Available Online: http://ijmaa.in

An Application of Interval Rough Pythagorean Fuzzy Set in a Multi Attribute Decision

Making Problem

P. Dhanalakshmi^{1,*}

 1 Department of Mathematics, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu, India

Abstract

This paper aims to define the cosine, sine and cotangent similarity measures of interval rough pythagorean sets and investigate some properties. Furthermore, based on these proposed measures, a multi attribute decision making problem is solved. Finally, through an example to

demonstrate the applicability of the proposed measures.

Keywords: Sine hamming similarity measure; cosine hamming similarity measure; cotangent

hamming similarity measure; interval rough pythagorean set.

1. Introduction

The basic concept of fuzzy sets was introduced by Zadeh [9]. Here some membership grade is assigned

to an element of a fuzzy set. In many situations of real world, apart from the grade of membership,

the grade of non-membership is also required. To handle such conditions, the concept of pythagorean

fuzzy set was introduced by Yagar [8], as a generalization of intuitionistic fuzzy set. Rough set theory

was introduced by Z. Pawlak [6] in 1980. Dubois and Prade [4] combine the rough sets and fuzzy sets.

In this paper we introduce the multi-attribute decision making based on hamming similarity measure

under interval rough pythagorean environment.

2. Preliminaries

For basic definitions let us see [1–7] and [8]. Throughout this paper let us denote R as complete

congruence relation on the universe *U*. The following abbreviations are used in this work:

• Cosine Hamming Similarity - CHS

• Sine Hamming Similarity - SHS

• Cotangent Hamming Similarity - CTHS

*Corresponding author (vpdhanam83@gmail.com)

• Interval Rough Pythagorean Fuzzy - \mathcal{I}_{RPF}

3. CHS Measure of \mathcal{I}_{RPF} Set

This section deals with **CHS** measure of \mathcal{I}_{RPF} set.

Definition 3.1. Let $P^i = \{\langle \alpha_1, \mu_{P^i}(\alpha_1), \nu_{P^i}(\alpha_1) / \alpha_1 \in U \rangle\}$ be an \mathcal{I}_{PF} set of U. The lower and upper-approximations of \mathcal{I}_{PF} is defined as follows:

$$\begin{split} &\underline{R}(\mathtt{P}^i) = \left\{ \left\langle \alpha_1, \underline{R}(\mu_{\mathtt{P}^i}), \underline{R}(\nu_{\mathtt{P}^i}) \right\rangle, \alpha_1 \in U \right\} \\ &\overline{R}(\mathtt{P}^i) = \left\{ \left\langle \alpha_1, \overline{R}(\mu_{\mathtt{P}^i}), \overline{R}(\nu_{\mathtt{P}^i}) \right\rangle, \alpha_1 \in U \right\}, \end{split}$$

where

$$\begin{split} &\underline{R}(\mu_{\mathsf{P}^i})(\alpha_1) = \bigwedge_{\alpha_2 \in [\alpha_1]_R} \mu_{\mathsf{P}^i}(\alpha_2), \quad \underline{R}(\nu_{\mathsf{P}^i})(\alpha_1) = \bigvee_{\alpha_2 \in [\alpha_1]_R} \nu_{\mathsf{P}^i}(\alpha_2) \\ &\overline{R}(\mu_{\mathsf{P}^i})(\alpha_1) = \bigvee_{\alpha_2 \in [\alpha_1]_R} \mu_{\mathsf{P}^i}(\alpha_2), \quad \overline{R}(\nu_{\mathsf{P}^i})(\alpha_1) = \bigwedge_{\alpha_2 \in [\alpha_1]_R} \nu_{\mathsf{P}^i}(\alpha_2) \end{split}$$

with the condition that

$$\begin{split} &0 \leq \sup \left\{ \underline{R}(\mu_{\mathtt{P}^i}(\alpha_1)) \right\}^2 + \sup \left\{ \underline{R}(\nu_{\mathtt{P}^i}(\alpha_1)) \right\}^2 \leq 1 \\ &0 \leq \sup \left\{ \overline{R}(\mu_{\mathtt{P}^i}(\alpha_1)) \right\}^2 + \sup \left\{ \overline{R}(\nu_{\mathtt{P}^i}(\alpha_1)) \right\}^2 \leq 1. \end{split}$$

The pair $R(P^i) = (\underline{R}(P^i), \overline{R}(P^i))$ is called the \mathcal{I}_{RPF} set of U.

Let P_1^i and P_2^i be two \mathcal{I}_{RPF} set in $U = \{u_1, u_2 \dots u_n\}$. A **CHS** measure between P_1^i and P_2^i is defined as follows:

$$\mathbf{CHS}(\mathbf{P}_{1}^{i}, \mathbf{P}_{2}^{i}) = \frac{1}{n} \sum_{k=1}^{n} \cos \left[\frac{\pi}{6} \left(\left| \delta \mu_{\mathbf{P}_{1}^{i}}(u_{k}) - \delta \mu_{\mathbf{P}_{2}^{i}}(u_{k}) \right| + \left| \delta \nu_{\mathbf{P}_{1}^{i}}(u_{k}) - \delta \nu_{\mathbf{P}_{2}^{i}}(u_{k}) \right| \right) \right]$$

where

$$\begin{split} \delta\mu_{\mathbf{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathbf{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \\ \delta\mu_{\mathbf{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathbf{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \end{split}$$

Proposition 3.2. A CHS measure between P_1^i and P_2^i satisfies the following properties

1.
$$0 \leq \mathbf{CHS}(P_1^i, P_2^i) \leq 1$$
.

- 2. **CHS**(P_1^i, P_2^i)=1 $P_1^i = P_2^i$.
- 3. **CHS**(P_1^i, P_2^i)= **CHS**(P_1^i, P_2^i).

Proof.

- 1. According to the cosine value it is obvious.
- 2. For any two \mathcal{I}_{RPF} sets P_1^i and P_2^i , if $P_1^i = P_2^i$ then, $\delta \mu_{P_1^i}(u_k) = \delta \mu_{P_2^i}(u_k)$ and $\delta \nu_{P_1^i}(u_k) = \delta \mu_{P_2^i}(u_k)$. Hence $\left| \delta \mu_{P_1^i}(u_k) \delta \mu_{P_2^i}(u_k) \right| = 0$ and $\left| \delta \nu_{P_1^i}(u_k) \delta \nu_{P_2^i}(u_k) \right| = 0$. Thus, $\cos(P_1^i, P_2^i) = 1$. Conversely, if $\cos(P_1^i, P_2^i) = 1$, then $\left| \delta \mu_{P_1^i}(u_k) \delta \mu_{P_2^i}(u_k) \right| = 0$ and $\left| \delta \nu_{P_1^i}(u_k) \delta \nu_{P_2^i}(u_k) \right| = 0$. Since $\cos(0) = 1$. So we can write $\delta \mu_{P_1^i}(u_k) = \delta \mu_{P_2^i}(u_k)$ and $\delta \nu_{P_1^i}(u_k) = \delta \mu_{P_2^i}(u_k)$. Hence $P_1^i = P_2^i$.
- 3. It is obvious.

4. SHS Measure of \mathcal{I}_{RPF} Set

This section deals with **SHS** measure of an \mathcal{I}_{RPF} .

Let P_1^i and P_2^i be two \mathcal{I}_{RPF} in $U = \{u_1, u_2 \dots u_n\}$. A **SHS** between P_1^i and P_2^i is defined as follows:

$$\mathbf{SHS}(\mathtt{P}_{1}^{i},\mathtt{P}_{2}^{i}) = 1 - \left[\frac{1}{n} \sum_{k=1}^{n} sin \left[\frac{\pi}{6} \left(\left| \delta \mu_{\mathtt{P}_{1}^{i}}(u_{k}) - \delta \mu_{\mathtt{P}_{2}^{i}}(u_{k}) \right| + \left| \delta \nu_{\mathtt{P}_{1}^{i}}(u_{k}) - \delta \nu_{\mathtt{P}_{2}^{i}}(u_{k}) \right| \right) \right] \right]$$

where

$$\begin{split} \delta\mu_{\mathbf{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathbf{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \\ \delta\mu_{\mathbf{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathbf{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \end{split}$$

Proposition 4.1. The \mathcal{I}_{RPF} **SHS** measure between P_1^i and P_2^i satisfies the following properties

- 1. $0 \le \mathbf{SHS}(P_1^i, P_2^i) \le 1$.
- 2. **SHS**(P_1^i, P_2^i)=1 if and only if $P_1^i = P_2^i$.
- 3. **SHS**(P_1^i, P_2^i)= **SHS**(P_1^i, P_2^i).

Proof. Proof is similar to Proposition 3.2.

5. CTHS Measure of \mathcal{I}_{RPF} Set

In this section we introduce the notion of **CTHS** measure of \mathcal{I}_{RPF} set.

Let P_1^i and P_2^i be two \mathcal{I}_{RPF} set in $U = \{u_1, u_2 \dots u_n\}$. A **CTHS** measure between P_1^i and P_2^i is defined as follows:

$$\mathbf{CTHS}(P_1^i, P_2^i) = \frac{1}{n} \sum_{k=1}^n \cot \left[\frac{\pi}{4} + \frac{\pi}{12} \left(\left| \delta \mu_{P_1^i}(u_k) - \delta \mu_{P_2^i}(u_k) \right| + \left| \delta \nu_{P_1^i}(u_k) - \delta \nu_{P_2^i}(u_k) \right| \right) \right]$$

where

$$\begin{split} \delta\mu_{\mathrm{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathrm{P}_{1}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \\ \delta\mu_{\mathrm{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\mu^{-}) + \underline{R}(\mu^{+}) + \overline{R}(\mu^{-}) + \overline{R}(\mu^{+})\right)}{4} \\ \delta\nu_{\mathrm{P}_{2}^{i}}(u_{k}) &= \frac{\left(\underline{R}(\nu^{-}) + \underline{R}(\nu^{+}) + \overline{R}(\nu^{-}) + \overline{R}(\nu^{+})\right)}{4} \end{split}$$

Proposition 5.1. The \mathcal{I}_{RPF} **CTHS** measure between P_1^i and P_2^i satisfies the following properties

- 1. **CTHS**(P_1^i, P_2^i)=1 if and only if $P_1^i = P_2^i$.
- 2. **CTHS**(P_1^i, P_2^i)= **CTHS**(P_2^i, P_1^i).

Proof. Proof is similar to Proposition 3.2.

6. MADM Problem Under \mathcal{I}_{RPF} Hamming Similarity Measure

In this section, we apply \mathcal{I}_{RPF} **CHS**, **SHS** and **CTHS** measures between \mathcal{I}_{RPF} sets to the MADM problem. Consider $K = \{K_1, K_2 ... K_m\}$ be the set of attributes and $R = \{\tilde{Q}_1, \tilde{Q}_2 ... \tilde{Q}_n\}$ be a set of alternatives.

Algorithm:

Step 1: Nomination of decision matrix with *n* alternatives and *m* attributes.

Step 2: Definition of ideal alternative:

For benefit type attribute:

$$Z^* = \left\{ \left(\min \underline{R}(\mu_{\tilde{Q}_i}), \max \underline{R}(\nu_{\tilde{Q}_i}) \right), \left(\max \overline{R}(\mu_{\tilde{Q}_i}), \min \overline{R}(\nu_{\tilde{Q}_i}) \right) \right\}.$$

For cost type attribute:

$$Z^* = \left\{ \left(max\underline{R}(\mu_{\tilde{Q}_i}), min\underline{R}(\nu_{\tilde{Q}_i}) \right), \left(min\overline{R}(\mu_{\tilde{Q}_i}), max\overline{R}(\nu_{\tilde{Q}_i}) \right) \right\}.$$

Step 3: We calculate \mathcal{I}_{RP} similarity measure between the ideal alternative Z^* and each alternative Q_i , i = 1, 2 ... n.

Step 4: The best alternative is opted with the highest similarity value.

7. Numerical Example

Let us consider a decision maker wants to select the bike for random use from $\{\tilde{Q}_1, \tilde{Q}_2, \tilde{Q}_3\}$, by considering mileage K_1 , reasonable price K_2 , features K_3 and the risk factor K_4 . By the above proposed measure, problem is solved by the following steps:

Step 1: The decision maker construct the decision matrix with respect to the three alternatives in terms of \mathcal{I}_{RPF} number.

	K_1	K_2	<i>K</i> ₃	K_4
\tilde{Q}_1	([.3,.4],[.5,.7]),([.3,.4],[.5,.7])	([.5,.6],[.8,.9]),([.5,.6],[.8,.9])	([.1,.2],[.7,.8]),([.5,.8],[.4,.6])	([.1,.2],[.7,.8]),([.5,.8],[.4,.6])
\tilde{Q}_2	([.7,.8],[.6,.7]),([.7,.8],[.6,.7])	([.7,.8],[.6,.7]),([.8,.9],[.4,.5])	([.5,.6],[.4,.5]),([.5,.6],[.4,.5])	([.7,.8],[.6,.7]),([.8,.9],[.4,.5])
Ã3	([.5,.7],[.3,.4]),([.8,.9],[.1,.2])	([.5,.7],[.3,.4]),([.8,.9],[.1,.2])	([.5,.7],[.3,.4]),([.8,.9],[.1,.2])	([.8,.9],[.1,.2]),([.8,.9],[.1,.2])

Table 1:

Step 2: The benefit type attributes are K_1, K_2, K_3 and cost type attribute is K_4 . Then the ideal alternative is,

$$Z^* = \begin{cases} \langle ([.3, .4], [.6, .7]), ([.8, .9], [.1, .2]) \rangle \\ \langle ([.5, .6], [.8, .9]), ([.8, .9], [.1, .2]) \rangle \\ \langle ([.1, .2], [.7, .8]), ([.8, .9], [.1, .2]) \rangle \\ \langle ([.1, .2], [.7, .8]), ([.8, .9], [.1, .2]) \rangle \end{cases}$$

Step 3: Calculate the \mathcal{I}_{RPF} hamming similarity measure of the alternatives

CHS
$$(Q_1, Z^*)$$
 = .249975
CHS (Q_2, Z^*) = .249988
CHS (Q_3, Z^*) = .249972
SHS (Q_1, Z^*) = .9966
SHS (Q_2, Z^*) = .9975
SHS (Q_3, Z^*) = .9963
CTHS (Q_1, Z^*) = 12.2243
CTHS (Q_2, Z^*) = 13.3690
CTHS (Q_3, Z^*) = 11.8483

Stop 4: Select the highest value.

$$CHS(Q_2, Z^*) > CHS(Q_1, Z^*) > CHS(Q_3, Z^*)$$
 $SHS(Q_2, Z^*) > SHS(Q_1, Z^*) > SHS(Q_3, Z^*)$
 $CTHS(Q_2, Z^*) > CTHS(Q_1, Z^*) > CTHS(Q_3, Z^*)$

Hence Q_2 is the best alternative for random use.

References

- [1] K. Attanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] Azmat Hussain, Tahir mahmood and Muhammad Irfan Ali, Rough Pythagorean Fuzzy Ideals in Semigroups, Computational and Applied Mathematics.
- [3] V. Chinnadurai, Contributions to the study of some fuzzy algebraic structures Doctoral Thesis, Annamalai University, (2010).
- [4] D. Dubois and H. Prade, *Rough fuzzy sets and fuzzy rough sets*, Internation Journal of General Systems, 17(23)(1990), 191-209.
- [5] Z. Gong, B. Sun and D. Chen, Rough set theory for the interval-valued fuzzy information systems, Information Sciences, 178(2008), 1968-1985.
- [6] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11(1982), 341-356.
- [7] Z. Pawlak, Rough sets and Intelligent data analysis, Information Sciences, 147(2002), 1-12.
- [8] R. R. Yager, *Pythagorean Fuzzy subsets*, In IFSA World congress and NAFIPS annual meeting, (2013) Joint, IEEE, 57-61.
- [9] L. A. Zadeh, The Concept of a linguistic variable and its application to approximation reasoning I, Information Sciences, 8(1975), 199-249.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.