s theorem, we derive (54).

Finally, for ϕ ∈ C∞
0 (Ω), we have

∫
Ω

â(x, Dun)Dϕ dx =
∫

Ω

fn

(un +
1
n )

γ(x)
ϕ dx +

∫
Ω

µnϕ dx, (57)

So, using (19), (23) and (54), we can easily pass to the limit in (57) for all ϕ ∈ C∞
0 (Ω). This proves

Theorem 3.6.

By proceeding as in Theorem 3.6 and using Lemma 5.5, we have Theorem 3.11. We are now ready to

prove Theorem 3.11.

Proof of Theorem 3.11. Suppose that (19) hold true, then in an analogous way, it is possible to prove that

â(x, Dun) → â(x, Du) strongly in Lτ(·)(Ω), (58)



Singular Elliptic Equations with Variable Exponents / Abdelaziz Hellal 164

where τ is a continuous function on Ω such that

1 < τ(x) <
N(

N − 1 + γ−
) , for all x ∈ Ω, γ− := min

x∈Ω
γ(x), (59)

Remark that the choice of τ(·) > 1 is possible since we have (8). Arguing as the proof of Theorem 3.6,

by taking into account (19), (23), (59) and (57), we conclude the proof of the Theorem 3.11.

Remark 6.1. Observe that in the constant case and f ∈ Lm(Ω), according to (37) the problem (2) has a unique

nonnegative weak solution u ∈ W1,q
0 (Ω). Moreover, u possesses the regularity q =

Nm
(

p−1+ν

)
(

N−m(1−ν)

) provided that

ν ∈ (0, 1). For the nonconstant case, it remains an open problem to show that u ∈ W1,q(·)
0 (Ω), where q(·) is a

continuous function on Ω satisfying

q(x) =
Nm(x)

(
p(x)− 1 + γ−

)
(

N − m(x)(1 − γ−)
) , for all x ∈ Ω, γ− := min

x∈Ω
γ(x),

with m(·) recorded as in (7).

Remark 6.2. We point out that all our previous results (Theorems 3.3-3.6-3.11) hold true as long as the problem

(2) is exchanged by a more general one,


−div (â(x, u, Du)) = H(u) f + µ, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

Where â(x, t, ξ) = {ai(x, t, ξ)}i=1,...,N : Ω × R × RN → RN is a Carathéodory vector-valued function such

that for a.e. x ∈ Ω and for every (t, ξ) ∈ R × RN , the following assumptions hold:

â(x, t, ξ)ξ ≥ α|ξ|p(x), â(x, t, ξ) = (a1, . . . , aN), α > 0,

|â(x, t, ξ)| ≤ β
(

h + |t|p(x)−1 + |ξ|p(x)−1
)

, β > 0, h ∈ Lp′(·)(Ω),

(â(x, t, ξ)− â(x, t, ξ ′))(ξ − ξ ′) > 0, ξ ̸= ξ ′,

With Ω is a bounded open domain in RN (N ≥ 2) with Lipschitz boundary ∂Ω, 0 ≤ µ ∈ L1(Ω), and f is a

nonnegative function of L1(Ω) (or Lm(·)(Ω) ) with m(·) > 1 being small.

We assume that the nonlinearity term H : R+ → R+ is a continuous and possibly singular function, such that

H(0) ̸= 0, lim
u→+∞

H(u) := H(+∞) < +∞,

There exists M > 0, for all u ∈ (0,+∞), such that : H(u) ≤ M,

There exists M̂ > 0, such that : H(u) ≤ M̂
uγ(x)

, for all u ∈ (0,+∞), for all x ∈ Ω,
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where γ : Ω −→ (0, 1) is continuous functions satisfies:

0 < γ− := min
x∈Ω

γ(x) ≤ γ+ := max
x∈Ω

γ(x) < 1, |∇γ| ∈ L∞(Ω), for all x ∈ Ω.

while m : Ω → (1,+∞) and the variable exponent p : Ω → (1,+∞) are continuous functions such that, for all

x ∈ Ω,

1 − γ(x) +
1

m(x)
− 1 − γ(x)

N
< p(x) < N, |∇m| ∈ L∞(Ω), |∇γ| ∈ L∞(Ω),

1 < m(x) < m̂1(x), m̂1(x) =
Np(x)

Np(x)− (N − p(x))(1 − γ(x))
=
( p⋆(x)

1 − γ(x)

)′

,

where

|∇m| ∈ L∞(Ω), |∇γ| ∈ L∞(Ω).

Conclusions

In this paper, we have studied the existence, uniqueness, and regularity of nonnegative weak solutions

to the singular elliptic equations involving a nonlinear singular term with variable exponents and

showed that the singular term has regularizing effects on the solutions of the problem by applied

method of approximations and the Schauder fixed point theorem; nevertheless, some methods for

elliptic equations operators can not directly be applied to our problem by cause of the nonlinearity of

the operator A which depends on p(·) and the nonlinear singular term which depends on γ(·) that is

attached on m(·). Furthermore, we have proved that the existence, uniqueness, and regularity of weak

solutions depend on the summability of f , m(·) and the value of γ(·).

Acknowledgements

The author would like to thank the referee for his/her comments and suggestions. This work was

supported by the algerian PRFU Project-MESRS under number C00L03UN280120220010. Data

availability: Data sharing not applicable to this article as no datasets were generated or analysed

during the current study.

References

[1] H. Abdelaziz and F. Mokhtari, Nonlinear anisotropic degenerate parabolic equations with variable

exponents and irregular data, J. Elliptic and Parabolic Equations, 8(2022), 513-532.

[2] S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions, Existence,

Uniqueness, Localization, Blow-up, Atlantis Press, Amsterdam, (2015).

[3] L. Boccardo and G. Croce, The impact of a lower order term in a dirichlet problem with a singular

nonlinearity, Portugaliae Mathematica, European Mathematical Society Publishing House, 76(3-

4)(2019), 407-415.



Singular Elliptic Equations with Variable Exponents / Abdelaziz Hellal 166

[4] L. Boccardo and T. Gallouet, Nonlinear elliptic equations with right hand side measures, Commun.

Partial Differ. Equ., 17(3–4)(1992), 641-655.

[5] L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear unilateral problems,

Ann. Mat. Pura Appl., 152(1988), 183-196.

[6] B. Bougherara, J. Giacomoni and J. Hernández, Some regularity results for singular elliptic problems,

Dyn. Syst. Differ. Equ. Appl. Proc. AIMS 2015, (2015), 142–150.

[7] L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37(2010),

363-380.

[8] H. Brezis, Analyse fonctionnelle theorie et applications, New York, Springer, (2010).

[9] S. S. Byun and E. Ko, Global C1,α regularity and existence of multiple solutions for singular p(x)-Laplacian

equations, Calc. Var., 56(2017).

[10] A. Callegari and A. Nachman, Nonlinear singular boundary value problem in the theory of pseudoplastic

fluids, SIAM. J. Appl. Math., 38(1980), 275-281.

[11] A. Canino, B. Sciunzi and A. Trombetta, Existence and uniqueness for p-laplace equations involving

singular nonlinearities, Nonlinear Differ. Equ. Appl., 23(2016).

[12] J. Carmona and P. J. Mart´inez-Aparicio, A Singular Semilinear Elliptic Equation with a Variable

Exponent, Adv. Nonlinear Stud., (2016).

[13] J. Carmona, P. J. Martínez-Aparicio and J. D. Rossi, A singular elliptic equation with natural growth

in the gradient and a variable exponent, Nonlinear Differ. Equ. Appl., 22(2015), 1935-1948.

[14] M. Chipot, On some singular nonlinear problems for monotone elliptic operators, Rend.Lincei Mat.

Appl., 30(2019), 295-316.

[15] Y. Chu, R. Gao and Y. Sun, Existence and regularity of solutions to a quasilinear elliptic problem involving

variable sources, J. Springer Boundary Val. Pro., 2017(2017), 1-15.

[16] Y. Chu, Y. Gao and W. Gao, Existence of solutions to a class of semilinear elliptic problem with nonlinear

singular terms and variable exponent, J. Funct. Spaces, 4(2016), 1-11.

[17] R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, Switzerland,

(2016).

[18] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity,

Communications in Partial Differential Equations, 2(2)(1977), 193–222.

[19] D. Cruz-Uribe, A. Fiorenza, M. Ruzhansky and J. Wirth, Variable Lebesgue Spaces and Hyperbolic

Systems, Advanced Courses in Mathematics - CRM Barcelona. Birkhaüser, Basel, (2014).



Singular Elliptic Equations with Variable Exponents / Abdelaziz Hellal 167

[20] L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptotic Analysis, 84(2013),

181-195.

[21] L. M. De Cave, R. Durastanti and F. Oliva, Existence and uniqueness results for possibly singular

nonlinear elliptic equations with measure data, NoDEA, Nonlinear Differential Equations Appl.,

25(2018).

[22] L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data,

Nonlinear Anal., 128(2015), 391-411.

[23] L. Diening, P. Hästö, T. Harjulehto and M. Ružička, Lebesque and Sobolev spaces with variable
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