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Abstract

In this paper, we introduce a new mixed type SP-iteration process, which approximates the common

fixed points of three single-valued non-expansive mappings and three multi-valued non-expansive

mappings in CAT(0) spaces. We establish △−convergence and strong convergence theorems for the

new iterative process in CAT(0) spaces. Our results extend and improve the corresponding recent

results announced by many authors.
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1. Introduction

A CAT(0) space plays a fundamental role in various fields of mathematics (see [1–3]). Moreover, there

are applications in biology and computer science as well ([4,5]). A metric space X is a CAT(0) space

if it is geodesically connected and if every geodesic triangle in X is at least as ‘thin’ as its comparison

triangle in the Euclidean plane. It is well known that any complete, simply connected Riemannian

manifold having non-positive sectional curvature is a CAT(0) space. The complex Hilbert ball with a

hyperbolic metric is a CAT(0) space ([1]).

The study of metric spaces without linear structure has played a vital roll in various branches of pure

and applied sciences. In particular, existence and approximation results in CAT(0) spaces for classes of

single-valued and multi-valued mappings have been studied extensively by many authors (see [6–11]).

Iteration process for numerical reckoning fixed points of various classes of nonlinear operators are

available in the literature. In this regard, the class of single-valued non-expansive mappings via

iteration methods has extensively been studied ([12,13]). For multi-valued non-expansive mappings,

Sastry and Babu [14] defined a Mann and Ishikawa iteration process in Hilbert spaces. Panyanak [15]
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and Song and Wang [16] (see also [17]) extended the result of Sastry and Babu [11] to uniformly convex

Banach spaces. Shahzad and Zegeye [18] extended and improved results of (see [14,16,17]).

In 2008, Dhompongsa and Panyanak [19] established △-convergence theorems for the Mann and

Ishikawa iterations for non-expansive single-valued mappings in CAT(0) spaces. Inspired by Song

and Wang [16], Laowang and Panyanak [7] extended the result of Dhompongsa and Panyanak [6] for

multi-valued non-expansive mappings in a CAT(0) space.

In 2011, W. Phuengrattana and S. Suantai [20] introduced the SP-iterative process. The SP-iteration is

defined by x1 ∈ K and 
zn = (1 − γn)xn + γnTxn

yn = (1 − βn)zn + βnTzn

xn+1 = (1 − αn)yn + αnTyn

(1)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences in [0, 1].

In 2015, R.P. Pathak et al. [21] introduce a Noor-type iteration process for non-expansive multi-valued

mappings and prove strong convergence theorems for the proposed iterative process in CAT(0) spaces.

Let K be a nonempty convex subset of a complete CAT(0) space X. The sequence of Noor-type iterates

is defined by x1 ∈ K, 
zn = (1 − γn)xn ⊕ γnwn

yn = (1 − βn)xn ⊕ βnw′
n

xn+1 = (1 − αn)xn ⊕ αnw′′
n

(2)

for all n ≥ 1, where wn ∈ Txn, w′
n ∈ Tzn, w′′

n ∈ Tyn, and {αn}, {βn}, {γn} are sequences in [0, 1].

In 2018, K. Sokhuma [22] introduce a SP-iteration process for non-expansive multi-valued mappings

and prove strong convergence theorems for the proposed iterative process in CAT(0) spaces. Let K be

a nonempty convex subset of a complete CAT(0) space X. The sequence of SP-iteration is defined by

x1 ∈ K, 
zn = (1 − γn)xn ⊕ γnwn

yn = (1 − βn)zn ⊕ βnw′
n

xn+1 = (1 − αn)yn ⊕ αnw′′
n

(3)

for all n ≥ 1, where wn ∈ Txn, w′
n ∈ Tzn, w′′

n ∈ Tyn, and {αn}, {βn}, {γn} are sequences in [0, 1].

In 2021, Y. Liu [23] introduce a mixed type iterative process for non-expansive single-valued and multi-

valued mappings and prove strong convergence theorems for the proposed iterative process in Banach

spaces. The sequence of mixed type iteration is defined by x1 ∈ K,

xn+1 = αnSxn + βnyn + γnzn

for all n ≥ 1, where yn ∈ T1xn, zn ∈ T2xn and {αn}, {βn}, {γn} are sequences in [0, 1].
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The purpose of this paper is to introduce the mixed type SP-iteration process for finding a common

fixed point of the single-valued and multi-valued non-expansive mappings in the setting of CAT(0)

spaces. Under suitable conditions some strong convergence and △− convergence theorems of the

iterative sequence generated by the proposed scheme to approximate a common fixed point of single-

valued and multi-valued non-expansive mappings are proved. The results presented in the paper

extend and improve some recent results announced in the current literature [7]-[22].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or more briefly, a geodesic

from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and

d(c(t), c(t′)) = |t˘t′| for all t, t′ ∈ [0, l].

In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment

joining x and y. When it is unique this geodesic segment is denoted by [x, y]. For any x, y ∈ X,

we denote the point z ∈ [x, y] by z = (1 − α)x ⊕ αy, where 0 ≤ α ≤ 1 if d(x, z) = αd(x, y) and

d(z, y) = (1 − α)d(x, y).

The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and

X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A

subset K ⊂ X is called convex if K includes every geodesic segment joining any two of its points.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three points of X (as the

vertices of △) and a geodesic segment between each pair of points (as the edges of △ ). A comparison

triangle for △(x1, x2, x3) in (X, d) (denoted by △) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in Euclidean

plane R2 such that dR2(xi, xj) = d(xi, xj)for i, j ∈ {1, 2, 3}. A point x ∈ [x1, x2] is said to be comparison

point for x ∈ [x1, x2] if d(x1, x) = d(x1, x). The comparison points on [x2, x3] and [x3, x1] are defined in

same way.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles satisfy the following

comparison axiom (CAT(0) inequality):

Let △ be a geodesic triangle in X and △ its comparison triangle in R2. Then, △ is said to satisfy

CAT(0) inequality if for all x, y ∈ △ and all comparison points x, y ∈ △ ,

d(x, y) ≤ dR2(x, y).

Finally, we observe that if x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint of the segment

[y1, y2], then the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1
2

d(x, y2)
2 − 1

4
d(y1, y2)

2. (4)

The equality holds for the Euclidean metric. In fact (see [1]), a geodesic metric space is a CAT(0) space
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if and only if it satisfies inequality (2.1) (which is known as the CN inequality).

The following Lemma 2.1 can be found in [19].

Lemma 2.1. Let (X, d) be a CAT(0) space.

(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y).

(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z).

Lemma 2.2 ([27]). Let (X, d) be a CAT(0) space, x ∈ X be a given point and {tn}be a sequence in [b, c] with

b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 . Let {xn} and{yn} be any sequences in X such that


lim supn→∞ d(xn, p) ≤ r,

lim supn→∞ d(yn, p) ≤ r

limn→∞ d((1 − tn)xn ⊕ tnyn, x) = r

for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.

Now, we recall some definitions.

Let K be the subset of CAT(0) space X. Then:

(i) The distance from x ∈ X to K is defined by

dist(x, K) = inf{d(x, y) : y ∈ K}.

(ii) The diameter of K is defined by

diam(K) = sup{d(u, v) : u, v ∈ K}.

The set K is called proximinal if for each x ∈ X, there exists an element y ∈ K such that d(x, y) =

dist(x, K). Let CB(K), C(K), and P(K) denote the family of nonempty closed bounded subsets,

nonempty compact subsets and nonempty proximinal subsets of K, respectively. The Hausdorff metric

H on CB(K) is defined by

H(U, V) = max{sup
x∈U

dist(x, V), sup
y∈V

dist(y, U)}
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for U, V ∈ CB(K), where dist(x,V) = inf{d(x, z), z ∈ V}.

Let S : K → K be a single-valued mapping. An element x ∈ X is said to be a fixed point of S, if x = Sx.

The set of fixed points will be denoted by F(S).

Let T : X → 2X be a multi-valued mapping. An element x ∈ X is said to be a fixed point of T, if

x ∈ Tx. The set of fixed points will be denoted by F(T).

Definition 2.3.

(1) A single-valued mapping S : K → K is called non-expansive, if d(Sx, Sy) ≤ d(x, y) for all x, y ∈ K;

(2) A multi-valued mapping T : K → CB(K) is called non-expansive, if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

Let X be a complete CAT(0) space and let {xn} be a bounded sequence in X. For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of xn is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known that in a complete CAT(0) space, A({xn}) consists of exactly one point ([28], Proposition 7).

Also, every CAT(0) space has the Opial property, i.e., if {xn} is a sequence in K and △− limn→∞ xn = x,

then for each y( ̸= x) ∈ K,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

In 2005, Khan and Fukhar-ud-din [29] introduced the condition (A’). In 2007, Fukhar-ud-din [30] gave

an improved version for the condition (A’). In 2011, Abbas etc. [31] introduced a multi-valued version

of condition (A’).

Next, we introduce a mixed type version for the condition (A’) of single-value and multi-valued as

follows:

Three single-value mappings S1, S2, S3 : K → K and three multi-valued mappings T1, T2, T3 : K →

CB(K) are said to satisfy condition (A’) if there exists a nondecreasing function g : [0, ∞) → [0, ∞)

with g(0) = 0, g(t) > 0 for all t ∈ (0, ∞) for such that either d(x, S1x) ≥ g(dist(x, F)) or d(x, S2x) ≥

g(dist(x, F)) or d(x, S3x) ≥ g(dist(x, F)) or dist(x, T1x) ≥ g(dist(x, F)) or dist(x, T2x) ≥ g(dist(x, F))

for all x ∈ K where F =
⋂3

i=1 F(Si)
⋂

F(Ti) .

Definition 2.4 ([32,33]). A sequence {xn} in a CAT(0) space X is said to be △-convergent to x ∈ X if x is the
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unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write △− limn→∞ xn =

x and x is called the △ -limit of {xn}.

The notion of △ -convergence in a general metric space was introduced by Lim [33]. In 2008, Kirk

and Panyanak [32] used the concept of △ -convergence introduced by Lim [33] to prove on the CAT(0)

space analogous of some Banach space results which involve weak convergence. Further, Dhompongsa

and Panyanak [19] obtained △ -convergence theorems for the Picard, Mann and Ishikawa iterations in

a CAT(0) space.

Lemma 2.5 ([34]). Let X be a complete CAT(0) space, K be a closed convex subset of X. If {xn} is a bounded

sequence in K, then the asymptotic center of {xn} is in K.

Lemma 2.6 ([32]). Every bounded sequence in a complete CAT(0) space always has a △ -convergent

subsequence.

Lemma 2.7 ([32]). Let K be a nonempty closed convex subset of a complete CAT(0) space X and let S : K → X

be a single-valued non-expansive mapping. If △− limn→∞ xn = x and limn→∞ d(xn, Sxn) = 0, then x is a

fixed point of S.

Lemma 2.8 ([34]). Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K →

C(K) be a multi-valued non-expansive mapping. If △− limn→∞ xn = x and limn→∞ dist(xn, Txn) = 0, then

x is a fixed point of T.

3. Main Results

Now we introduce the notion of the proposed mixed type version of the SP iteration process for three

single-valued non-expansive mappings and three multi-valued non-expansive mappings. Let K be a

nonempty convex subset of a complete CAT(0) space X. The sequence of mixed type SP iterates is

defined by x1 ∈ K, 
zn = (1 − γn)S1xn ⊕ γnwn

yn = (1 − βn)S2zn ⊕ βnw′
n

xn+1 = (1 − αn)S3yn ⊕ αnw′′
n

(5)

for all n ≥ 1, where wn ∈ T1xn, w′
n ∈ T2zn, w′′

n ∈ T3yn, and {αn}, {βn}, {γn} are sequences in [0, 1].

If S1 = S2 = S3 = I is a identity mapping, then the iterative process (5) reduces to the sequences as

follows: 
zn = (1 − γn)xn ⊕ γnwn

yn = (1 − βn)zn ⊕ βnw′
n

xn+1 = (1 − αn)yn ⊕ αnw′′
n

(6)

for all n ≥ 1, where wn ∈ T1xn, w′
n ∈ T2zn, w′′

n ∈ T3yn, and {αn}, {βn}, {γn} are sequences in [0, 1].
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If T1 = T2 = T3 = T is a multi-valued non-expansive mapping, then the iterative process (5) reduces to

the sequences (3).

Lemma 3.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Si : K → K be

single-valued non-expansive mappings and Ti : K → CB(K) be multi-valued non-expansive mappings with

F =
⋂3

i=1 F(Si)
⋂

F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti) for all i = 1, 2, 3. Let {xn} be the mix

type SP-iterates is defined by (5). Then limn→∞ d(xn, p) exists for each p ∈ F.

Proof. For p ∈ F, in view of Lemma 2.2 (ii) and Equation (5)

d(zn, p) = d((1 − γn)S1xn ⊕ γnwn, p)

≤ (1 − γn)d(S1xn, p) + γnd(wn, p)

≤ (1 − γn)d(S1xn, p) + γndist(wn, T1 p)

≤ (1 − γn)d(xn, p) + γnH(T1xn, T1 p)

≤ (1 − γn)d(xn, p) + γnd(xn, p)

= d(xn, p)

(7)

Also, we have

d(yn, p) = d((1 − βn)S2zn ⊕ βnw′
n, p)

≤ (1 − βn)d(S2zn, p) + βnd(w′
n, p)

≤ (1 − βn)d(S2zn, p) + βndist(w′
n, T2 p)

≤ (1 − βn)d(zn, p) + βnH(T2zn, T2 p)

≤ (1 − βn)d(zn, p) + βnd(zn, p)

= d(zn, p)

(8)

Similarly, we have

d(xn+1, p) = d((1 − αn)S3yn ⊕ αnw′′
n , p)

≤ (1 − αn)d(S3yn, p) + αnd(w′′
n , p)

≤ (1 − αn)d(S3yn, p) + αndist(w′′
n , T3 p)

≤ (1 − αn)d(yn, p) + αnH(T3yn, T3 p)

≤ (1 − αn)d(yn, p) + αnd(yn, p)

= d(yn, p)

(9)

By Equation (7), (8) and (9), we have

d(xn+1, p) ≤ d(yn, p) ≤ d(zn, p) ≤ d(xn, p) (10)
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This implies that the sequence {d(xn, p)} is decreasing and bounded below, and so limn→∞ d(xn, p)

exists for any p ∈ F. The conclusion is proved.

Lemma 3.2. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Si : K → K be

single-valued non-expansive mappings and Ti : K → CB(K) be multi-valued non-expansive mappings with

F =
⋂3

i=1 F(Si)
⋂

F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti) for all i = 1, 2, 3. Let {xn} be the mix

type SP-iterates is defined by (5). Assume that

(i) there exist constants b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 such that {αn}, {βn}, {γn} ⊂ [b, c];

(ii) d(x, u) ≤ d(Six, u) for all x, y ∈ K, u ∈ Tiy.

Then (1) limn→∞ d(xn, Sixn) = 0, i = 1, 2, 3; (2) limn→∞ dist(xn, Tixn) = 0, i = 1, 2, 3.

Proof. (1) By Lemma 3.1, for each given p ∈ F, limn→∞ d(xn, p) exists, without loss of generality, we

can assume that limn→∞ d(xn, p) = r ≥ 0. By Equation (7) and (8), we have

d(yn, p) ≤ d(zn, p) ≤ d(xn, p).

Taking limsup on both sides, we can obtain

lim sup
n→∞

d(yn, p) ≤ r (11)

Since

d(S3yn, p) ≤ d(yn, p)

and

d(w′′
n , p) ≤ H(T3yn, T3 p) ≤ d(yn, p),

It follows from Equation (11) that

lim sup
n→∞

d(S3yn, p) ≤ r,

and

lim sup
n→∞

d(w′′
n , p) ≤ r.

Notice that

lim
n→∞

d(xn+1, p) = lim
n→∞

d((1 − αn)S3yn ⊕ αnw′′
n , p) = r,

by Lemma 2.2, we have

lim
n→∞

d(S3yn, w′′
n) = 0. (12)
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By condition (ii), d(yn, w′′
n) ≤ d(S3yn, w′′

n), and Equation (12), we have

lim
n→∞

d(yn, w′′
n) = 0. (13)

Notice that dist(yn, T3yn) ≤ d(yn, w′′
n), so we have

lim
n→∞

dist(yn, T3yn) = 0. (14)

Notice that

d(yn, S3yn) ≤ d(yn, w′′
n) + d(S3yn, w′′

n), w′′
n ∈ T3yn,

by Equation (12), (13), we have

lim
n→∞

d(yn, S3yn) = 0. (15)

Again,

d(xn+1, p) = d((1 − αn)S3yn ⊕ αnw′′
n , p)

≤ (1 − αn)d(S3yn, p) + αnd(w′′
n , p)

≤ (1 − αn)d(S3yn, p) + αnd(w′′
n , S3yn) + αnd(S3yn, p)

≤ d(yn, p) + αnd(S3yn, w′′
n)

Taking liminf on both sides, by Equation (12), we can obtain

lim inf
n→∞

d(yn, p) ≥ r.

It follows from Equation (11) that

lim
n→∞

d(yn, p) = lim
n→∞

d((1 − βn)S2zn ⊕ βnw′
n, p) = r. (16)

Similarly, by Equation (7), we have

d(zn, p) ≤ d(xn, p).

Taking limsup on both sides, we can obtain

lim sup
n→∞

d(zn, p) ≤ r (17)

Since

d(S2zn, p) ≤ d(zn, p)
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and

d(w′
n, p) ≤ H(T2zn, T2 p) ≤ d(zn, p),

It follows from Equation (17) that

lim sup
n→∞

d(S2zn, p) ≤ r,

and

lim sup
n→∞

d(w′
n, p) ≤ r.

By Equation (16) and Lemma 2.2, we have

lim
n→∞

d(S2zn, w′
n) = 0. (18)

By condition (ii), d(zn, w′
n) ≤ d(S2zn, w′

n), and Equation (18), we have

lim
n→∞

d(zn, w′
n) = 0. (19)

Notice that dist(zn, T2zn) ≤ d(zn, w′
n), so we have

lim
n→∞

dist(zn, T2zn) = 0. (20)

Notice that

d(zn, S2zn) ≤ d(zn, w′
n) + d(S2zn, w′

n), w′
n ∈ T2zn,

by Equation (18) and (19), we have

lim
n→∞

d(zn, S2zn) = 0. (21)

Again,

d(yn, p) = d((1 − βn)S2zn ⊕ βnw′
n, p)

≤ (1 − βn)d(S2zn, p) + βnd(w′
n, p)

≤ (1 − βn)d(S2zn, p) + βnd(w′
n, S2zn) + βnd(S2zn, p)

≤ d(zn, p) + βnd(S2zn, w′
n)

Taking liminf on both sides, by Equation (18), we can obtain

lim inf
n→∞

d(zn, p) ≥ r.



On mixed type SP-iteration schemes for single-valued and multi-valued mappings in CAT(0) spaces / Y. Liu et al. 49

It follows from Equation (17) that

lim
n→∞

d(zn, p) = lim
n→∞

d((1 − γn)S1xn ⊕ γnwn, p) = r. (22)

Since

d(S1xn, p) ≤ d(xn, p)

and

d(wn, p) ≤ H(T1xn, T1 p) ≤ d(xn, p),

By limn→∞ d(xn, p) = r, we have

lim sup
n→∞

d(S1xn, p) ≤ r,

and

lim sup
n→∞

d(wn, p) ≤ r.

By Equation (22) and Lemma 2.2, we have

lim
n→∞

d(S1xn, wn) = 0. (23)

By condition (ii), d(xn, wn) ≤ d(S1xn, wn), and Equation (23), we have

lim
n→∞

d(xn, wn) = 0. (24)

Notice that dist(xn, T1xn) ≤ d(xn, wn), so we have

lim
n→∞

dist(xn, T1xn) = 0. (25)

Notice that

d(xn, S1xn) ≤ d(xn, wn) + d(S1xn, wn), wn ∈ T1xn,

by (23) and (24), we have

lim
n→∞

d(xn, S1xn) = 0. (26)

Since

d(xn+1, yn) = d((1 − αn)S3yn ⊕ αnw′′
n , yn)

≤ (1 − αn)d(S3yn, yn) + αnd(w′′
n , yn)
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by Equation (13) and (15), we have

lim
n→∞

d(xn+1, yn) = 0. (27)

Similarly, since

d(yn, zn) = d((1 − βn)S2zn ⊕ βnw′
n, zn)

≤ (1 − βn)d(S2zn, zn) + βnd(w′
n, zn)

by Equation (19) and (21), we have

lim
n→∞

d(yn, zn) = 0. (28)

Since

d(zn, xn) = d((1 − γn)S1xn ⊕ γnwn, xn)

≤ (1 − γn)d(S1xn, xn) + γnd(wn, xn)

by Equation (24) and (26), we have

lim
n→∞

d(zn, xn) = 0. (29)

Notice that d(xn, yn) ≤ d(xn, zn) + d(zn, yn), by Equation (27) and (28), we have

lim
n→∞

d(xn, yn) = 0. (30)

Notice that d(xn+1, xn) ≤ d(xn+1, yn) + d(yn, zn) + d(yn, xn), by Equation (27), (27) and (28), we have

lim
n→∞

d(xn+1, xn) = 0. (31)

Since d(yn+1, yn) ≤ d(yn+1, xn+1) + d(xn+1, yn), by Equation (27) and (28), we have

lim
n→∞

d(yn+1, yn) = 0. (32)

Since d(zn+1, zn) ≤ d(zn+1, xn+1) + d(xn+1, xn) + d(xn, zn), by Equation (28) and (29), we have

lim
n→∞

d(zn+1, zn) = 0. (33)
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Since

d(xn, S2xn) ≤ d(xn, zn) + d(zn, S2zn) + d(S2zn, S2xn)

≤ 2d(xn, zn) + d(zn, S2zn)

by Equation (21) and (28), we have

lim
n→∞

d(xn, S2xn) = 0. (34)

Similarly, since

d(xn, S3xn) ≤ d(xn, yn) + d(yn, S3yn) + d(S3yn, S3xn)

≤ 2d(xn, yn) + d(yn, S3yn)

by Equation (15) and (28), we have

lim
n→∞

d(xn, S3xn) = 0. (35)

Hence

lim
n→∞

d(xn, Sixn) = 0, i = 1, 2, 3.

(2) By Equation (25), we have

lim
n→∞

dist(xn, T1xn) = 0.

Notice that

dist(xn, T2xn) ≤ d(xn, zn) + dist(zn, T2zn) + H(T2zn, T2zn)

≤ 2d(xn, zn) + dist(zn, T2xn)

by Equation (20) and (28), we have

lim
n→∞

dist(xn, T2xn) = 0. (36)

Similarly, since

dist(xn, T3xn) ≤ d(xn, yn) + dist(yn, T3yn) + H(T3yn, T3xn)

≤ 2d(xn, yn) + dist(yn, T3yn)
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by Equation (14) and (28), we have

lim
n→∞

dist(xn, T3xn) = 0. (37)

Hence

lim
n→∞

dist(xn, Tixn) = 0, i = 1, 2, 3.

The conclusion is proved.

Now, we find two mappings, S1 = S2 = S3 = S and T1 = T2 = T3 = T, satisfying the condition (ii) in

Lemma 3.1 as follows.

Example 3.3. Let X = (−∞, ∞) with the usual norm |.| and let K = [−1, 1]. Define the single-valued mapping

S : K → K, the multi-valued mapping T : K → C(K) by

Sx =


−x, x ∈ [0, 1],

x, x ∈ [−1, 0),
Tx =


[0, x], x ∈ [0, 1],

0, x ∈ [−1, 0),

Now, we show that S : K → K is single-valued non-expansive mapping. In fact, if x, y ∈ [0, 1], then we

have

|Sx − Sy| = | − x + y| = |x − y|.

If x, y ∈ [−1, 0), then we have

|Sx − Sy| = |x − y|.

If x ∈ [0, 1], y ∈ [−1, 0), then we have

|Sx − Sy| = | − x − y| = |x + y| ≤ |x − y|.

If x ∈ [−1, 0), y ∈ [0, 1], then we have

|Sx − Sy| = |x + y| ≤ |x − y|.

This implies that S is non-expansive.

Next, we show that T : K → C(K) is multi-valued non-expansive mapping. In fact, if x, y ∈ [−1, 0),

then we have

H(Tx, Ty)| = 0 ≤ |x − y|.

If x ∈ [−1, 0], y ∈ [0, 1], then we have

H(Tx, Ty)| = max{0, |y|} = |y| ≤ |x − y|.
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If x ∈ [0, 1], y ∈ [−1, 0), then we have

H(Tx, Ty)| = max{0, |x|} = |x| ≤ |x − y|.

If x, y ∈ [0, 1], without loss of generality, let x ≤ y,

H(Tx, Ty) = max{sup
a∈Tx

d(a, Ty), sup
b∈Ty

d(b, Tx)}.

∀a ∈ Tx, d(a, Ty) = inf{|a − c| : c ∈ Ty} = 0, then

sup
a∈Tx

d(a, Ty) = 0.

∀b ∈ Ty, d(b, Tx) = inf{|b − c′| : c′ ∈ Tx}, then

d(b, Tx) = 0, ∀b ≤ x,

d(b, Tx) = |b − x|, ∀b > x,

so, we have

sup
b∈Ty

d(b, Tx) =


0, b < x,

|y − x|, b ≥ x,

So, If x, y ∈ [0, 1], then we have

H(Tx, Ty) = max{sup
a∈Tx

d(a, Ty), sup
b∈Ty

d(b, Tx)} ≤ |x − y|.

This implies that T is multi-valued non-expansive.

Next, we show that two mappings S, T satisfy the condition (ii) in Lemma 3.2.

Case 1: Let x, y ∈ [−1, 0). Then we have, Ty = 0, that is u = 0, then

|x − u| = |Sx| = |Sx − u|.

Case 2: Let x ∈ [−1, 0), y ∈ [0, 1]. Then we have, Ty = [0, y], that is u ∈ [0, y], then

|x − u| = |Sx − u|.

Case 3: Let x ∈ [0, 1], y ∈ [−1, 0). Then we have, Ty = 0, that is u = 0, then

|x − u| = |Sx| = |Sx − u|.
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Case 4: Let x, y ∈ [0, 1]. Then we have, Ty = [0, y], that is u ∈ [0, y] ⊂ [0, 1], then

|x − u| ≤ | − x − u| = |Sx − u|.

Therefore, the condition (ii) in Lemma 3.2 is satisfied.

Now, we give the △-convergence theorem of the mixed type SP-iteration on a CAT(0) space.

Theorem 3.4. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Si : K → K be

single-valued non-expansive mappings and Ti : K → CB(K) be multi-valued non-expansive mappings with

F =
⋂3

i=1 F(Si)
⋂

F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti) for all i = 1, 2, 3. Let {xn} be the mix

type SP-iterates is defined by (5). Assume that

(i) there exist constants b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 such that {αn}, {βn}, {γn} ⊂ [b, c];

(ii) d(x, u) ≤ d(Six, u) for all x, y ∈ K, u ∈ Tiy, i = 1, 2, 3.

Then {xn} △-converges to a common fixed point of S1, S2, S3, T1, T2 and T3.

Proof. By Lemma 3.1 and Lemma 3.2 , we have limn→∞ d(xn, p) exists for each p ∈ F, so that the

sequence {xn} is bounded and limn→∞ d(xn, Sixn) = 0 = limn→∞ dist(xn, Tixn), i = 1, 2, 3.

Let Ww({xn}) =:
⋃

A({un}), where union is taken over all subsequences {un} of {xn}. To show that

the △-convergence of {xn} to a common fixed point of S1, S2, S3, T1, T2 and T3, firstly we will prove

Ww({xn}) ⊂ F and thereafter argue that Ww({xn}) is a singleton set. To show Ww({xn}) ⊂ F, let

y ∈ Ww({xn}). Then, there exists a subsequence {yn} of {xn} such that A(yn) = y. By Lemmas

2.5 and 2.6, there exists a subsequence {zn} of {yn} such that △− limn→∞ zn = z and z ∈ K. Since

limn→∞ d(zn, Sizn) = 0. In view of Lemma 2.7, we have z = Siz, i = 1, 2, 3.

Similarly, by Lemma 2.8, we can show that z ∈ Tiz, i = 1, 2, 3 , hence z ∈ F. Now, we claim that z = y.

Let on contrary that z ̸= y, then we have

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, y)

≤ lim sup
n→∞

d(yn, y)

< lim sup
n→∞

d(yn, z)

= lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z)

which is a contradiction and hence z = y ∈ F.

To show that Ww({xn}) is a singleton, let {yn} be a subsequence of {xn}. In view of Lemmas 2.5 and

2.6, there exists a subsequence {zn} of {yn} such that △− limn→∞ zn = z. Let A({yn}) = {y} and

A({xn}) = {x}. Earlier, we have shown that y = z; therefore, it is enough to show z = x. If z ̸= x then
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by Lemma 3.1, {d(xn, z)} is convergent. By uniqueness of asymptotic centers

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z)

which is a contradiction. Hence the conclusion follows.

Now, we prove a strong convergence theorem which extends Theorem 1 of [19] for the mixed type

SP-iteration in CAT(0) spaces

Theorem 3.5. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Si : K → K be

single-valued non-expansive mappings and Ti : K → CB(K) be multi-valued non-expansive mappings with

F =
⋂3

i=1 F(Si)
⋂

F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti) for all i = 1, 2, 3. Let {xn} be the mix

type SP-iterates is defined by (3.1). Assume that

(1) there exist constants b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 such that {αn}, {βn}, {γn} ⊂ [b, c];

(2) d(x, u) ≤ d(Six, u) for all x, y ∈ K, u ∈ Tiy, i = 1, 2, 3.

Then {xn} strong converges to a common fixed point of S1, S2, S3, T1, T2 and T3 if and only if

lim infn→∞ dist(x, F) = 0.

Proof. The necessity is obvious. We only prove the sufficiency, suppose that lim infn→∞ dist(xn, F) = 0.

By (9) we have,

d(xn+1, p) ≤ d(xn+1, p).

This gives

dist(xn+1, F) ≤ dist(xn, F).

Hence limn→∞ dist(xn, F) exists. By hypothesis, lim infn→∞ dist(xn, F) = 0, therefore we must have

limn→∞ dist(xn, F) = 0.

Next we show that {xn} is a Cauchy sequence in K. Let ϵ > 0 be arbitrarily chosen. Since

limn→∞ dist(xn, F) = 0, therefore there exists a constant n0 such that for all n ≥ n0, we have

dist(xn, F) <
ϵ

4
.

In particular, dist(xn0 , F) < ϵ
4 . That is inf{d(xn0 , p) : p ∈ F} < ϵ

4 . So there must exist a p∗ ∈ F such that

d(xn0 , p∗) <
ϵ

2
.
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Now for m, n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p∗) + d(p∗, xn)

≤ 2d(xn0 , p∗)

< 2 × ϵ

2
= ϵ

Hence {xn} is a Cauchy sequence in a closed subset K of a Banach space X, and therefore it must

converge in K. Let limn→∞ xn = q. Now, for i = 1, 2, 3,

d(q, Siq) ≤ d(q, xn) + d(xn, Sixn) + d(Sixn, q)

≤ d(q, Sixn) + d(xn, Sixn) + d(xn, q)

→ 0 as n → 0

gives that d(q, Siq) = 0 which implies that q = Siq, i = 1, 2, 3. For i = 1, 2, 3,

dist(q, Tiq) ≤ d(q, xn) + dist(xn, Tixn) + H(Tixn, Tiq)

≤ d(q, xn) + dist(xn, Tixn) + d(xn, q)

→ 0 as n → 0

gives that dist(q, Tiq) = 0 which implies that q ∈ Tiq, i = 1, 2, 3. Consequently, q ∈ F.

As an application of Theorem 3.5, we can get the following result:

Theorem 3.6. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let S1, S2, S3 : K → K

be three single-valued non-expansive mappings, T1, T2, T3 : K → C(K) be three multi-valued non-expansive

mappings satisfying condition (A′). Assume that F =
⋂3

i=1 F(Si)
⋂

F(Ti) ̸= ∅ and Ti(p) = p, (i = 1, 2, 3) for

each p ∈ F. Let {xn} be the mix type SP-iterates is defined by (3.1), then {xn} converges strongly to a common

fixed point of S1, S2, S3, T1, T2 and T3.

Proof. As proof in Theorem 3.5, we know limn→∞ dist(xn, F) exists. So by condition(A’), then

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

d(xn, S1xn) = 0,

or

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

d(xn, S2xn) = 0,

or

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

d(xn, S3xn) = 0,
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or

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

dist(xn, T1xn) = 0,

or

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

dist(xn, T2xn) = 0.

or

lim
n→∞

f (dist(xn, F)) ≤ lim
n→∞

dist(xn, T3xn) = 0.

we have

lim
n→∞

f (dist(xn, F)) = 0.

Since f : [0, ∞) → [0, ∞) is a nondecreasing function and f (0) = 0, f (r) > 0 for all r ∈ (0, ∞), there

we have limn→∞ dist(xn, F) = 0. Now all the conditions of Theorem 3.5 are satisfied, therefore by its

conclusion {xn} converges strongly to a point of F.

If S1 = S2 = S3 = I is a identity mapping, the following corollaries are direct consequences of

Theorems 3.4, 3.5 and 3.6.

Corollary 3.7. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Ti : K → CB(K)

be multi-valued non-expansive mappings with F =
⋂3

i=1 F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti)

for all i = 1, 2, 3. Let {xn} be SP-iterates is defined by (6). Assume that there exist constants b, c ∈ (0, 1) and

0 < b(1 − c) ≤ 1
2 such that {αn}, {βn}, {γn} ⊂ [b, c], then {xn} △-converges to a common fixed point of T1,

T2 and T3.

Corollary 3.8. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let Ti : K → CB(K)

be multi-valued non-expansive mappings with F =
⋂3

i=1 F(Ti) ̸= ∅ with Ti p = {p} for each p ∈ ⋂3
i=1 F(Ti)

for all i = 1, 2, 3. Let {xn} be SP-iterates is defined by (6). Assume that there exist constants b, c ∈ (0, 1) and

0 < b(1 − c) ≤ 1
2 such that {αn}, {βn}, {γn} ⊂ [b, c], then {xn} strong converges to a common fixed point of

T1, T2 and T3 if and only if lim infn→∞ dist(x, F) = 0.

Corollary 3.9. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let T1, T2, T3 : K →

C(K) be three multi-valued non-expansive mappings satisfying condition (A′). Assume that F =
⋂3

i=1 F(Ti) ̸=

∅ and Ti(p) = p, (i = 1, 2, 3) for each p ∈ F. Let {xn} be the mix type SP-iterates is defined by (6), then {xn}

converges strongly to a common fixed point of T1, T2 and T3.

If T1 = T2 = T3 = T is a multi-valued non-expansive mapping, the following corollaries are also direct

consequences of Theorems 3.4, 3.5 and 3.6.

Corollary 3.10. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let T : K → CB(K)

be a multi-valued non-expansive mapping with F(T) ̸= ∅ with Tp = {p} for each p ∈ F(T). Let {xn} be

SP-iterates is defined by (3). Assume that there exist constants b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 such that

{αn}, {βn}, {γn} ⊂ [b, c], then {xn} △-converges to a common fixed point of T.
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Corollary 3.11. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let T : K → CB(K)

be a multi-valued non-expansive mapping with F(T) ̸= ∅ with Tp = {p} for each p ∈ F(T). Let {xn} be SP-

iterates is defined by (3). Assume that there exist constants b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1
2 such that {αn},

{βn}, {γn} ⊂ [b, c], then {xn} strong converges to a fixed point of T if and only if lim infn→∞ dist(x, F(T) = 0.

Corollary 3.12. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Let T : K → C(K)

be a multi-valued non-expansive mapping satisfying condition (A′). Assume that F(T) ̸= ∅ and Tp = {p} for

each p ∈ F(T). Let {xn} be the mix type SP-iterates is defined by (3), then {xn} converges strongly to a fixed

point of T.

4. Conclusions

In this article, we extend known results on convergence of SP-iterations to fixed points of single-valued

non-expansive mappings or multi-valued non-expansive mappings to single-valued non-expansive

mappings and multi-valued non-expansive mappings mixed type version. In order to do so, we prove

strong and △−convergence theorems for the mixed type SP-iteration schemes involving three single-

valued non-expansive mappings and three multi-valued non-expansive mappings in the framework of

CAT(0) spaces.
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