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Abstract

In this study, we introduce the elliptic delta and modified elliptic delta indices and their

corresponding exponentials of a graph. Furthermore, we compute these newly definied elliptic

delta indices and their corresponding exponentials for certain networks of chemical importance

like silicate networks, honeycomb networks, oxide networks and hexagonal networks.
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1. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree

dG(u) of a vertex u is the number of vertices adjacent to u. Let δ(G) denote the minimum degree

among the vertices of G. We refer [1] for undefined notations and terminologies. A graph index

is a numerical parameter mathematically derived from the graph structure. Several graph indices

have been considered in Theoretical Chemistry and many graph indices were defined by using vertex

degree concept [2]. The Zagreb, Banhatti, Revan, Gourava, delta indices are the most degree based

graph indices in Chemical Graph Theory, see [3-17]. Graph indices have their applications in various

disciplines in Science and Technology [18, 19]. The elliptic Sombor index [20] of a graph G is defined

as

ESO (G) = ∑
uv∈E(G)

(dG(u) + dG(v))
√

dG(u)2 + dG(v)2.

Recently, some elliptic indices were studied in [21-25]. The δ vertex degree was defined by Kulli in [26]

as

δu = du − δ (G) + 1.
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Motivated by the elliptic Sombor index, we define the elliptic delta index of a graph G as

Eδ (G) = ∑
uv∈E(G)

(δu + δv)
√

δ2
u + δ2

v.

Considering the elliptic delta index, we introduce the elliptic delta exponential of a graph G and

defined it as

Eδ (G, x) = ∑
uv∈E(G)

x(δu+δv)
√

δ2
u+δ2

v .

We define the modified elliptic delta index of a graph G as

mEδ (G) = ∑
uv∈E(G)

1
(δu + δv)

√
δ2

u + δ2
v

.

Considering the modified elliptic delta index, we introduce the modified elliptic delta exponential of a

graph G and defined it as

mEδ (G, x) = ∑
uv∈E(G)

x
1

(δu+δv)
√

δ2
u+δ2

v .

Recently, some delta indices were studied in [27-36]. In this work, we determine the elliptic delta and

modified elliptic delta indices and their exponentials for certain families of networks.

2. Results for Silicate Networks

Silicate networks are obtained by fusing metal oxide or metal carbonates with sand. A silicate network

is denoted by SLn. A 2-D silicate network is presented in Figure 1.

Figure 1: A 2-D silicate network

Let G be the graph of a silicate network SLn. We obtain that G has 15n2 + 3n vertices and 36n2 edges.

In G, there are three types of edges as follows:

E1 = {uv ∈ E(G)|dG(u) = dG(v) = 3}, |E1| = 6n.

E2 = {uv ∈ E(G)|dG(u) = 3, dG(v) = 6}, |E2| = 18n2 + 6n.
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E3 = {uv ∈ E(G)|dG(u) = dG(v) = 6}, |E3| = 18n2 − 12n.

We have δ(G) = 3 and hence δu = dG(u)− δ(G) + 1 = dG(u)− 2. Hence there are 3 types of δ-edges

as given in Table 1.

δu, δv \ uv ∈ E(G) (1, 1) (1, 4) (4, 4)
Number of edges 6n 18n2 + 6n 18n2 − 12n

Table 1: δ-edge partition of SLn

Theorem 2.1. Let G be the graph of a silicate networks SLn. Then

Eδ (G) =
(

90
√

17 + 576
√

2
)

n2 +
(

30
√

17 − 372
√

2
)

n.

Proof. From definition and by using Table 1, we deduce

Eδ (G) = ∑
uv∈E(G)

(δu + δv)
√

δ2
u + δ2

v

= 6n (1 + 1)
√

12 + 12 +
(
18n2 + 6n

)
(1 + 4)

√
12 + 42 ++

(
18n2 − 12n

)
(4 + 4)

√
42 + 42

=
(

90
√

17 + 576
√

2
)

n2 +
(

30
√

17 − 372
√

2
)

n.

Theorem 2.2. Let G be the graph of a silicate networks SLn. Then

Eδ (G, x) = 6nx2
√

2 +
(
18n2 + 6n

)
x5

√
17 +

(
18n2 − 12n

)
x32

√
2.

Proof. From definition and by using Table 1, we derive

Eδ (G, x) = ∑
uv∈E(G)

x(δu+δv)
√

δ2
u+δ2

v

= 6nx(1+1)
√

12+12
+

(
18n2 + 6n

)
x(1+4)

√
12+42

+
(
18n2 − 12n

)
x(4+4)

√
42+42

= 6nx2
√

2 +
(
18n2 + 6n

)
x5

√
17 +

(
18n2 − 12n

)
x32

√
2.

Theorem 2.3. Let G be the graph of a silicate networks SLn. Then

mEδ (G) =
6n

2
√

2
+

18n2 + 6n
5
√

17
+

18n2 − 12n
32
√

2
.

Proof. From definition and by using Table 1, we obtain

mEδ (G) = ∑
uv∈E(G)

1
(δu + δv)

√
δ2

u + δ2
v
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=
6n

(1 + 1)
√

12 + 12
+

18n2 + 6n
(1 + 4)

√
12 + 42

+
18n2 − 12n

(4 + 4)
√

42 + 42

=
6n

2
√

2
+

18n2 + 6n
5
√

17
+

18n2 − 12n
32
√

2
.

Theorem 2.4. Let G be the graph of a silicate networks SLn. Then

mEδ (G, x) = 6nx
1

2
√

2 +
(
18n2 + 6n

)
xx

1
5
√

17
++

(
18n2 − 12n

)
xx

1
32
√

2 .

Proof. From definition and by using Table 1, we deduce

mEδ (G, x) = ∑
uv∈E(G)

x
1

(δu+δv)
√

δ2
u+δ2

v

= 6nx
1

(1+ 1)
√

12+12 +
(
18n2 + 6n

)
xx

1
(1+ 4)

√
12+42

++
(
18n2 − 12n

)
xx

1
(4+ 4)

√
42+42

= 6nx
1

2
√

2 +
(
18n2 + 6n

)
xx

1
5
√

17
++

(
18n2 − 12n

)
xx

1
32
√

2 .

3. Results for Honeycomb Networks

If we recursively use hexagonal tiling in particular pattern, honeycomb networks are formed. These

networks are very useful in Chemistry and also in Computer Graphics. A honeycomb network of

dimension n is denoted by HCn. A honeycomb network of dimension four is shown in Figure 2.

Figure 2: Honeycomb network of dimension four

Let G be the graph of a honeycomb network HCn. We obtain that G has 6n2 vertices and 9n2 − 3n

edges. In G, there are three types of edges as follows:

E1 = {uv ∈ E(G)|dG(u) = dG(v) = 2}, |E1| = 6.

E2 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 3}, |E2| = 12n − 12.

E3 = {uv ∈ E(G)|dG(u) = dG(v) = 3}, |E3| = 9n2 − 15n + 6.

We have δ(G) = 2 and hence δu = dG(u)− δ(G) + 1 = dG(u)− 1. Hence there are 3 types of δ-edges
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as given in Table 2.

δu, δv \ uv ∈ E(G) (1, 1) (1, 2) (2, 2)
Number of edges 6 12n − 12 9n2 − 15n + 6

Table 2: δ-edge partition of HCn

Theorem 3.1. Let G be the graph of a honeycomb network HCn. Then

Eδ (G) = 72
√

2n2 +
(

36
√

5 − 120
√

2
)

n + 60
√

2 − 36
√

5.

Proof. From definition and by using Table 2, we deduce

Eδ (G) = ∑
uv∈E(G)

(δu + δv)
√

δ2
u + δ2

v

= 6 (1 + 1)
√

12 + 12 + (12n − 12) (1 + 2)
√

12 + 22 +
(
9n2 − 15n + 6

)
(2 + 2)

√
22 + 22

= 72
√

2n2 +
(

36
√

5 − 120
√

2
)

n + 60
√

2 − 36
√

5.

Theorem 3.2. Let G be the graph of a honeycomb network HCn. Then

Eδ (G, x) = 6x2
√

2 + (12n − 12) x3
√

5 +
(
9n2 − 15n + 6

)
x8

√
2.

Proof. From definition and by using Table 2, we derive

Eδ (G, x) = ∑
uv∈E(G)

x(δu+δv)
√

δ2
u+δ2

v

= 6x(1+1)
√

12+12
+ (12n − 12) x(1+2)

√
12+22

+
(
9n2 − 15n + 6

)
x(2+2)

√
22+22

= 6x2
√

2 + (12n − 12) x3
√

5 +
(
9n2 − 15n + 6

)
x8

√
2.

Theorem 3.3. Let G be the graph of a honeycomb network HCn. Then

mEδ (G) =
6

2
√

2
+

12n − 12
3
√

5
+

9n2 − 15n + 6
8
√

2
.

Proof. From definition and by using Table 2, we obtain

mEδ (G) = ∑
uv∈E(G)

1
(δu + δv)

√
δ2

u + δ2
v

=
6

(1 + 1)
√

12 + 12
+

12n − 12

(1 + 2)
√

12 + 22
+

9n2 − 15n + 6

(2 + 2)
√

22 + 22

=
6

2
√

2
+

12n − 12
3
√

5
+

9n2 − 15n + 6
8
√

2
.
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Theorem 3.4. Let G be the graph of a honeycomb network HCn. Then

mEδ (G, x) = 6nx
1

2
√

2 +
(
18n2 + 6n

)
xx

1
5
√

17
++

(
18n2 − 12n

)
xx

1
32
√

2 .

Proof. From definition and by using Table 2, we deduce

mEδ (G, x) = ∑
uv∈E(G)

x
1

(δu+δv)
√

δ2
u+δ2

v

= 6x
1

(1+ 1)
√

12+12 + (12n − 12) x
1

(1+ 2)
√

12+22 +
(
9n2 − 15n + 6

)
x

1
(2+ 2)

√
22+22

= 6x
1

2
√

2 + (12n − 12) x
1

3
√

5 +
(
9n2 − 15n + 6

)
x

1
8
√

2 .

4. Results for Oxide Networks

The oxide networks are of vital importance in the study of silicate networks. An oxide network of

dimension n is denoted by of OXn. An oxide network of dimension five is shown in Figure 3.

Figure 3: Oxide network of dimension 5

Let G be the graph of an oxide network OXn. We find that G has 9n2 + 3n vertices and 18n2 edges. In

G, there are two types of edges based on degrees of end vertices of each edge as follows:

E1 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 4}, |E1| = 12n.

E2 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E2| = 18n2 − 12n.

We have δ(G) = 2 and hence δu = dG(u)− δ(G) + 1 = dG(u)− 1. Thus there are two types of δ-vertices

as given in Table 4.

δu, δv \ uv ∈ E(G) (1, 3) (3, 3)
Number of edges 6n 9n2 − 3n

Table 3: δ-vertex partition of OXn
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Theorem 4.1. Let G be the graph of an oxide network OXn. Then

Eδ (G) = 162
√

2n2 +
(

24
√

10 − 54
√

2
)

n.

Proof. From definition and by using Table 3, we deduce

Eδ (G) = ∑
uv∈E(G)

(δu + δv)
√

δ2
u + δ2

v

= 6n (1 + 3)
√

12 + 32 +
(
9n2 − 3n

)
(3 + 3)

√
32 + 32

= 162
√

2n2 +
(

24
√

10 − 54
√

2
)

n.

Theorem 4.2. Let G be the graph of an oxide network OXn. Then

Eδ (G, x) = 6nx4
√

10 +
(
9n2 − 3n

)
x18

√
2.

Proof. From definition and by using Table 3, we derive

Eδ (G, x) = ∑
uv∈E(G)

x(δu+δv)
√

δ2
u+δ2

v

= 6nx(1+3)
√

12+32
+

(
9n2 − 3n

)
x(3+3)

√
32+32

= 6nx4
√

10 +
(
9n2 − 3n

)
x18

√
2.

Theorem 4.3. Let G be the graph of an oxide network OXn. Then

mEδ (G) =
6n

4
√

10
+

9n2 − 3n
18
√

2
.

Proof. From definition and by using Table 3, we obtain

mEδ (G) = ∑
uv∈E(G)

1
(δu + δv)

√
δ2

u + δ2
v

=
6n

(1 + 3)
√

12 + 32
+

9n2 − 3n
(3 + 3)

√
32 + 32

=
6n

4
√

10
+

9n2 − 3n
18
√

2
.

Theorem 4.4. Let G be the graph of an oxide network OXn. Then

mEδ (G, x) = 6nx
1

4
√

10 +
(
9n2 − 3n

)
x

1
18
√

2 .
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Proof. From definition and by using Table 3, we deduce

mEδ (G, x) = ∑
uv∈E(G)

x
1

(δu+δv)
√

δ2
u+δ2

v

= 6nx
1

(1+ 3)
√

12+32 +
(
9n2 − 3n

)
x

1
(3+ 3)

√
32+32

= 6nx
1

4
√

10 +
(
9n2 − 3n

)
x

1
18
√

2 .

5. Results for Hexagonal Networks

It is known that there exist three regular plane tilings with composition of some kind of regular

polygons such as triangular, hexagonal and square. Triangular tiling is used in the construction of

hexagonal networks. This network is denoted by HXn. A hexagonal network of dimension six is

shown in Figure 4.

Figure 4: Hexagonal network of dimension six

Let G be the graph of a hexagonal network HXn. We obtain that G has 3n2 − 3n + 1 vertices and

9n2 − 15n + 6 edges. In G, there are five types of edges based on degrees of end vertices of each edge

as follows:

E1 = {uv ∈ E(G)|dG(u) = 3, dG(v) = 4}, |E1| = 12.

E2 = {uv ∈ E(G)|dG(u) = 3, dG(v) = 6}, |E2| = 6.

E3 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E3| = 6n − 18.

E4 = {uv ∈ E(G)|dG(u) = 4, dG(v) = 6}, |E4| = 12n − 24.

E5 = {uv ∈ E(G)|dG(u) = dG(v) = 6}, |E5| = 9n2 − 33n + 30.

Thus δ(G) = 3 and hence δu = dG(u)− δ(G) + 1 = dG(u)− 2. There are five types of δ-edges as given

in Table 4.
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δu, δv \ uv ∈ E(G) (1, 2) (1, 4) (2, 2) (2, 4) (4, 4)
Number of edges 12 6 6n − 18 12n − 24 9n2 − 33n + 30

Table 4: δ-edge partition of HXn

Theorem 5.1. Let G be the graph of a hexagonal network HXn. Then

Eδ (G) = 288
√

2n2 +
(

144
√

5 − 1008
√

2
)

n + 30
√

17 − 252
√

5 + 816
√

2.

Proof. From definition and by using Table 3, we deduce

Eδ (G) = ∑
uv∈E(G)

(δu + δv)
√

δ2
u + δ2

v

= 12 (1 + 2)
√

12 + 22 + 6 (1 + 4)
√

12 + 42 + (6n − 18) (2 + 2)
√

22 + 22

+ (12n − 24) (2 + 4)
√

22 + 42 +
(
9n2 − 33n + 30

)
(4 + 4)

√
42 + 42

= 288
√

2n2 +
(

144
√

5 − 1008
√

2
)

n + 30
√

17 − 252
√

5 + 816
√

2.

Theorem 5.2. Let G be the graph of a hexagonal network HXn. Then

Eδ (G, x) = 12x3
√

5 + 6x5
√

17 + (6n − 18) x8
√

2 + (12n − 24) x12
√

5 +
(
9n2 − 33n + 30

)
x32

√
2.

Proof. From definition and by using Table 4, we derive

Eδ (G, x) = ∑
uv∈E(G)

x(δu+δv)
√

δ2
u+δ2

v

= 12x(1+2)
√

12+22
+ 6x(1+4)

√
12+42

+ (6n − 18) x(2+2)
√

22+22

+ (12n − 24) x(2+4)
√

22+42
+

(
9n2 − 33n + 30

)
x(4+4)

√
42+42

= 12x3
√

5 + 6x5
√

17 + (6n − 18) x8
√

2 + (12n − 24) x12
√

5 +
(
9n2 − 33n + 30

)
x32

√
2.

Theorem 5.3. Let G be the graph of a hexagonal network HXn. Then

mEδ (G) =
12

3
√

5
+

6
5
√

17
+

6n − 18
8
√

2
+

12n − 24
12
√

5
+

9n2 − 33n + 30
32
√

2
.

Proof. From definition and by using Table 4, we obtain

mEδ (G) = ∑
uv∈E(G)

1
(δu + δv)

√
δ2

u + δ2
v

=
12

(1 + 2)
√

12 + 22
+

6

(1 + 4)
√

12 + 42
+

6n − 18

(2 + 2)
√

22 + 22

+
12n − 24

(2 + 4)
√

22 + 42
+

9n2 − 33n + 30

(4 + 4)
√

42 + 42
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=
12

3
√

5
+

6
5
√

17
+

6n − 18
8
√

2
+

12n − 24
12
√

5
+

9n2 − 33n + 30
32
√

2
.

Theorem 5.4. Let G be the graph of a hexagonal network HXn. Then

mEδ (G, x) = 12x
1

3
√

5 + 6x
1

5
√

17 + (6n − 18) x
1

8
√

2 + (12n − 24) x
1

12
√

5 +
(
9n2 − 33n + 30

)
x

1
32
√

2 .

Proof. From definition and by using Table 4, we deduce

mEδ (G, x) = ∑
uv∈E(G)

x
1

(δu+δv)
√

δ2
u+δ2

v

= 12x
1

(1+2)
√

12+22 + 6x
1

(1+4)
√

12+42 + (6n − 18) x
1

(2+2)
√

22+22

+ (12n − 24) x
1

(2+4)
√

22+42 +
(
9n2 − 33n + 30

)
x

1
(4+4)

√
42+42

= 12x
1

3
√

5 + 6x
1

5
√

17 + (6n − 18) x
1

8
√

2 + (12n − 24) x
1

12
√

5 +
(
9n2 − 33n + 30

)
x

1
32
√

2 .

6. Conclusion

In this work, we have determined the elliptic delta and modified elliptic delta indices and their

corresponding exponentials for certain families of networks.
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