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Abstract

We extended a theorem of Das, Ghosh and Ray [4] obtained a result on degree of approximation of

function in the Hölder metric by (e, c) mean. In 2022, Rathore, Shrivastava and Mishra [13] has been

determined the result on degree of approximation of a function in the Hölder metric by (C, 1) F(a,

q) mean of its Fourier series. Further we extend the result on degree of approximation of function

in the Hölder metric by (C, 1) (e, c) means of its Fourier series, has been proved.
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1. Introduction

Chandra [3] was first to extend the result of Prössdorf’s [9]. In 1983, Mohapatra and Chandra [8] result

to find the degree of approximation in the Hölder metric using matrix transform. In this direction

we studied on approximation of f belong to many classes also Hölder metric by Cesaro, Nörlund,

Euler mean has been discussed by several researchers like respectively Das, Ghosh and Ray [4], Lal

and Kushwaha [7], Rathore and Shrivastava [10], Rathore, Shrivastava and Mishra [12] etc. In 2022,

Rathore, Shrivastava and Mishra [11] has been determined on approximation of function in the Hölder

metric by (C, 1)[F, dn] product summability of Fourier series. Recently Rathore, Shrivastava and Mishra

[13] determined a theorem on the degree of approximation of function in the Hölder Metric by (C, 1)

F(a, q) means. Further we extend the result on the degree of approximation of function in the Hölder

metric by (C 1)(e, c) means of its Fourier series, has been proved.
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2. Definition and Notation

Let f be a periodic function and integrable in the Lebesgue sense over [−π, π]. Then

f (x) =
a0

2
+

∞

∑
n=1

(ancos nx + bnsin nx) (1)

Let C2π denote the Banach Spaces of all 2π− periodic continuous function under ‘’sup” norm for

0 < α ≤ 1 and some positive constant K, the function space Hα is given by the following

Hα = { f ∈ C2π : | f (x)− f (y)| ≤ K|x − y|α} (2)

The space Hα is a Banach space (see Prossdorf’s [9]) with the norm | · |α defined by

∥ f ∥α = ∥ f ∥c + sup
x,y

∆α[ f (x, y)] (3)

where,

∥ f ∥c = sup
−π≤x≤π

| f (x)| (4)

and

∆α{ f (x, y)} = |x − y|−α| f (x)− f (y)|, (x ̸= y) (5)

We shall use the convention that ∆0 f (x, y) = 0. The metric induced (3) on the Hα is called the Hölder

metric. If can be seen that ∥ f ∥β ≤ (2π)α−β∥ f ∥α for 0 ≤ β < α ≤ 1. Thus {(Hα, ∥ · ∥α)} is a family of

Banach spaces. We write

ϕx(t) = { f (x + t) + f (x − t)− 2 f (x)} (6)

Let Sk( f ; x) be the kth partial sum of (1). Then (see Titchmarsh [16]).

Sk( f ; x)− f (x) =
1
π

∫ π

0

ϕx(t)
sin t

2
sin
(

k +
1
2

)
t dt (7)

and

lim
n→∞

ec
n = lim

n→∞

√
c

πn

∞

∑
r=−∞

exp
(
−cr2

k

)
Sk+r (8)

where, Sk+r = 0, for k + r < 0 and

∥ec
n − f ∥ = sup

−π≤x≤π
|ec

n ( f : x)− f (x)| (9)

where ec
n ( f : x) is nth (e, c) means of f at x, we have

ec
n( f ; x)− f (x) =

1
π

√
c

πn

∫ π

0

∅x(t)
sin t

2

[
∞

∑
r=−k

exp
(
− cr2

k

)
sin
(

k + r +
1
2

)
t

]
dt (10)



Degree of Approximation of Function in the Hölder Metric (C 1)(e, c) Means of its Fourier Series / H. L. Rathore 101

Then the infinite series
∞
∑

n=0
un with partial sum Sn is said to be summable by (e, c) method to a definite

number S (Hardy [5]). A product of (C, 1) and (e, c) mean defines (C, 1) (e, c) means and denoted by

C1
nec

n. Thus if

C1
nec

n =
1

n + 1

n

∑
k=0

ec
k → s as n → ∞ (11)

then
∞
∑

n=0
un is summable by (C, 1) (e, c) means.

3. Inequalities

We require the following inequalities.

∞

∑
r=k+1

r exp
(
− cr2

k

)
≤ k

2c
exp(−ck) (12)∣∣∣∣∣ ∞

∑
r=k+1

exp
(
− cr2

k

)
sin
(

k + r +
1
2

)
t

∣∣∣∣∣ ≤ kt
2c

exp(−ck) (13)

∞

∑
r=k+1

exp
(
− cr2

k

)
cos(rt) = O

{
exp(−ck)

t

}
(14)

1 + 2
∞

∑
r=1

exp
(
− cr2

k

)
cos rt =

√
πk
c

{
exp

(
−kt2)

4c

)
+ O

(
exp

(
−kπ

4c

))}
(15)

The inequality (13) follow from (12), (14) may be obtained and using Able’s Lemma and (15) may be

obtained by classical formula for theta function (see siddiqui [15]) and (12) is due to Shrivastava &

Verma [14].

4. Some Theorems

In 1928, Alexits [1] proved the following theorem.

Theorem 4.1. If f ∈ C2π∩ Lip α, (0 < α ≤ 1) then

∣∣∣σn
δ − f

∣∣∣ = O
(
n−a log n

)
(16)

where 0 < α ≤ δ ≤ 1 and σδ
n( f ; x) is (C, δ) mean of {Sn( f ; x)}.

The case α = δ = 1 was proved by Bernstein [2]. Theorem 4.1, was extended by several workers such

as Holland, Sahney and Tzimbalario [6]. Replacing (C, δ) mean by (E, q)(q > 0) Chandra [3] obtained

the following result:

Theorem 4.2. Let 0 ≤ β < α ≤ 1 and let f ∈ Hα. Then

∥En
q( f )− f ∥β = O

{
nβ−α log n

}
(17)

where, En
q( f , x) denotes (E, q) transform of Sn( f ; x).



Degree of Approximation of Function in the Hölder Metric (C 1)(e, c) Means of its Fourier Series / H. L. Rathore 102

Das, Ghosh and Ray [4] extended the result of Hölder metric by (e, c) means. Their as follows theorem.

Theorem 4.3. Let 0 ≤ β < α ≤ 1 and f ∈ Hα. Then

∥en( f )− f ∥β = O
(

nβ−α log n
)

. (18)

Rathore and Shrivastava [10] obtained the degree of approximation of function of belonging to

weighted class by (C, 1)(e, c) means. We have proved.

Theorem 4.4. If f : R → R is 2π-periodic Lebesgue integrable on [−π, π] and belonging to the Lipschitz class

then approximation of f by the (C, 1)(e, c) means of its Fourier series satisfies for n = 0, 1, 2, . . .,

∥(C, e)c
n(x)− f (x)∥∞ = O(n + 1)−α for 0 < α < 1 (19)

We extend the above results

5. Main Results

Lemma 5.1. Let Φx(t) be defined in (6) and for f ∈ Hα, then

∣∣Φx(t)− Φy(t)
∣∣ ≤ 4k|x − y|a (20)∣∣Φx(t)− Φy(t)
∣∣ ≤ 4k|t|a (21)

|F(t)| =
∣∣ϕx(t)− ϕy(t)

∣∣ (22)

Lemma 5.2. Let Mn(t) = 1
π(n+1)

n
∑

k=0

sin(k+ 1
2 )t

sin t
2

then Mn(t) = O(n + 1), for 0 ≤ t ≤ π
n+1 .

Proof. sin nt ≤ n sin t for 0 ≤ t ≤ π
n+1

Mn(t) =
1

π(n + 1)

n

∑
k=0

(2k + 1) sin t
2

sin t
2

=
1

π(n + 1)

n

∑
k=0

(2k + 1)

= O(n + 1)n (23)

Lemma 5.3. Let Mn(t) = 1
π(n+1)

n
∑

k=0

sin(k+ 1
2 )t

sin t
2

then Mn(t) = O
( 1

t

)
for π

n+1 ≤ t ≤ π.

Proof. sin
( t

2

)
≥ t

π and sin kt ≤ 1 for π
n+1 ≤ t ≤ π

Mn(t) =
1

π(n + 1)

n

∑
k=0

1
t/π
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= O
(

1
t

)
(24)

Theorem 5.4. Let 0 ≤ β < α ≤ 1 and f ∈ Hα then

|(C, e)c
n − f (x)|β = O

[
(n + 1)β−α log(n + 1)

]
, (25)

where, (C, e)c
n is the product summability (C, 1)(e, c) mean of Sn( f , x).

Proof. Titchmarsh [16] and using Riemann - Lebesgue theorem,

Sn( f ; x)− f (x) =
1
π

∫ π

0

ϕx(t)
sin t

2
sin
(

n +
1
2

)
tdt (26)

Using (1) the (e, c) mean (ec
n) of Sn( f ; x) is

ec
n − f (x) =

1
π

∫ π

0

ϕx(t)
sin t

2

√
c

πn

∞

∑
r=−k

exp
(
−cr2

k

)
sin
(

k +
1
2

)
tdt (27)

We have

ec
n(t) =

√
c

πn

∞

∑
r=−k

exp
(
−cr2

k

)
sin
(

k +
1
2

)
t (28)

=

√
c

πn


{

1 + 2
k
∑

r=1
exp

(
−cr2

k

)
cos rt

}
sin
(
k + 1

2

)
t+

∞
∑

r=k+1
exp

(
−cr2

k

)
sin
(
k + r + 1

2

)
t


=

√
c

πn

{
1 + 2

∞

∑
r=1

exp
(
−cr2

k

)
cos rt

}
sin
(

k +
1
2

)
t

−
√

c
πn

2
∞

∑
r=k+1

exp
(
−cr2

k

)
cos rt sin

(
k +

1
2

)
t

+

√
c

πn

∞

∑
r=k+1

exp
(
−cr2

k

)
sin
(

k + r +
1
2

)
t

= Jn(t) + Kn(t) + Ln(t)

Product (C, 1) (e, c) mean of Sn( f ; x) as C1
nec

n. We write

C1
nec

n − f (x) =
1

π(n + 1)

n

∑
k=0

∫ π

0

ϕx(t)
sin t

2
{Jn(t) + Kn(t) + Ln(t)} dt (29)

Writing

In(x) = C1
nec

n − f (x) =
1

π(n + 1)

n

∑
k=0

∫ π

0

ϕx(t)
sin t

2
{Jn(t) + Kn(t) + Ln(t)} dt (30)
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We have

|In(x)| =
∣∣∣C1

nec
n − f (x)

∣∣∣ = ∣∣∣∣∣ 1
2π(n + 1)

n

∑
k=0

∫ π

0

ϕx(t)
sin t

2
{Jn(t) + Kn(t) + Ln(t)} dt

∣∣∣∣∣
Now

|In(x)− In(y)| =
∣∣∣∣∣ 1
π(n + 1)

n

∑
k=0

∫ π

0

ϕx(t)− ϕy(t)
sin t

2
{Jn(t) + Kn(t) + Ln(t)} dt

∣∣∣∣∣
=

∣∣∣∣∣ 1
π(n + 1)

n

∑
k=0

∫ π

0

F(t)
sint /2

{Jn(t) + Kn(t) + Ln(t)} dt

∣∣∣∣∣
= |I1 + I2 + I3| (31)

Now

|I1| =
∣∣∣∣∣ 1
π(n + 1)

n

∑
k=0

∫ π

0

F(t)
sin t

2
{Jn(t)} dt

∣∣∣∣∣
|I1| ≤

1
π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2

√
c

πk

{
1 + 2

∞

∑
r=1

exp
(
−cr2

k

)
cos rt

}
sin
(

k +
1
2

)
tdt (32)

=
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2

√
c

πk

√
πk
c

{
exp

(
−kt2

4c

)
+ O

(
exp

(
−kπ

4c

))}
sin
(

k +
1
2

)
t

=
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2

{
exp

(
−kt2

4c

)
+ O

(
exp

(
−kπ

4c

))}
sin
(

k +
1
2

)
t (33)

= I1.1 + I1.2 (34)

Now

I1.1 =
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2
exp

(
−kt2

4c

)
sin
(

k +
1
2

)
t

= O
(

exp
(
−nt2

4c

))
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2
sin
(

k +
1
2

)
t

= O(1)
(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|Mn(t)dt

= I1.11 + I1.12 (35)

Now

I1.11 =
∫ π/n+1

0
|F(t)|Mn(t)dt

= O(n + 1)
∫ π/n+1

0
|t|αdt

= O(n + 1)−α (36)
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Now

I1.12 =
∫ π

π/n+1
|F(t)|Mn(t)dt

=
∫ π

π/n+1
|t|αO

(
1
t

)
dt

=
∫ π

π/n+1
|t|α−1dt

= O(n + 1)−α (37)

Now

I1.2 =
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2

{
O
(

exp
(
−kπ

4c

))}
sin
(

k +
1
2

)
tdt

= O
(

exp
(
−nπ

4c

)) ∫ π

0
|F(t)|Mn(t)dt

= O(1)
(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|Mn(t)dt

= O(n + 1)−α (38)

Then

I1 = O(n + 1)−α (39)

Now

|I2| =
∣∣∣∣∣ 1
π(n + 1)

n

∑
k=0

∫ π

0

F(t)
sin t

2
Kn(t)dt

∣∣∣∣∣
|I2| ≤ − 2

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2

√
c

πk

∞

∑
r=k+1

exp
(
−cr2

k

)
cos rt sin

(
k +

1
2

)
tdt

= − 2
π(n + 1)

n

∑
k=0

√
c

πk

∫ π

0

|F(t)|
sin t

2
sin
(

k +
1
2

)
t.O
(

exp(−ck)
t

)
dt using inequality (14) (40)

= O
(

n−1/2 exp(−cn)
) ∫ π

0

|F(t)|
t

Mn(t)dt

= O(1)
(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|

t
Mn(t)dt

= O(n + 1)−α (41)

Now

|I3| ≤
1

π(n + 1)

n

∑
k=0

∫ π

0

|F(t)|
sin t

2
Ln(t)dt

=
1

π(n + 1)

n

∑
k=0

√
c

πk

∫ π

0

|F(t)|
sin t

2

∞

∑
r=k+1

exp
(
−cr2

k

)
sin
(

k + r +
1
2

)
tdt

=
1

π(n + 1)

n

∑
k=0

√
c

πk

∫ π

0

|F(t)|
sin t

2
· kt

2c
exp(−ck)dt using inequality (13)
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=
O
(
n−1/2 exp(−cn)

)
π(n + 1)

n

∑
k=0

√
c

πk

∫ π

0

|F(t)|
sin t

2
· t

2c
exp(−ck)dt

= O
(

exp(−cn)√
n

) ∫ π

0
|F(t)|dt since | sin

t
2
| ≤ t

2

= O(1)
(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|dt

= O(n + 1)−α (42)

Now using

|F(t)| =
∣∣Φx(t)− Φy(t)

∣∣
= O (|x − y|α) (43)

I1.11 =
∫ π/n+1

0
|F(t)|Mn(t)dt

=
∫ π/n+1

0
O (|x − y|α) Mn(t)dt

= O (|x − y|α)O(n + 1)

= O (|x − y|α) (44)

I1.12 =
∫ π

π/n+1
·O (|x − y|α) Mn(t)dt

= O (|x − y|α)
∫ π

π/n+1
·O
(

1
t

)
dt

= O (|x − y|α) log(n + 1) (45)

I1.1 = O (|x − y|α) + O (|x − y|α) log(n + 1)

= O (|x − y|α) log(n + 1) (46)

Similarly

I1,2 = O (|x − y|α) log(n + 1) (47)

Then

I1 = O (|x − y|α) log(n + 1) (48)

I2 = O(1)
(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|

t
Mn(t)dt

=
∫ π/n+1

0
O (|x − y|α)O(n + 1)

1
t
+
∫ π

π/n+1
.O (|x − y|α) 1

t
O
(

1
t

)
=

(∫ π/n+1

0
O (|x − y|α)O(n + 1)

1
t
+
∫ π

π/n+1
·O (|x − y|α) 1

t
O
(

1
t

))
dt

= O (|x − y|α) log(n + 1) + O (|x − y|α)
∫ π

π/n+1
·t−2dt

= O (|x − y|α) log(n + 1) + O (|x − y|α)
[

t−1

−1

]π

π/(n+1)
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= O (|x − y|α) log(n + 1) (49)

Now

I3 =

(∫ π/n+1

0
+
∫ π

π/n+1

)
|F(t)|dt

=
∫ π/(n+1)

0
O (|x − y|α) dt +

∫ π

π/(n+1)
O (|x − y|α) dt

= O (|x − y|α) (50)

Now for k = 1, 2, 3 and for 0 ≤ β < α ≤ 1. We observe that

|Ik| = |Ik|1−β/α |Ik|β/α (51)

By using (39) and (48) in the first and second factor on the right of the above identify (51) for k = 1

|I1| = O
{
|x − y|β(n + 1)β−α

}
(52)

Again (41) and (49) in the first and second factor on the right of the identify (51) for k = 2 we have

|I2| = O
{
|x − y|β(n + 1)β−α log(n + 1)

}
(53)

By using (42) and (50) in the first and second factor on the right of the identify (51) for k = 3 we have

|I3| = O
{

x − y|β (n + 1)β−α log(n + 1)
}

(54)

Thus from (52), (53) and (54) we get

sup
x,y

x ̸=y

∣∣∣∆β In(x, y)
∣∣∣ = sup

x,y
x ̸=y

|In(x)− ln(y)|
(x − y)β

= O
{
(n + 1)β−α log(n + 1)

}
(55)

Now f ∈ Hα ⇒ ∅x(t) = O (tα). Proceeding as above we obtain

∥In∥c = sup
−π≤x≤π

∥C1
nec

n − f (x)∥

= O
{
(n + 1)−α log(n + 1)

}
(56)

Combining (55) and (56) and using (51), we get

∥C1
nec

n − f (x)∥β = 0
{
(n + 1)β−α log(n + 1)

}
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Corollary 5.5. If f ∈ Lip α, when 0 < α ≤ 1. Then for n > 1 So.

∥C1
nec

n − f (x)∥β = O
{
(n)−α log n

}
We put β = 0 then Theorem 4.2 is particular case of main theorem.

6. Conclusion

The summability method (e, c) includes method of summability like Borel, (E, 1), (E, q), F(a, q) and

[F, dn] then by using the result of main theorem we can derive more generalizing result and also the

result of [13] can be derived directly.
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