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Abstract

A generalised lattice ordered group (gl-group) is a system in which the underlying set is a

generalised lattice as well as a group. This article deals with the concept of L-valued intuitionistic

L-fuzzy gl-subgroup of the type 3 (IFgl-subgroup of type 3) of a gl-group. Introduced the concept

L-valued intuitionistic L-fuzzy gl-subgroup of the type 3 (IFgl-subgroup of type 3) of a gl-group

and characterized by the level subsets and discussed some equivalent conditions. Finally proved

that intersection of any family of L-valued intuitionistic L-fuzzy gl-subgroups of the type 3

(IFgl-subgroups of type 3) of a gl-group is again an IFgl-subgroup of type 3.
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1. Introduction

The theory related to the concepts fuzzy set (L-fuzzy set, intuitionistic L-fuzzy set), fuzzy group (L-

fuzzy group, intuitionistic L-fuzzy group) and fuzzy lattice (L-fuzzy lattice, intuitionistic L-fuzzy

lattice) are known from [3–6,18–20] and [21,22]. The theory of lattice ordered groups (l-groups) is

well known from the books [13,14] and the concept of fuzzy lattice ordered group introduced and

developed by Saibaba in [23]. Mellacheruvu Krishna Murty and U. Madana Swamy (Professors of

Andhra University) [7] introduced the concept of generalised lattice and the theory of generalised

lattices developed by the author P. R. Kishore in [8,9] that can play an intermediate role between the

theories of lattices and posets. The concepts and the corresponding theory of fuzzy generalised lattices

[10,11], generalised lattice ordered groups (gl-groups) [12,15,16], fuzzy generalised lattice ordered

groups (fuzzy gl-groups) [17] introduced and developed by the author P.R.Kishore. In [24] Gerstenkorn

and Tepavcevic introduced the concept L-valued intuitionistic L-fuzzy set of type 3. Later concept of

L-valued intuitionistic L-fuzzy generalised lattice of the type 3 (IFgl of type 3) introduced by the author
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P.R.Kishore in [25]. This article deals with the concept of L-valued intuitionistic L-fuzzy gl-subgroup

of the type 3 (IFgl-subgroup of type 3) of a gl-group. Section 2 contains some preliminaries from

the references. In Section 3, introduced the concept of L-valued intuitionistic L-fuzzy gl-subgroup of

the type 3 (IFgl-subgroup of type 3) of a gl-group and characterized that by its level subsets. Finally

proved that the intersection of any family of L-valued intuitionistic L-fuzzy gl-subgroups of the type 3

(IFgl-subgroups of type 3) of a gl-group is again an IFgl-subgroup of type 3.

2. Preliminaries

This section contains some preliminaries from the references those are useful in the next sections.

Definition 2.1 ([18]). Let X be a non-empty set. A collection of objects in the set form

A = {(x, µA(x), νA(x)) | x ∈ X} is called an intuitionistic fuzzy set of X if (i) µA : X → [0, 1] is a fuzzy set

in X called degree of membership function on X, (ii) νA : X → [0, 1] is a fuzzy set in X called degree of

non-membership function on X and (iii) for each x ∈ X, we have 0 ≤ µA(x) + νA(x) ≤ 1.

Note 2.2. If νA is complement of µA (that is νA(x) = 1 − µA(x) for all x ∈ X), then the intuitionistic fuzzy

set A will be fuzzy set in X.

Definition 2.3 ([22]). Let (L,∧,∨) be a lattice and A = {(x, µA(x), νA(x)) | x ∈ L} be an intuitionistic

fuzzy set of L. Then A is called an intuitionistic fuzzy sublattice of L if the following conditions satisfied: for

all x, y ∈ L; (i) µA(x ∨ y) ≥ min{µA(x), µA(y)} (ii) µA(x ∧ y) ≥ min{µA(x), µA(y)} (iii) νA(x ∨ y) ≤

max{νA(x), νA(y)} and (iv) νA(x ∧ y) ≤ max{νA(x), νA(y)}.

Definition 2.4 ([20]). Let (G, ·,−1 , e) be a group and A = {(x, µA(x), νA(x)) | x ∈ L} be an intuitionistic

fuzzy set of G. Then A is called an intuitionistic fuzzy subgroup of G if the following conditions satisfied: for all

x, y ∈ G; (i) µA(x · y) ≥ min{µA(x), µA(y)} (ii) µA(x−1) = µA(x) (iii) νA(x · y) ≤ max{µA(x), µA(y)}

and (iv) νA(x−1) = νA(x).

Definition 2.5 ([20]). Let X be a set and A = {(x, µA(x), νA(x)) | x ∈ X} be an intuitionistic fuzzy set of X.

Let α, β ∈ [0, 1] with α + β ≤ 1. Then the (α, β)−cut of A defined by the set Cα,β(A) = {x ∈ X | µA(x) ≥

α, νA(x) ≤ β}.

The definitions of generalised lattice, subgeneralised lattice, homomorphism and product of

generalised lattices are known from [8,9].

Definition 2.6 ([12]). A system (G, ·, ≤) is called a generalised lattice ordered group ( gl-group ) if (i) (G, ≤)

is a generalised lattice, (ii) (G, ·) is a group and (iii) every group translation x → a · x · b on G is isotone. That

is x ≤ y ⇒ a · x · b ≤ a · y · b for all a, b ∈ G.

Definition 2.7 ([16]). A subgroup S of G is said to be a gl-subgroup of G if S is a subgeneralised lattice of G.
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Definition 2.8 ([16]). Let G, H be gl-groups. A group homomorphism f : G → H is said to be a gl-

homomorphism if f is a homomorphism of generalised lattices.

In [21] Sharma observed that If A is an intuitionistic fuzzy set of a set X, then we have Cα,β(A) ⊆

Cδ,θ(A) if α ≥ δ and β ≤ θ.

Definition 2.9 ([24]). Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be

the interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)}

and h(α ∨ β) = max{h(α), h(β)}. Let X be a non-empty set. A collection of objects in the set form A =

{(x, µA(x), νA(x)) | x ∈ X} is called a lattice valued intuitionistic fuzzy (L-valued intuitionistic fuzzy) set

of type-3 of X if (i) µA : X → L is a L−fuzzy set in X called degree of membership function on X, (ii)

νA : X → L is a L−fuzzy set in X called degree of non-membership function on X and (iii) for each x ∈ X, we

have 0 ≤ h(µA(x)) + h(νA(x)) ≤ 1.

Definition 2.10 ([25]). Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be

the interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)}

and h(α ∨ β) = max{h(α), h(β)}. Let P be a generalised lattice. Then a collection of objects in the set form

A = {(x, µA(x), νA(x)) | x ∈ P} is called a L-valued intuitionistic L-fuzzy set of the type-3 (IFset of type

3) of P if (i) µA : P → L is a L−fuzzy set in P called degree of membership function on P, (ii) νA : P → L

is a L−fuzzy set in P called degree of non-membership function on P and (iii) for each x ∈ P, we have 0 ≤

h(µA(x)) + h(νA(x)) ≤ 1.

Definition 2.11 ([25]). Let P be a generalised lattice and A = {(x, µA(x), νA(x)) | x ∈ P} be an L-valued

Intuitionistic L-fuzzy set of the type 3 (IFset of type 3) of P. Then A is called an L-valued intuitionistic L-

fuzzy subgeneralised lattice of type 3 (IFsubgl of type 3) of P if the following conditions satisfied: for any finite

subset X of P; (i) µA(s) ≥
∧

x∈X µA(x) for all s ∈ mu(X) (ii) µA(t) ≥
∧

x∈X µA(x) for all t ∈ ML(X) (iii)

νA(s) ≤
∨

x∈X νA(x) for all s ∈ mu(X) and (iv) νA(t) ≤
∨

x∈X νA(x) for all t ∈ ML(X).

Definition 2.12. Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be the

interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)}

and h(α ∨ β) = max{h(α), h(β)}. Let G be a group. Then a collection of objects in the set form A =

{(x, µA(x), νA(x)) | x ∈ G} is called a L-valued intuitionistic L-fuzzy set of the type-3 (IFset of type 3) of

G if (i) µA : G → L is a L−fuzzy set in G called degree of membership function on G, (ii) νA : G → L

is a L−fuzzy set in G called degree of non-membership function on G and (iii) for each x ∈ G, we have

0 ≤ h(µA(x)) + h(νA(x)) ≤ 1.

Definition 2.13. Let G be a group and A = {(x, µA(x), νA(x)) | x ∈ G} be an L-valued intuitionistic L-fuzzy

set of the type 3 (IFset of type 3) of G. Then A is called a L-valued intuitionistic L-fuzzy subgroup of type 3

(IFsubgroup of type 3) of G if the following conditions satisfied: for all x, y ∈ G; (i) µA(x · y) ≥ µA(x)∧ µA(y)

(ii) µA(x−1) = µA(x) (iii) νA(x · y) ≤ µA(x) ∨ µA(y) and (iv) νA(x−1) = νA(x).
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Definition 2.14 ([25]). Let P be a generalised lattice and A, B be L-valued intuitionistic L-fuzzy sets of the type 3

(IFsets of type 3) of P. Then define A ∩ B = {(x, (µA ∩ µB)(x), (νA ∩ νB)(x)) | x ∈ P} where (µA ∩ µB)(x) =

µA(x) ∧ µB(x) and (νA ∩ νB)(x) = νA(x) ∧ νB(x).

In [25] it was proved that intersection of any family of IFsubgls of type 3 of a generalised lattice is again

an IFsubgl of type 3. By Sharma [20], we can observe that intersection of any family of IFsubgroups of

a group is again an IFsubgroup.

3. L-valued Intuitionistic L-fuzzy gl-subgroups of the Type 3 of a gl-group

In this section introduced the concept L-valued intuitionistic L-fuzzy gl-subgroup of the type 3 (IFgl-

subgroup of type 3) of a gl-group, discussed its properties and charecterized by its (α, β)−level subsets.

Proved that the set of all L-valued intuitionistic L-fuzzy gl-subgroups of the type 3 (IFgl-groups of type

3) of a gl-group, forms a complete lattice. Throughout this section G denotes for a generalised lattice

ordered group (gl-group).

Definition 3.1. Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be the

interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)} and

h(α ∨ β) = max{h(α), h(β)}. Then a collection of objects in the set form A = {(x, µA(x), νA(x)) | x ∈ G} is

called a L-valued intuitionistic L-fuzzy set of the type-3 (IFset of type 3) of G if (i) µA : G → L is a L−fuzzy

set in G called degree of membership function on G, (ii) νA : G → L is a L−fuzzy set in G called degree of

non-membership function on G and (iii) for each x ∈ G, we have 0 ≤ h(µA(x)) + h(νA(x)) ≤ 1.

Definition 3.2. Let A = {(x, µA(x), νA(x)) | x ∈ G} be an L-valued intuitionistic L-fuzzy set of the type 3

(IFset of type 3) G. Then A is called a L-valued intuitionistic L-fuzzy gl-subgroup of the type 3 (IFgl-subgroup

of type 3) of G if (i) A is a L-valued intuitionistic L-fuzzy subgroup of the type 3 (IF subgroup of type 3) of G

and (ii) A is a L-valued intuitionistic L-fuzzy subgeneralised lattice of the type 3 (IF subgl of type 3) of G.

Theorem 3.3. Let A be a L-valued intuitionistic L-fuzzy gl-subgroup of the type 3 (IFgl-subgroup of type 3) of

G. Then µA(e) ≥ µA(x) and νA(e) ≤ νA(x) for all x ∈ G.

Proof. Let x ∈ G. Consider µA(e) = µA(x · x−1) ≥ µA(x) ∧ µA(x−1) (by definitions 3.2 and 2.12)

= µA(x) ∧ µA(x) = µA(x). Consider νA(e) = νA(x · x−1) ≤ νA(x) ∨ νA(x−1) (by definitions 3.2 and

2.12) = νA(x) ∨ νA(x) = νA(x). Therefore µ(e) ≥ µ(x) and ν(e) ≤ ν(x) for all x ∈ G.

Theorem 3.4. An IFset of type 3, A of G is IFgl-subgroup of type 3 of G if and only if (i) µA(x · y−1) ≥ µA(x)∧

µA(y) for all x, y ∈ G (ii) νA(x · y−1) ≤ νA(x) ∨ νA(y) for all x, y ∈ G (iii) µA(s) ∧ µA(t) ≥ ∧
x∈X µA(x)

for all s ∈ mu(X), t ∈ ML(X) and for any finite subset X of G and (iv) νA(s) ∨ νA(t) ≤
∨

x∈X νA(x) for all

s ∈ mu(X), t ∈ ML(X) and for any finite subset X of G.

Proof. Suppose A is an IFgl-subgroup of type 3 of G. (i) Let x, y ∈ G. Consider µA(x · y−1) ≥ µA(x) ∧

µA(y−1) (by Definitions 3.2 and 2.12) = µA(x) ∧ µA(y). Therefore µA(x · y−1) ≥ µA(x) ∧ µA(y) for
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all x, y ∈ G. (ii) Let x, y ∈ G. Consider νA(x · y−1) ≤ νA(x) ∨ νA(y−1) (by Definitions 3.2 and 2.12)

= νA(x) ∨ νA(y). Therefore νA(x · y−1) ≤ νA(x) ∨ νA(y) for all x, y ∈ G. (iii) Let X be a finite subset

of G and s ∈ mu(X), t ∈ ML(X). By the Definitions 3.2 and 2.10, we have µA(s) ≥ ∧
x∈X µA(x)

and µA(t) ≥ ∧
x∈X µA(x). Therefore µA(s) ∧ µA(t) ≥ ∧

x∈X µA(x). (iv) Let X be a finite subset of

G and s ∈ mu(X), t ∈ ML(X). By the Definitions 3.2 and 2.10, we have νA(s) ≤ ∨
x∈X νA(x) and

νA(t) ≤
∨

x∈X νA(x). Therefore νA(s) ∨ νA(t) ≤
∨

x∈X νA(x).

Conversely suppose the conditions (i), (ii), (iii) and (iv). To show that A is an IFgl-subgroup of type 3

of G : First to show that A is IF subgroup of type 3 of G : Let x ∈ G. Consider µA(e) = µA(x · x−1) ≥

µA(x) ∧ µA(x) = µA(x). Consider νA(e) = νA(x · x−1) ≤ νA(x) ∨ νA(x) = νA(x). Consider µA(x−1) =

µA(e · x−1) ≥ µA(e) ∧ µA(x) = µA(x). Consider νA(x−1) = νA(e · x−1) ≤ νA(e) ∨ νA(x) = νA(x).

Therefore µA(e) ≥ µA(x), νA(e) ≤ νA(x) and by Theorem 3.3, µA(x−1) = µA(x), νA(x−1) = νA(x)

for all x ∈ G. Let x, y ∈ G. Consider µA(x · y) = µ(x · (y−1)−1) ≥ µA(x) ∧ µA(y−1) = µA(x) ∧ µA(y).

Consider νA(x · y) = ν(x · (y−1)−1) ≤ νA(x) ∨ νA(y−1) = νA(x) ∨ νA(y). Therefore by Definition 2.12,

A is IF subgroup of type 3 of G. Now to show that A is an IFsubgl of type 3 of P : Let X be a

finite subset of G. Let s ∈ mu(X), t ∈ ML(X). Then µA(s), µA(t) ≥ µA(s) ∧ µA(t) ≥
∧

x∈X µA(x) and

νA(s), νA(t) ≤ νA(s) ∨ νA(t) ≤ ∨
x∈X νA(x). Therefore by Definition 2.10, A is IFsubgl of type 3 of P.

Therefore by Definition 3.2, A is IFgl-subgroup of type 3 of G.

Theorem 3.5. An IFset A of G, is an IFgl-subgroup of type 3 of G if and only if Cα,β(A) is a gl-subgroup of G

for all α ∈ µA(G) ∪ {l ∈ L | µA(e) ≥ l} and β ∈ νA(G) ∪ {l ∈ L | νA(e) ≤ l} with h(α) + h(β) ≤ 1.

Proof. Suppose A is an IFgl-subgroup of type 3 of G. Let α ∈ µA(G) ∪ {l ∈ L | µA(e) ≥ l} and

β ∈ νA(G) ∪ {l ∈ L | νA(e) ≤ l} with h(α) + h(β) ≤ 1. To show that Cα,β(A) is a gl-subgroup of

G : To show that Cα,β(A) is a subgroup of G : Let x, y ∈ Cα,β(A). Then µA(x) ≥ α, νA(x) ≤ β and

µA(y) ≥ α, νA(y) ≤ β. Consider µA(x · y−1) ≥ µA(x)∧µA(y−1) = µA(x)∧µA(y) ≥ α∧ α = α. Consider

νA(x · y−1) ≤ νA(x) ∨ νA(y−1) = νA(x) ∨ νA(y) ≤ β ∨ β = β. Therefore x · y−1 ∈ Cα,β(A). Therefore

Cα,β(A) is a subgroup of G. To show that Cα,β(A) is a subgl of G : Let X be a finite subset of Cα,β(A) and

s ∈ mu(X), t ∈ ML(X). Then µA(s) ≥
∧

x∈X
µA(x) ≥ α, νA(s) ≤

∨
x∈X

νA(x) ≤ β, µA(t) ≥
∧

x∈X
µA(x) ≥ α

and νA(t) ≤
∨

x∈X
νA(x) ≤ β. This implies s, t ∈ Cα,β(A). That is mu(X), ML(X) ⊆ Cα,β(A). Therefore

Cα,β(A) is a subgl of G. Therefore Cα,β(A) is a gl-subgroup of G.

Conversely suppose the condition. To show that A is IFgl-subgroup of type 3 of G : Let x, y ∈ G, α =

µA(x) ∧ µA(y) and β = νA(x) ∨ νA(y). Clearly α ∈ µA(G) ∪ {l ∈ L | µA(e) ≥ l} and β ∈ νA(G) ∪ {l ∈

L | νA(e) ≤ l}. Consider

h(α) + h(β) = h(µA(x) ∧ µA(y)) + h(νA(x) ∨ νA(y))

= min{h(µA(x)), h(µA(y))}+ max{h(νA(x)), h(νA(y))}

≤ min{1 − h(νA(x)), 1 − h(νA(y))}+ max{h(νA(x)), h(νA(y))}

= 1 − max{h(νA(x)), h(νA(y))}+ max{h(νA(x)), h(νA(y))}



L-valued Intuitionistic L-fuzzy Generalised Lattice Ordered Groups of the Type 3 / P. R. Kishore et al. 48

= 1

Then x, y ∈ Cα,β(A) and by hypothesis Cα,β(A) is a subgroup of G. This implies x · y−1 ∈ Cα,β(A).

Then µA(x · y−1) ≥ α = µA(x) ∧ µA(y) and νA(x · y−1) ≤ β = νA(x) ∨ νA(y). Let X be a finite subset

of G, γ =
∧

x∈X
µA(x) and δ =

∨
x∈X

νA(x). Clearly γ ∈ µA(G) ∪ {l ∈ L | µA(e) ≥ l}, δ ∈ νA(G) ∪ {l ∈

L | νA(e) ≤ l}. Consider

h(γ) + h(δ) = h(
∧

x∈X

µA(x)) + h(
∨

x∈X

νA(x))

= min
x∈X

{h(µA(x))}+ max
x∈X

{h(νA(x))}

≤ min
x∈X

{1 − h(νA(x))}+ max
x∈X

{h(νA(x))}

= 1 − max
x∈X

{h(νA(x))}+ max
x∈X

{h(νA(x))}

= 1

Then X ⊆ Cγ,δ(A) and by hypothesis Cγ,δ(A) is a subgl of G. This implies mu(X), ML(X) ⊆ Cγ,δ(A).

Then for any s ∈ mu(X), t ∈ ML(X) we have µA(s) ≥ γ, νA(s) ≤ δ, µA(t) ≥ γ and νA(t) ≤ δ. This

implies µA(s) ∧ µA(t) ≥ γ =
∧

x∈X µA(x) and νA(s) ∨ νA(t) ≤ δ =
∨

x∈X νA(x). Therefore by Theorem

3.4, A is IFgl-subgroup of type 3 of G.

Theorem 3.6. The intersection of any family of IFgl-subgroups type 3 of G is again an IFgl-subgroup of type 3

of G.

Definition 3.7. Let A be an IFset of type 3 of G. Then the smallest IFgl-subgroup of type 3 of G containing A

is called IFgl-subgroup of type 3 of G generated by A.

Recall the definitions of intuitionistic fuzzy empty set and intuitionistic fuzzy whole set defined by Tae

Chon Ahn [22].

Definition 3.8. Let P be a generalised lattice. Define ϕ = {(x, µϕ(x) = 0L, νϕ(x) = 1L) | x ∈ P} and

P = {(x, µϕ(x) = 1L, νϕ(x) = 0L) | x ∈ P}. Then ϕ, P are L-valued intuitionistic L-fuzzy sets of the type 3

(IFsets of type 3) of P. Here ϕ is called empty IFset of type 3 and P called whole IFset of type 3.

Definition 3.9. Define ϕ = {(x, µϕ(x) = 0L, νϕ(x) = 1L) | x ∈ G} and G = {(x, µϕ(x) = 1L, νϕ(x) =

0L) | x ∈ G}. Then ϕ, G are L-valued intuitionistic L-fuzzy sets of the type 3 (IFsets of type 3) of G. Here ϕ is

called empty IFset of type 3 and G called whole IFset of type 3.
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