Some Results of Generalized Reverse Biderivations on Prime Rings

V. S. V. Krishna Murty ${ }^{1, *}$, C. Jaya Subba Reddy ${ }^{1}$
${ }^{1}$ Department of Mathematics, SV University, Tirupathi, Andhra Pradesh, India

Abstract

Let R be a ring with center $Z(R)$. In the present paper, we obtain some results in connection with symmetric generalized reverse biderivations on prime ring R.

Keywords: Prime ring; Generalized biderivation; Generalized Reverse Biderivation; Bimultiplier; Reverse Bimultiplier.

2020 Mathematics Subject Classification: 16N60, 13 N15.

1. Introduction

The concept of bi-derivation was introduced by Maksa in [8]. It is shown in [9] that bi-derivations are related to general solution of some functional equations. Some results concerning symmetric bi-derivations in prime rings can be found in $[10,11,13]$. Some theorems on symmetric generalized biderivations of prime ring are proved in [1,7]. Daif, Haetinger and Tammam El-Sayiad showed that any reverse biderivation on R prime ring is also a biderivation in [12]. Lateron, Many results have been found concerning reverse biderivations [2,6]. C.Jaya Subba Reddy et. al. [3-5,14], have studied some results concerning reverse biderivations on prime and semi prime rings. In the present paper, we obtain some results in connection with the symmetric generalized reverse biderivations on prime ring R.

2. Preliminaries

Let R be a ring and $Z(R)$ be its center. Remember that R is prime if $x_{1} R x_{2}=\{0\}$ implies $x_{1}=0$ or $x_{2}=0$ for any $x_{1}, x_{2} \in R$. Also, R is semi-prime if $x_{1} R x_{1}=\{0\}$ implies $x_{1}=0$ for any $x_{1} \in R$. For $x_{1}, x_{2} \in R$, the notation $\left[x_{1}, x_{2}\right]$ denotes the commutator $x_{1} x_{2}-x_{2} x_{1}$. Recall that a map D from $R \times R$ into R is termed symmetric if $D\left(x_{1}, x_{2}\right)=D\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in R$. A symmetric biadditive map

[^0](symmetric in both arguments) D from $R \times R$ into R is termed a biderivation if
$$
D\left(x_{1} x_{2}, x_{3}\right)=D\left(x_{1}, x_{3}\right) x_{2}+x_{1} D\left(x_{2}, x_{3}\right) \quad \text { and } \quad D\left(x_{1}, x_{2} x_{3}\right)=D\left(x_{1}, x_{2}\right) x_{3}+x_{2} D\left(x_{1}, x_{3}\right)
$$
for all $x_{1}, x_{2}, x_{3} \in R$. Several authors have studied biderivations and investigated properties of biderivations. During the course of time, researchers have introduced the definitions of reverse biderivation, left (similarly right) biderivation, and Jordan left (similarly right) biderivation. A biadditive map D from $R \times R$ into R is termed a symmetric reverse biderivation if
$$
D\left(x_{1} x_{2}, x_{3}\right)=D\left(x_{2}, x_{3}\right) x_{1}+x_{2} D\left(x_{1}, x_{3}\right) \quad \text { and } \quad D\left(x_{1}, x_{2} x_{3}\right)=D\left(x_{1}, x_{3}\right) x_{2}+x_{3} D\left(x_{1}, x_{2}\right)
$$
for all $x_{1}, x_{2}, x_{3} \in R$. A biadditive map $\delta: R \times R$ into R is termed a symmetric generalized biderivation if there is a biderivation $D: R \times R$ into R such that
$$
\delta\left(x_{1} x_{2}, x_{3}\right)=\delta\left(x_{1}, x_{3}\right) x_{2}+x_{1} D\left(x_{2}, x_{3}\right) \quad \text { and } \quad \delta\left(x_{1}, x_{2} x_{3}\right)=\delta\left(x_{1}, x_{2}\right) x_{3}+x_{2} D\left(x_{1}, x_{3}\right)
$$
for all $x_{1}, x_{2}, x_{3} \in R$. A biadditive map $\delta: R \times R$ into R is termed a symmetric generalized reverse biderivation if there is a reverse biderivation $D: R \times R$ into R such that
$$
\delta\left(x_{1} x_{2}, x_{3}\right)=\delta\left(x_{2}, x_{3}\right) x_{1}+x_{2} D\left(x_{1}, x_{3}\right) \quad \text { and } \quad \delta\left(x_{1}, x_{2} x_{3}\right)=\delta\left(x_{1}, x_{3}\right) x_{2}+x_{3} D\left(x_{1}, x_{2}\right)
$$
for all $x_{1}, x_{2}, x_{3} \in R$. A mapping $f: R \rightarrow R$ defined by $f(x)=D(x, x)$ for all $x \in R$, where D : $R \times R \rightarrow R$ is a symmetric and biadditive (i.e., additive in both arguments) mapping, is called the trace of D. An additive mapping $h: R \rightarrow R$ is called a left (resp. right) multiplier of R if $h\left(x_{1} x_{2}\right)=h\left(x_{1}\right) x_{2}$ (resp. $h\left(x_{1} x_{2}\right)=x_{1} h\left(x_{2}\right)$) for all $x_{1}, x_{2} \in R$. A biadditive mapping $D: R \times R \rightarrow R$ is said to be a left (resp. right) bi-multiplier of R if $D\left(x_{1}, x_{2} x_{3}\right)=D\left(x_{1}, x_{2}\right) x_{3}$ (resp. $\left.D\left(x_{1} x_{2}, x_{3}\right)=x_{1} D\left(x_{2}, x_{3}\right)\right)$ for all $x_{1}, x_{2}, x_{3} \in R$. A biadditive mapping $D: R \times R \rightarrow R$ is said to be a reverse left (resp. right) bi-multiplier of R if $D\left(x_{1}, x_{2} x_{3}\right)=D\left(x_{1}, x_{3}\right) x_{2}\left(\right.$ resp. $\left.D\left(x_{1} x_{2}, x_{3}\right)=x_{2} D\left(x_{1}, x_{3}\right)\right)$ holds for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.

3. Main Results

Theorem 3.1. Let R be a prime ring of characteristic not two. U be an ideal of R and $n \geq 1$, a fixed integer. Consider $\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}: R \times R \rightarrow R$ are symmetric generalized reverse biderivations with associated reverse biderivations $D_{1}, D_{2}, D_{3}, \ldots, D_{n}: R \times R \rightarrow R$ respectively such that

$$
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right) \ldots \delta_{n}\left(u_{1}, u_{1}\right)=0, \quad \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1} \in U .
$$

Then one of the following holds:

1. $\delta_{1}\left(x_{1}, x_{1}\right)=0, \forall x_{1} \in U$.
2. All $\delta_{n+1}\left(u_{1}, u_{1}\right)$ act as a reverse left bimultiplier on R, for all $n \geq 1$.

Proof. We shall use Mathematical Induction to prove this theorem. Let $n=1$, then we get $\delta_{1}\left(x_{1}, x_{1}\right)=0$ and hence proved. Let $n=1,2$, then we get

$$
\begin{equation*}
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right)=0 \quad \forall x_{1}, y_{1} \in U \tag{1}
\end{equation*}
$$

By linearizing in y_{1}, we get, $\delta_{1}\left(x_{1}, x_{1}\right)\left(\delta_{2}\left(y_{1}, y_{1}\right)+\delta_{2}\left(y_{1}, z_{1}\right)+\delta_{2}\left(z_{1}, y_{1}\right)+\delta_{2}\left(z_{1}, z_{1}\right)\right)=0$. Using (1) and the fact that Char $R \neq 2$, we get

$$
\begin{equation*}
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, z_{1}\right)=0 \forall x_{1}, y_{1}, z_{1} \in U . \tag{2}
\end{equation*}
$$

Replace z_{1} by $r z_{1}$ in the above equation and using (2), we get, $\delta_{1}\left(x_{1}, x_{1}\right) z_{1} D_{2}\left(y_{1}, r\right)=0 \forall x_{1}, y_{1}, z_{1} \in U$ and $r \in R$. By the primeness of R, we get either $\delta_{1}\left(x_{1}, x_{1}\right)=0$ or $D_{2}\left(y_{1}, r\right)=0$. If $\delta_{1}\left(x_{1}, x_{1}\right)=0$, then we are done. Suppose

$$
\begin{equation*}
D_{2}\left(y_{1}, r\right)=0 \quad \forall y_{1} \in U \text { and } r \in R \tag{3}
\end{equation*}
$$

Replacing r by $r x_{1}$ in $\delta_{2}\left(y_{1}, r\right)$ and using (3), we get $\delta_{2}\left(y_{1}, r x_{1}\right)=\delta_{2}\left(y_{1}, x_{1}\right) r$. Therefore δ_{2} acts as a left reverse bimultiplier. Suppose $n=1,2,3$

$$
\begin{equation*}
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right)=0 \quad \forall x_{1}, y_{1}, z_{1} \in U \tag{4}
\end{equation*}
$$

Linearizing in z_{1} and using (4), we get

$$
\begin{align*}
2 \delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, u_{1}\right) & =0 \\
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, u_{1}\right) & =0 \quad(\text { Since Char } R \neq 2) \tag{5}
\end{align*}
$$

Replacing u_{1} by $s u_{1}$ in (5) and using (5), we get $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) u_{1} D_{3}\left(z_{1}, s\right)=0, \forall x_{1}, y_{1}, z_{1}, u_{1} \in$ U and $s \in R$. Using the primeness of R, we have $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right)=0$ or $D_{3}\left(z_{1}, s\right)=0$. If $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right)=0, \forall x_{1}, y_{1} \in U$, then the result is evident. Suppose that

$$
\begin{equation*}
D_{3}\left(z_{1}, s\right)=0, \forall z_{1} \in U, s \in R \tag{6}
\end{equation*}
$$

Replacing s by st in $\delta_{3}\left(z_{1}, s\right)$ using (6), we get, $\delta_{3}\left(z_{1}, s t\right)=\delta_{3}\left(z_{1}, t\right) s$. Therefore δ_{3} acts as a reverse left bimultiplier. Let the statement be true for $n=k$. That means if $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \ldots \delta_{k}\left(u_{1}, u_{1}\right)=0$, then

1. $\delta_{1}\left(x_{1}, x_{1}\right)=0, \quad \forall x_{1} \in U$
2. $\delta_{k+1}\left(u_{1}, u_{1}\right)$ act as a reverse left bimultiplier on R, for all $n \geq 1$

Let us prove for $n=k+1$. Suppose

$$
\begin{equation*}
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right) \ldots \delta_{k}\left(u_{1}, u_{1}\right) \delta_{k+1}\left(v_{1}, v_{1}\right)=0 \quad \forall x_{1}, y_{1}, z_{1}, v_{1}, u_{1} \in U \tag{7}
\end{equation*}
$$

Linearizing (7) in v_{1} and using the fact that Char $R \neq 2$, we get

$$
\begin{equation*}
\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right) \ldots \delta_{k}\left(u_{1}, u_{1}\right) \delta_{k+1}\left(v_{1}, w_{1}\right)=0, \quad \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1}, v_{1}, w_{1} \in U \tag{8}
\end{equation*}
$$

Replacing w_{1} by $t w_{1}$ and using (8), we get, $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right) \ldots \delta_{k}\left(u_{1}, u_{1}\right) w_{1} D_{k+1}\left(v_{1}, t\right)=0$, $\forall x_{1}, y_{1}, z_{1}, \ldots, u_{1}, v_{1}, w_{1} \in U$ and $t \in R$. By primeness of R, we have, $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right)$ $\ldots \delta_{k}\left(u_{1}, u_{1}\right)=0$ or $D_{k+1}\left(v_{1}, t\right)=0$. Suppose that $\delta_{1}\left(x_{1}, x_{1}\right) \delta_{2}\left(y_{1}, y_{1}\right) \delta_{3}\left(z_{1}, z_{1}\right) \ldots \delta_{k}\left(u_{1}, u_{1}\right)=0$, then the result is evident. Suppose that

$$
\begin{equation*}
D_{k+1}\left(v_{1}, t\right)=0, \quad \forall v_{1} \in U \text { and } t \in R \tag{9}
\end{equation*}
$$

Replacing t by tp in $\delta_{k+1}\left(v_{1}, t\right)$ and using (9), then we get, $\delta_{k+1}\left(v_{1}, t p\right)=\delta_{k+1}\left(v_{1}, p\right) t$. Therefore δ_{k+1} acts as a reverse left bimultiplier. This completes the proof of the theorem.

Theorem 3.2. Let R be a prime ring of characteristic not two and $k \geq 1$, a fixed positive integer. Consider symmetric reverse biderivations $D_{n}: R \times R \rightarrow R$ for $n=1,2,3, \ldots, k$ such that

$$
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right), D_{3}\left(z_{1}, z_{1}\right) \ldots D_{n}\left(u_{1}, u_{1}\right)=0
$$

for all $x_{1}, y_{1}, z_{1} \ldots, u_{1} \in R$. Then it follows that $D_{n}=0$ for some n.
Proof. We prove the theorem by Mathematical Induction. For $n=1$, we have

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right)=0, \forall x_{1} \in \mathbb{R} \text { and hence } D_{1}=0 \tag{10}
\end{equation*}
$$

For $n=2$, we have

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right)=0 \quad \forall x_{1}, y_{1} \in \mathbb{R} \tag{11}
\end{equation*}
$$

By linearizing y_{1} and using the fact that $\operatorname{Char}(\mathbb{R}) \neq 2$, we get

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, z_{1}\right)=0 \forall x_{1}, y_{1}, z_{1} \in \mathbb{R} \tag{12}
\end{equation*}
$$

Put $z_{1}=u z_{1}$ in (12) and using (12)

$$
D_{1}\left(x_{1}, x_{1}\right) z_{1} D_{2}\left(y_{1}, u\right)=0 \quad \forall x_{1}, y_{1}, z_{1}, u \in R
$$

In particular, $D_{1}\left(x_{1}, x_{1}\right) z_{1} D_{2}\left(x_{1}, x_{1}\right)=0$ which implies $D_{1}=0$ or $D_{2}=0$. For $n=3$

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right)=0 \quad \forall x_{1}, y_{1}, z_{1} \in \mathbb{R} \tag{13}
\end{equation*}
$$

By linearizing (13) in z_{1} and using the fact that $\operatorname{Char}(\mathbb{R}) \neq 2$, we get

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, w\right)=0 \forall x_{1}, y_{1}, z_{1}, w \in \mathbb{R} \tag{14}
\end{equation*}
$$

Replacing z_{1} by $u z_{1}$ and using (14)

$$
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) z_{1} D_{3}(u, w)=0 \forall x_{1}, y_{1}, z_{1}, u, w \in \mathbb{R}
$$

By the Primeness of \mathbb{R}, we get either $D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right)=0$ or $D_{3}(u, w)=0$. Suppose $D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right)=0$, then by the previous case, we have either $D_{1}=0$ or $D_{2}=0$. Suppose $D_{3}(u, w)=0$, which means $D_{3}=0$. Hence the theorem is proved for $n=3$. Let the theorem be true for $n=k$. If we consider $D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right)=0$, then $D_{1}=0$ or $D_{2}=0$ or $D_{3}=0 \ldots D_{k}=0, \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1} \in \mathbb{R}$. For $n=k+1$, by hypothesis, we have

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right) D_{k+1}\left(v_{1}, v_{1}\right)=0 \quad \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1}, v_{1} \in \mathbb{R} \tag{15}
\end{equation*}
$$

By linearization in v_{1} and using the fact that $\operatorname{Char}(\mathbb{R}) \neq 2$

$$
\begin{equation*}
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right) D_{k+1}\left(v_{1}, w_{1}\right)=0 \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1}, v_{1}, w_{1} \in \mathbb{R} \tag{16}
\end{equation*}
$$

Replacing v_{1} by $v_{1} t$ and using (16), we get

$$
D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right) t D_{k+1}\left(v_{1}, w_{1}\right)=0 \forall x_{1}, y_{1}, z_{1}, \ldots, u_{1}, v_{1}, w_{1}, t \in \mathbb{R}
$$

By the primeness of \mathbb{R}, we have either $D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right)=0$ or $D_{k+1}\left(v_{1}, w_{1}\right)=0$. Suppose $D_{1}\left(x_{1}, x_{1}\right) D_{2}\left(y_{1}, y_{1}\right) D_{3}\left(z_{1}, z_{1}\right) \ldots D_{k}\left(u_{1}, u_{1}\right)=0$, then by the previous discussion, we have $D_{1}=0$ or $D_{2}=0$ or \ldots or $D_{k}=0$. Suppose $D_{k+1}\left(v_{1}, w_{1}\right)=0$, and in particular $D_{k+1}\left(v_{1}, v_{1}\right)=0$ then $D_{k+1}=0$. Hence, the theorem is proved.

References

[1] A. Ali, V. D. Filippis and F. Shujat, Results concerning symmetric generalized biderivations Of Prime and semiprime rings, Matematiqki Vesnik, 66(4)(2014), 410-417.
[2] B. Albayrak and N. AydinK, Reverse and Jordan (α, β)-biderivation on Prime and Semiprime Rings, Adıyaman University Journal of Science, 9(1)(2019), 149-164.
[3] C. J. S. Reddy, A. S. K. Kumar and B. R. Reddy, Ideals and symmetric reverse bi-derivations of prime and semiprime rings, Malaya Journal of Matematik, 6(1)(2018), 291-293.
[4] C. J. S. Reddy, A. S. Kumar and B. R. Reddy, Results of symmetric reverse bi-derivations on prime rings, Annals of Pure and Applied Mathematics, 16(1)(2018), 1-6.
[5] C. J. S. Reddy and R. Naik, Symmetric reverse bi-derivations on prime rings, Research Journal of Pharmacy and Technology, 9(9)(2016), 1496-1500.
[6] E. K. Sogutcu and O. Golbaşı, some results on lie ideals with symmetric reverse bi-derivations in semiprime rings, Facta Universitatis, Series: Mathematics and Informatics, (2021), 309-319.
[7] F. Shujat and A. Fallatah, On the iterations of generalized bi-derivation on prime ring, Boletim da Sociedade Paranaense de Matemática, 40(2022), 1-5.
[8] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Math, 15(35)(1980), 279-282.
[9] G. Maksa, On the trace of symmetric bi-derivations, CR Math. Rep. Acad. Sci. Canada, 9(9)1987), 303-307.
[10] J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aeq. Math., 40(1)(1990), 181-189.
[11] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aeq. Math., 38(2-3)(1989), 245-254.
[12] M. N. Daif, M. S. T. El-Sayiad and C. Haetinger, Reverse, Jordan and left biderivations, Oriental Journal Of Mathematics, 2(2)(2010), 65-81.
[13] N. Parveen, Product of Traces of Symmetric Bi-Derivations in Rings, Palestine Journal of Mathematics, 11(1)2022.
[14] Sk. Haseena and C. J. S. Reddy, symmetric generalized reverse $(\alpha, 1)$ biderivations in rings, JP Journal of Algebra, Number Theory and Applications, 58(2022), 37-43.

[^0]: *Corresponding author (krishnamurty.vadrevu@gmail.com (Research Scholar))

