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Abstract

Our intention of this paper is to prove the existence, uniqueness and stability of solution for some

nonlinear functional-integral equations by using generalized tripled Lipschitz condition. We also

prove a fixed point theorem to obtain the mentioned aim in Banach space X = C([a, b], R). As

application we study some Volterra integral equations with linear, non-linear and single kernel.
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1. Introduction and preliminaries

Let us consider the following non homogeneous nonlinear Volterra integral equation,

u(x) = f1(x) + φ

(∫ x

a
F(x, t, u(t), v(t), w(t))dt

)
≡ T(u, v, w),

v(x) = f2(x) + φ

(∫ x

a
F(x, t, v(t), u(t), v(t))dt

)
≡ T(v, u, v)

w(x) = f3(x) + φ

(∫ x

a
F(x, t, w(t), v(t), u(t))dt

)
≡ T(w, v, u)


(1)

where, x, t ∈ I = [a, b], −∞ < a < b < ∞ and φ is a bounded linear mapping on X. this functional

integral equation produces many integral equations which have arisen in different science fields such as

theory of optimal control, economics and etc. Investigation on existence theorems for diverse nonlinear

functional-integral equations has been presented in other references.

In this study, we will use the iterative method to prove that equation 1 has the mentioned cases under

some appropriate conditions. On the other hand, in this paper, we prove the Hyers-Ulam stability

(HUs) theorem of 1 under generalized tripled Lipschitz condition on F.

We say a functional equation is stable if for every approximate solution there exists an exact solution
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near it. In 1940, answering a problem of Ulam [23] affirmatively, Hyers [12] proof the following result

(which is nowadays called the HUs stability theorem):

Let S = (S,+) be a Abelian semigroup and assume that a function f : S → R satisfies the inequality

| f (x + y)− f (x)− f (y)| ≤ ϵ,

x, y ∈ S for some nonegative ϵ. Then there exists an additive function h : S → R that

|h(x)− f (x)| ≤ ϵ,

holds. Ever since, the stability problems of functional equations have been extensively investigated by

several mathematicians. Example of some recent developments, discussions and critiques of that idea

if stability can be found in [5,6,10] and [11].

In this section, we introduce and recall some basic definitions and use them to obtain our aims in

Section 2 and 3. Finally in Section 4 we offer some examples that verify the application of this kind

of nonlinear functional-integral equations. In this section, we recall basic result which we will need in

this paper.

Consider the non-homogeneous non-linear Volterra integral equation 1. We assume that f : [a, b] → R

is continuous and F is a mapping in the domain

D = {(x, t, u) : x, t ∈ [a, b], u ∈ X}.

Throughout this article, we consider the complete metric space (X, d), which is define as

d( f , g) = max
x∈[a,b]

| f (x)− g(x)|,

for all f , g ∈ X and as we mentioned, we assume that φ is a bounded linear mapping on X.

Note that, the linear mapping φ : X → X is called bounded, if there exists M > 0 such that ∥φ(x)∥ ≤

M∥x∥; for all x ∈ X. In this case, we define ∥φ∥ = sup
{

∥φx∥
∥x∥ ; x ̸= 0, x ∈ X

}
. This φ is bounded iff

∥φ∥ < ∞.

Note: As φ is bounded linear mapping on X, then φ(x) = λx where λ does not depend on x ∈ X.

Definition 1.1. We say that equation (1) has the HUs if there exists a constant K ≥ 0 with the following

property; for every ϵ > 0, (y1, y2, y3) ∈ X3, if

∣∣∣∣y1(x)− f1(x)− φ

(∫ x

a
F(x, t, u(t), v(t), w(t))dt

)∣∣∣∣ ≤ ϵ,∣∣∣∣y2(x)− f2(x)− φ

(∫ x

a
F(x, t, v(t), u(t), v(t))dt

)∣∣∣∣ ≤ ϵ,∣∣∣∣y3(x)− f3(x)− φ

(∫ x

a
F(x, t, w(t), v(t), u(t))dt

)∣∣∣∣ ≤ ϵ
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then there exists some (u, v, w) ∈ X3 satisfying

u(x) = f1(x) + φ

(∫ x

a
F(x, t, u(t), v(t), w(t))dt

)
,

v(x) = f2(x) + φ

(∫ x

a
F(x, t, v(t), u(t), v(t))dt

)
,

w(x) = f3(x) + φ

(∫ x

a
F(x, t, w(t), v(t), u(t))dt

)

such that

|u(x)− y1(x)| ≤ Kϵ,

|v(x)− y2(x)| ≤ Kϵ,

|w(x)− y3(x)| ≤ Kϵ.

We call such K a HUs constant for equation (1).

Definition 1.2 ([6]). Let δ denote the class of those functions β : [0, ∞) → [0, 1) which satisfies the condition

β(tn) → 1 implies tn → 0.

Definition 1.3 ([6]). Let B denote the class of those functions ϕ : [0, ∞) → [0, ∞) which satisfies the following

condition :

(i). ϕ is increasing,

(ii). for each x > 0, ϕ(x) < x,

(iii). β(x) = ϕ(x)
x ∈ δ, x ̸= 0.

For example, ϕ(t) = µt, where 0 ≤ µ < 1, ϕ(t) = t
t+1 and ϕ(t) = log(1 + t) are in B.

2. Existence and Uniqueness of the Solution of Nonlinear Integral Equations

In this section we will study the existence and uniqueness of the nonlinear functional integral equation

1 in X

Theorem 2.1. Consider the integral equation 1 such that

(i). F : D × D × D → R and f : [a, b] → R are continuous.

(ii). φ : X → X is bounded linear transformation.

(iii). There exists an integrable function p : [a, b]× [a, b] → R and ϕ ∈ R such that

|F(x, t, u1, v1, w1)− |F(x, t, u2, v2, w2)| ≤ p(x, t)ϕ(max{|u1 − u2|, |v1 − v2|, |w1 − w2|}), (2)
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for each x, t ∈ [a, b] and (u1, v1, w1), (u2, v2, w2) ∈ X3.

(iv) supx∈[a,b]

∫ b
a p2(x, t)dt ≤ 1

∥φ∥2(b−a) .

Then the integral equation 1 has an unique tripled fixed point (u, v, w) ∈ X3.

Note: We define 2 as a generalized Lipschitz condition.

Proof. Consider the iterative scheme

un+1(x) = f1(x) + φ

(∫ x

a
F(x, t, un(t), vn(t), wn(t))dt

)
≡ T(un, vn, wn),

vn+1(x) = f2(x) + φ

(∫ x

a
F(x, t, vn(t), un(t), vn(t))dt

)
≡ T(vn, un, vn),

wn+1(x) = f3(x) + φ

(∫ x

a
F(x, t, wn(t), vn(t), un(t))dt

)
≡ T(wn, vn, un)


(3)

where, (u0, v0, w0) ∈ X3 is an arbitrary initial guess. So

|un+1(x)− un(x)| = |T(un, vn, wn)− T(un−1, vn−1, wn−1)|

≤
∣∣∣∣φ(∫ x

a
F(x, t, un(t), vn(t), wn(t))dt

)
− φ

(∫ x

a
F(x, t, un−1(t), vn−1(t), wn−1(t))dt

)∣∣∣∣
≤

∣∣∣∣φ(∫ x

a
(F(x, t, un(t), vn(t), wn(t))− F(x, t, un−1(t), vn−1(t), wn−1(t)))dt

)∣∣∣∣
≤ ∥φ∥|

∫ x

a
(F(x, t, un(t), vn(t), wn(t))− F(x, t, un−1(t), vn−1(t), wn−1(t))dt|

≤ ∥φ∥
∫ x

a
|(F(x, t, un(t), vn(t), wn(t))− F(x, t, un−1(t), vn−1(t), wn−1(t)))|dt

≤ ∥φ∥|
∫ x

a
(F(x, t, un(t), vn(t), wn(t))− F(x, t, un−1(t), vn−1(t), wn−1(t)))dt|

≤ ∥φ∥
∫ b

a
p(x, t)ϕ(max{|un(x)− un−1(x)|, |vn(x)− vn−1(x)|, |wn(x)− wn−1(x)|})dt

≤ ∥φ∥
∫ b

a
p(x, t)ϕ(|un(x)− un−1(x)|)dt

≤ ∥φ∥
(∫ b

a
p2(x, t)dt

)2 (∫ b

a
|ϕ(|un(x)− un−1(x)|)dt

)2

. (4)

Similarly we have

|vn+1(x)− vn(x)| ≤ ∥φ∥
(∫ b

a
p2(x, t)dt

)2 (∫ b

a
|ϕ(|vn(x)− vn−1(x)|)dtdt

)2

(5)

and

|wn+1(x)− wn(x)| ≤ ∥φ∥
(∫ b

a
p2(x, t)dt

)2 (∫ b

a
|ϕ(|wn(x)− wn−1(x)|)dtdt

)2

(6)

As the function ϕ is increasing then

ϕ(|un(x)− un−1(x)|) ≤ ϕ(d(un, un−1)),
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ϕ(|vn(x)− vn−1(x)|) ≤ ϕ(d(vn, vn−1)),

ϕ(|wn(x)− wn−1(x)|) ≤ ϕ(d(wn, wn−1)),

so, we obtain

d2(un+1, un) ≤ ∥φ∥2

(
sup

x∈[a,b]

∫ b

a
p2(x, t)dt

)(∫ b

a
ϕ2(d(un, un−1))dt

)
≤ ϕ2(d(un, un−1)), (7)

d2(vn+1, vn) ≤ ∥φ∥2

(
sup

x∈[a,b]

∫ b

a
p2(x, t)dt

)(∫ b

a
ϕ2(d(vn, vn−1))dt

)
≤ ϕ2(d(vn, vn−1) (8)

and

d2(wn+1, wn) ≤ ∥φ∥2

(
sup

x∈[a,b]

∫ b

a
p2(x, t)dt

)(∫ b

a
ϕ2(d(wn, wn−1))dt

)
≤ ϕ2(d(wn, wn−1)). (9)

By (7), (8) and (9) we have

d(un+1, un) + d(vn+1, vn) + d(wn+1, wn) ≤ ϕ(d(un, un−1)) + ϕ(d(vn, vn−1)) + ϕ(d(wn, wn−1))

≤ ϕ(d(un, un−1) + d(vn, vn−1) + d(wn, wn−1))

=
ϕ(d(un, un−1) + d(vn, vn−1) + d(wn, wn−1))

d(un, un−1) + d(vn, vn−1) + d(wn, wn−1)

(d(un, un−1) + d(vn, vn−1) + d(wn, wn−1))

= β(d(un, un−1) + d(vn, vn−1) + d(wn, wn−1))(d(un, un−1)

+ d(vn, vn−1) + d(wn, wn−1)) (10)

and so the sequence {d(un+1, un) + d(vn+1, vn) + d(wn+1, wn)} is decreasing and bounded. Thus there

exists r ≥ 0 such that

lim
n→∞

[d(un+1, un) + d(vn+1, vn) + d(wn+1, wn)] = r.

Assume r > 0. Then from (10) we have

d(un+1, un) + d(vn+1, vn) + d(wn+1, wn)

d(un, un−1) + d(vn, vn−1) + d(wn, wn−1)
≤ β(d(un, un−1) + d(vn, vn−1) + d(wn, wn−1)) (11)

where n = 1, 2, 3, . . . . Then (11) yields

lim
n→∞

β(d(un+1, un) + d(vn+1, vn) + d(wn+1, wn)) = 1.
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Then β /∈ δ and this contradiction. So r = 0 and then

lim
n→∞

(d(un+1, un) + d(vn+1, vn) + d(wn+1, wn)) = 0.

Next we show that {un}, {vn} and {wn} are Cauchy sequence. On the contrary, assume that

lim
n,m→∞

(sup(d(un, um) + d(vn, vm) + d(wn, wm))) > 0. (12)

By the triangle inequality and relation (10) we have

d(un, um) + d(vn, vm) + d(wn, wm) ≤ d(un, un+1) + d(vn, vn+1) + d(wn, wn+1) + d(un+1, um+1)

+d(vn+1, vm+1) + d(wn+1, wm+1) + d(um+1, um)

+d(vm+1, vm) + d(wm+1, wm)

≤ d(un, un+1) + d(vn, vn+1) + d(wn, wn+1) + d(um+1, um)

+d(vm+1, vm) + d(wm+1, wm) + (β(d(un, um) + d(vn, vm)

+d(wn, wm)))[d(un, um) + d(vn, vm) + d(wn, wm)]

hence

[d(un, um) + d(vn, vm) + d(wn, wm)]− (β(d(un, um) + d(vn, vm) + d(wn, wm)))

[d(un, um) + d(vn, vm) + d(wn, wm)]

≤ d(un, un+1) + d(vn, vn+1) + d(wn, wn+1)

+ d(um+1, um) + d(vm+1, vm) + d(wm+1, wm)

d(un, um) + d(vn, vm) + d(wn, wm)− (1 − β(d(un, um) + d(vn, vm) + d(wn, wm)))

≤ d(un, un+1) + d(vn, vn+1) + d(wn, wn+1) + d(um+1, um)

+ d(vm+1, vm) + d(wm+1, wm)

d(un, um) + d(vn, vm) + d(wn, wm) ≤ (1 − β(d(un, um) + d(vn, vm) + d(wn, wm)))
−1

[d(un, un+1) + d(vn, vn+1) + d(wn, wn+1)

+ d(um+1, um) + d(vm+1, vm) + d(wm+1, wm)]

Since

lim sup
n,m→∞

[d(un, um) + d(vn, vm) + d(wn, wm)] > 0

and

lim
n,m→∞

[d(un, um) + d(vn, vm) + d(wn, wm)] = 0
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then

lim
n,m→∞

sup((1 − β(d(un, um + d(vn, vm) + d(wn, wm))
−1) = +∞,

from which we obtain

lim
n,m→∞

sup(β(d(un, um) + d(vn, vm) + d(wn, wm))) = 1.

But since β ∈ δ, we get

lim
n,m→∞

sup(d(un, um) + d(vn, vm) + d(wn, wm)) = 0.

This contradiction (12) and shows {un}, {vn} and {wn} are Cauchy sequence in X. Since (X, d) is a

complete metric space, then there exists (u, v, w) ∈ X3 such that

lim
n→∞

(un, vn, wn) = (u, v, w.

Now by taking the limit of both sides of (3), we have

u = lim
n→∞

un−1(x) = lim
n→∞

(
f1(x) + φ

(∫ x

a
F(x, t, un(t), vn(t), wn(t))dt

))
= f1(x) + φ

(∫ x

a
F(x, t, lim

n→∞
un(t), lim

n→∞
vn(t), lim

n→∞
wn(t))dt

)
= f1(x) + φ

(∫ x

a
F(x, t, u(t), v(t), w(t))dt

)
v = lim

n→∞
vn−1(x) = lim

n→∞

(
f2(x) + φ

(∫ x

a
F(x, t, vn(t), un(t), vn(t))dt

))
= f2(x) + φ

(∫ x

a
F(x, t, lim

n→∞
vn(t), lim

n→∞
un(t), lim

n→∞
vn(t))dt

)
= f2(x) + φ

(∫ x

a
F(x, t, v(t), u(t), v(t))dt

)
.

and

w = lim
n→∞

wn−1(x) = lim
n→∞

(
f3(x) + φ

(∫ x

a
F(x, t, wn(t), vn(t), un(t))dt

))
= f3(x) + φ

(∫ x

a
F(x, t, lim

n→∞
wn(t), lim

n→∞
vn(t), lim

n→∞
un(t))dt

)
= f3(x) + φ

(∫ x

a
F(x, t, w(t), v(t), u(t))dt

)

So, there exists an unique solution (u, v, w) ∈ X3 such that T(u, v, w) = u,

T(v, u, v) = v and T(w, v, u) = w.



Hyers Ulam Stability and Solutions for a Class of Nonlinear... / Archana Gokhale 124

3. Stability of Nonlinear Integral Equation

Theorem 3.1. The equation T(x, y, z) = x, T(y, x, y) = y and T(z, y, x) = z where T is defined by 1 under

the assumption of Theorem 2.1, has the Hyers-Ulam stability that is for every (α, β, γ) ∈ X3 and ϵ > 0 with

d(T(α, β, γ), α) ≤ ϵ,

d(T(β, α, β), β) ≤ ϵ

d(T(γ, β, α), γ) ≤ ϵ

there exists an unique solution (u, v, w) ∈ X3 such that T(u, v, w) = u, T(v, u, v) = v, T(w, v, u) = w

and

d(α, u) ≤ Kϵ

d(β, v) ≤ Kϵ

d(γ, w) ≤ Kϵ

for some K ≥ 0.

Proof. By relation 4, 5 and 6 we can write

|un+1(x)− un(x)| = |T(un, vn, wn)− T(un−1, vn−1, wn−1)|

≤
∣∣∣∣|φ(∫ x

a
F(x, t, un(t), vn(t), wn(t))dt

)
− φ

(∫ x

a
F(x, t, un−1(t), vn−1(t), wn−1(t))dt

)∣∣∣∣
|un+1(x)− un(x)| ≤ ∥φ∥

(
1

∥φ∥2(b − a)

) 1
2
(∫ x

a
|un(x)− un−1(x)|2dt

) 1
2

Hence

|un+1(x)− un(x)| ≤
(

1
(b − a)

∫ x

a
|un(t1)− un−1(t1)|2dt1

) 1
2

≤
(

1
(b − a)2

∫ x

a

∫ t1

a
|un(t2)− un−1(t2)|2dt2dt1

) 1
2

≤
(

1
(b − a)3

∫ x

a

∫ t1

a

∫ t2

a
|un(t3)− un−2(t3)|2dt3dt2dt1

) 1
2

...

≤
(

1
(b − a)n

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
|un(t3)− un−2(t3)|2dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n d2(T(u0, v0, w0), u0)

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n

(x − a)n

(n)!
d2(T(u0, v0, w0), u0)

) 1
2
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≤ d(T(u0, v0, w0), u0)

(n!)
1
2

.

Similarly we have

|vn+1(x)− vn(x)| = |T(vn, un, vn)− T(vn−1, un−1, vn−1)|

≤
∣∣∣∣φ(∫ x

a
F(x, t, vn(t), un(t), vn(t))dt

)
− φ

(∫ x

a
F(x, t, vn−1(t), un−1(t), vn−1(t))dt

)∣∣∣∣
|vn+1(x)− vn(x)|

≤ ∥φ∥
(

1
∥φ∥2(b − a)

) 1
2
(∫ b

a
|vn(x)− vn−1(x)|2dt

) 1
2

.

Hence

|vn+1(x)− vn(x)| ≤
(

1
(b − a)

∫ x

a
|vn(t1)− vn−1(t1)|2dt1

) 1
2

≤
(

1
(b − a)2

∫ x

a

∫ t1

a
|vn(t2)− vn−1(t2)|2dt2dt1

) 1
2

≤
(

1
(b − a)3

∫ x

a

∫ t1

a

∫ t2

a
|vn(t3)− vn−2(t3)|2dt3dt2dt1

) 1
2

...

≤
(

1
(b − a)n

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
|vn(t3)− vn−2(t3)|2dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n d2(T(v0, u0, v0), v0)

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n

(x − a)n

(n)!
d2(T(v0, u0, v0), v0)

) 1
2

≤ d(T(v0, u0, v0), v0)

(n!)
1
2

.

and

|wn+1(x)− wn(x)| = |T(wn, vn, un)− T(wn−1, vn−1, un−1)|

≤
∣∣∣∣φ(∫ x

a
F(x, t, wn(t), vn(t), un(t))dt

)
− φ

(∫ x

a
F(x, t, wn−1(t), vn−1(t), un−1(t))dt

)∣∣∣∣
|wn+1(x)− wn(x)|

≤ ∥φ∥
(

1
∥φ∥2(b − a)

) 1
2
(∫ x

a
|wn(x)− wn−1(x)|2dt

) 1
2

.

Hence

|wn+1(x)− wn(x)| ≤
(

1
(b − a)

∫ x

a
|wn(t1)− wn−1(t1)|2dt1

) 1
2

≤
(

1
(b − a)2

∫ x

a

∫ t1

a
|wn(t2)− wn−1(t2)|2dt2dt1

) 1
2
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≤
(

1
(b − a)3

∫ x

a

∫ t1

a

∫ t2

a
|wn(t3)− wn−2(t3)|2dt3dt2dt1

) 1
2

...

≤
(

1
(b − a)n

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
|wn(t3)− wn−2(t3)|2dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n d2(T(w0, v0, u0), u0)

∫ x

a

∫ t1

a

∫ t2

a
· · ·

∫ tn−1

a
dtn . . . dt3dt2dt1

) 1
2

≤
(

1
(b − a)n

(x − a)n

(n)!
d2(T(w0, v0, u0), u0)

) 1
2

≤ d(T(w0, v0, u0), u0)

(n!)
1
2

.

Let (α, β, γ) ∈ X3 and

d(T(α, β, γ), α) ≤ ϵ,

d(T(β, α, β), β) ≤ ϵ

d(T(γ, β, α), γ) ≤ ϵ.

In the previous section, we proved that

u(t) = lim
n→∞

Tn(α(t), β(t), γ(t))

v(t) = lim
n→∞

Tn(β(t), α(t), β(t))

w(t) = lim
n→∞

Tn(γ(t), β(t), α(t))

are an exact solution of the equation T(x, y, z) = x, T(y, x, y) = y and T(z, y, x) = z. Clearly there

is N with d(TN(α, β, γ), u) ≤ ϵ, d(TN(β, α, β), v) ≤ ϵ and d(TN(γ, β, α), z) ≤ ϵ, because TN(α, β, γ)

is uniformly convergent to u, TN(β, α, β) is uniformly convergent to v and TN(γ, β, α) is uniformly

convergent to w as n → ∞. Without loss of generality, for sufficiently large odd number N, we have

d(α, u) ≤ d(α, TN(α, β, γ)) + d(TN(α, β, γ), u)

≤ d(α, T(α, β, γ)) + d(T(α, β, γ), T2(α, β, γ)) + d(T2(α, β, γ), T3(α, β, γ))

+ · · ·+ d(TN−1(α, β, γ), TN(α, β, γ)) + d(TN(α, β, γ), u)

≤ d(α, T(α, β, γ)) +
d(α, T(α, β, γ))

(1!)
1
2

+
d(α, T(α, β, γ))

(2!)
1
2

+ · · ·+ d(α, T(α, β, γ))

((N − 1)!)
1
2

+ d(TN(α, β, γ), u)

≤ d(α, T(α, β, γ))

(
1 +

1

(1!)
1
2
+

1

(2!)
1
2
+ · · ·+ 1

((N − 1)!)
1
2

)
+ ϵ

≤ ϵ

({
1 + 1 +

1√
2
+

1√
6

}
+

{(
1
24

) 1
2

+

(
1
25

) 1
2

+ · · ·+
(

1
2N−1

) 1
2
})

+ ϵ
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≤ ϵ

({
1 + 1 + 1 +

1
2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1

22.5 +
1

23.5 +
1

24.5 + · · ·+ 1

2
N−2

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1 − 1

2
N−3

2

})
+ ϵ

=

(
11
2

− 1

2
N−3

2

)
= Kϵ,

d(β, v) ≤ d(β, TN(β, α, β)) + d(TN(β, α, β), v)

≤ d(β, T(β, α, β)) + d(T(β, α, β), T2(β, α, β)) + d(T2(β, α, β), T3(β, α, β))

+ · · ·+ d(TN−1(β, α, β), TN(β, α, β)) + d(TN(β, α, β), v)

≤ d(β, T(β, α, β)) +
d(β, T(β, α, β))

(1!)
1
2

+
d(β, T(β, α, β))

(2!)
1
2

+ · · ·+ d(β, T(β, α, β))

((N − 1)!)
1
2

+ d(TN(β, α, β), v)

≤ d(β, T(β, α, β))

(
1 +

1

(1!)
1
2
+

1

(2!)
1
2
+ · · ·+ 1

((N − 1)!)
1
2

)
+ ϵ

≤ ϵ

({
1 + 1 +

1√
2
+

1√
6

}
+

{(
1
24

) 1
2

+

(
1
25

) 1
2

+ · · ·+
(

1
2N−1

) 1
2
})

+ ϵ

≤ ϵ

({
1 + 1 + 1 +

1
2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1

22.5 +
1

23.5 +
1

24.5 + · · ·+ 1

2
N−2

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1 − 1

2
N−3

2

})
+ ϵ

=

(
11
2

− 1

2
N−3

2

)
= Kϵ,

and

d(γ, w) ≤ d(γ, TN(γ, β, α)) + d(TN(γ, β, α), w)

≤ d(γ, T(γ, β, α)) + d(T(γ, β, α), T2(γ, β, α)) + d(T2(γ, β, α), T3(γ, β, α))

+ · · ·+ d(TN−1(γ, β, α), TN(γ, β, α)) + d(TN(γ, β, α), w)

≤ d(γ, T(γ, β, α)) +
d(γ, T(γ, β, α))

(1!)
1
2

+
d(γ, T(γ, β, α))

(2!)
1
2

+ · · ·+ d(γ, T(γ, β, α))

((N − 1)!)
1
2

+ d(TN(γ, β, α), u)

≤ d(γ, T(γ, β, α))

(
1 +

1

(1!)
1
2
+

1

(2!)
1
2
+ · · ·+ 1

((N − 1)!)
1
2

)
+ ϵ
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≤ ϵ

({
1 + 1 +

1√
2
+

1√
6

}
+

{(
1
24

) 1
2

+

(
1
25

) 1
2

+ · · ·+
(

1
2N−1

) 1
2
})

+ ϵ

≤ ϵ

({
1 + 1 + 1 +

1
2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1

22.5 +
1

23.5 +
1

24.5 + · · ·+ 1

2
N−2

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

}
+

{
1
22 +

1
23 + · · ·+ 1

2
N−1

2

})
+ ϵ

≤ ϵ

(
7
2
+

{
1 − 1

2
N−3

2

})
+ ϵ

=

(
11
2

− 1

2
N−3

2

)
= Kϵ,

which complete the proof.

4. Examples

In this section we present some example of classical integral and functional equations which are

particular case of equation 1 and consequently, the existence, uniqueness and stability of there solutions

can be established using Theorem 2.1 and 3.1.

Example 4.1. Consider the following linear Volterra integral equation

u(x) = x5 − x8

7
+
∫ x

0
(1 − t − x) (u(t)) dt,

v(x) = x6 − x9

10
+
∫ x

0
(1 − t − x)2 (v(t))2 dt, (13)

w(x) = x7 − x10
13

+
∫ x

0
(1 − t − x)3 (w(t))3 dt, x, t ∈ [0, 1]. (14)

We have

|F(x, t, u1, v1, w1)− F(x, t, u2, v2, w2)| = |(t − x)(u1 + v1 + w1)− (t − x)(u2 + v2 + w2)|

= |(t − x)|(|u1 − u2|+ |v1 − v2|+ |w1 − w2|)

=

(
|t − x|

µ

)
(µ(|u1 − u2|+ |v1 − v2|+ |w1 − w2|)),

where 1√
3
≤ µ < 1. Now we put p(x, t) = t−x

µ and ϕ(t) = µt. Because

sup
x∈[0,1]

∫ 1

0
p2(x, t)dt =

1
6µ2 ≤ 1,

then by applying the result obtained in Theorem 2.1 and 3.1, we deduce that the equation 13 has a stable unique

solution in Banach space C[0, 1].
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Example 4.2. Consider the following linear Volterra integral equation

u(x) =
1
10

sin
(

1
1 + x

)
+

x
9

∫ x

0

arctan(x2t)
(1 + xt)2 sin(u(t))dt

v(x) =
1
10

cos
(

1
1 + x

)
+

x
9

∫ x

0

arctan(x2t)
(1 + xt)2 cos(u(t))dt

w(x) =
1
20

sin
(

2
1 + x

)
+

x
18

∫ x

0

arctan(x2t)
(1 + xt)2 sin 2(u(t))dt. (15)

We take

|F(x, t, u1, v1, w1) − F(x, t, u2, v2, w2)| =
∣∣∣∣ x9 arctan(x2t)

(1 + xt)2 (u1 + v1 + w1)−
x
9

arctan(x2t)
(1 + xt)2 (u2 + v2 + w2)

∣∣∣∣
=

∣∣∣∣19 x arctan(x2t)
(1 + xt)2 |sin(u1)− sin(u2)|+

1
9

x arctan(x2t)
(1 + xt)2 |cos(v1)− cos(v2)|

+
1

18
x arctan(x2t)
(1 + xt)2 |sin(w1 − w2)|

∣∣∣∣
≤

(∣∣∣∣ x arctan(x2t)
(1 + xt)2

∣∣∣∣) 1
18

(2| sin(u1)− sin(u2)|

+2| cos(v1)− cos(v2)|+ | sin(w1 − w2) cos(w1)

≤
(∣∣∣∣ x arctan(x2t)

(1 + xt)2

∣∣∣∣) 1
18

(|u1 − u2|+ |v1 − v2|+ |w1 − w2|),

Take p(x, t) = arctan(x2t)
(1+xt)2 and ϕ(t) = t

18 . Since supx∈[0,1]

∫ 1
0 p2(x, t)dt ≤ 1, then by applying the result obtained

in Theorem 2.1 and 3.1, we deduce that the equation 15 has a stable unique solution in Banach space C[0, 1].

Example 4.3. Consider the following linear Volterra integral equation

u(x) = f (x) + λ
∫ x

0
(x − t)−αu(t)dt

v(x) = g(x) + λ
∫ x

0
(x − t)−αv(t)dt

w(x) = h(x) + λ
∫ x

0
(x − t)−αw(t)dt (16)

where |λ| < 1 and 0 < α < 1
3 . Then

|F(x, t, u1, v1, w1) − F(x, t, u2, v2, w2)| = |(x − t)−αλ(u1 + v1 + w1)− (x − t)−αλ(u2 + v2 + w2)|

= |(x − t)−αλ|u1 − u2|+ |(x − t)−αλ|v1 − v2|+ |(x − t)−αλ|w1 − w2|

≤ |(x − t)|−α|λ(|u1 − u2|+ |v1 − v2|+ |w1 − w2|)

≤
(∣∣∣∣ x arctan(x2t)

(1 + xt)2

∣∣∣∣) 1
18

(2| sin(u1)− sin(u2)|+ 2| cos(v1)− cos(v2)|

+| sin 2(u1)− sin 2(u2)|)

≤
(∣∣∣∣ x arctan(x2t)

(1 + xt)2

∣∣∣∣) 1
18

(2|u1 − u2|+ 2|v1 − v2|+ |w1 − w2|),
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Take p(x, t) = (x − t)−α and ϕ(t) = λt. Since sup
x∈[0,1]

1∫
0

p2(x, t)dt ≤ 1, then by applying the result obtained in

Theorem 2.1 and 3.1, we deduce that the equation 15 has a stable unique solution in Banach space C[0, 1].
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