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Abstract

This paper introduces a robust and mathematically rigorous lattice-based cryptographic scheme to

enhance the security of blockchain networks, with a focus on financial systems. With the advent of

quantum computing, traditional cryptographic systems like RSA and ECC face vulnerabilities that

lattice-based schemes can effectively mitigate. The proposed approach integrates lattice-based

cryptography with group theory to ensure secure communication and data integrity within

blockchain ecosystems. By leveraging a 4 × 4 matrix-based key exchange, encryption, and

decryption mechanism, this scheme ensures quantum-resistant security for money transfers,

demonstrated here with the Naira (�) as a practical example. Theoretical group-theoretical

properties are utilized to achieve secure cryptographic operations over matrices, providing a

practical, scalable, and quantum-resistant approach for financial transactions in blockchain systems.
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1. Introduction

Blockchain technology has revolutionized financial systems by providing a decentralized and

immutable ledger for transactions [9]. However, the increasing computational power of quantum

computers poses a significant threat to traditional cryptographic schemes used in blockchain

networks, including RSA and elliptic curve cryptography (ECC) [10]. Lattice-based cryptography,

which leverages the hardness of certain lattice problems, has shown promise in addressing these

security vulnerabilities due to its strong resistance to quantum attacks [1,2]. This paper proposes a

novel cryptographic scheme based on lattice theory and group theory, focusing on matrix operations

to secure transactions. A detailed mathematical analysis of the scheme’s key exchange, encryption,
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and decryption processes is presented, particularly using the Naira for practical applications in

financial systems [9].

2. Preliminaries and Theoretical Background

2.1 Lattice-Based Cryptography

A lattice in n-dimensional space is a discrete subgroup of Rn. Formally, given a basis

B = {b1, b2, . . . , bn}, the lattice generated by B is defined as:

L(B) =

{
n

∑
i=1

zibi : zi ∈ Z

}

Lattice-based cryptography relies on hard problems like the Shortest Vector Problem (SVP) and

Learning With Errors (LWE), which are conjectured to be resistant to both classical and quantum

attacks [1,4].

2.2 Group Theory in Lattice Cryptography

Group theory plays a crucial role in the construction of cryptographic schemes. Let G be a group under

a binary operation “∗”. A matrix-based group can be formed using GLn(Z), the general linear group

of degree n over the integers, which comprises invertible n × n matrices. This structure enables secure

operations like key exchange and encryption over lattice-based schemes [6,7].

2.3 The 4 × 4 Matrix Structure

The cryptographic scheme uses 4 × 4 matrices for secure key exchange, encryption, and decryption.

Let A be a 4 × 4 matrix over Zq, where q is a prime modulus. The operations on these matrices (e.g.,

multiplication, inversion) are performed in the modular field Zq.

3. Key Exchange Protocol

3.1 Parameters and Setup

• Prime Modulus q: A large prime number, chosen to define the field Zq. All matrix operations

will be performed modulo q.

• Public Matrix A: A known 4 × 4 matrix over Zq, accessible to both parties.

• Private Matrices:

– Alice’s private matrix SA: A randomly generated 4 × 4 invertible matrix over Zq.

– Bob’s private matrix SB: A similar randomly generated 4 × 4 invertible matrix over Zq.



Lattice-Based Cryptographic Scheme for Secure Blockchain Development and Financial Systems / Alex Musa 135

• Random Noise Matrices:

– Alice’s noise matrix RA: A random perturbation matrix over Zq, adding extra security to

the protocol [8].

– Bob’s noise matrix RB: A random perturbation matrix over Zq.

3.2 Key Exchange Protocol Steps

The key exchange protocol involves both Alice and Bob generating public keys from their private

matrices and the public matrix A. Then, they exchange their public keys to compute a shared secret

key.

Step 1: Private Key Selection Both Alice and Bob select their private key matrices:

SA =


s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

 , SB =


s′11 s′12 s′13 s′14

s′21 s′22 s′23 s′24

s′31 s′32 s′33 s′34

s′41 s′42 s′43 s′44


where sij, s′ij ∈ Zq. These matrices are kept secret and are not shared between Alice and Bob.

Step 2: Public Key Generation

• Alice’s Public Key Generation: Alice uses her private key SA, the public matrix A, and her noise

matrix RA to compute her public key:

PA = A · SA + RA mod q

where:

RA =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44


with elements rij ∈ Zq.

The resulting public key PA is:

PA =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 , pij ∈ Zq

• Bob’s Public Key Generation: Similarly, Bob generates his public key using his private key SB,
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the public matrix A, and his noise matrix RB:

PB = A · SB + RB mod q

where:

RB =


r′11 r′12 r′13 r′14

r′21 r′22 r′23 r′24

r′31 r′32 r′33 r′34

r′41 r′42 r′43 r′44


The resulting public key PB is:

PB =


p′11 p′12 p′13 p′14

p′21 p′22 p′23 p′24

p′31 p′32 p′33 p′34

p′41 p′42 p′43 p′44

 , p′ij ∈ Zq

Step 3: Key Exchange and Shared Secret Generation

• Alice Computes the Shared Secret Key:

KA = PB · SA mod q = (A · SB + RB) · SA mod q = A · (SB · SA) + RB · SA mod q

• Bob Computes the Shared Secret Key:

KB = PA · SB mod q = (A · SA + RA) · SB mod q = A · (SA · SB) + RA · SB mod q

Since matrix multiplication is associative and distributive, both Alice and Bob obtain the same shared

secret key:

KA = KB = A · (SB · SA) + RB · SA mod q = A · (SA · SB) + RA · SB mod q

The shared secret key K is a 4 × 4 matrix that both Alice and Bob can use for secure encryption and

decryption in their communications.

3.3 Example of Key Exchange Protocol

Let’s work through an example with specific matrices:

• Let q = 12289 (a large prime number).
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• Let the public matrix A be:

A =


123 456 789 321

234 567 890 432

345 678 901 543

456 789 123 654


• Alice’s private key matrix:

SA =


2 3 5 7

11 13 17 19

23 29 31 37

41 43 47 53


• Bob’s private key matrix:

SB =


61 67 71 73

79 83 89 97

101 103 107 109

113 127 131 137


• Alice’s noise matrix:

RA =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


• Bob’s noise matrix:

RB =


2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2


• Alice’s public key:

PA = A · SA + RA mod q

• Bob’s public key:

PB = A · SB + RB mod q

• Shared Secret Key:

– Alice computes:

KA = PB · SA mod q
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– Bob computes:

KB = PA · SB mod q

Both KA and KB will be equal, thus establishing a shared secret key matrix for secure

communication.

4. Encryption and Decryption Using 4 × 4 Matrices

4.1 Encryption Scheme

Let M be the message matrix (a 4 × 4 matrix) containing elements representing the message in block

form. The encryption process is as follows:

• Ciphertext Generation: The ciphertext matrix C is generated using the shared secret key K:

C = M · K + E

where E is a small error matrix to ensure security against lattice attacks [15].

4.2 Decryption Scheme

To recover the original message matrix M, the recipient uses the shared secret key K:

M = (C − E) · K−1

4.3 Example: Naira Money Transfer

Suppose M represents a money transfer amount in Naira. Assume:

M =


500 0 0 0

0 1000 0 0

0 0 2000 0

0 0 0 1500


If K is a shared secret key matrix, then the ciphertext for secure transfer is computed as:

C = M · K + E

For a secure transaction, only the authorized recipient with K−1 can decrypt C to recover M.
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5. Group-Theoretical Operations and Examples

The proposed lattice-based cryptographic scheme leverages group theory to provide secure operations

for encryption and decryption. In this context, the use of matrices over modular arithmetic forms a

group structure, allowing secure communication through operations like matrix multiplication and

inversion. Here, we explore how group theory facilitates cryptographic functions using a 4 × 4 matrix

structure and modular arithmetic, as well as examples of operations with alphabetic representations

for secure messaging.

5.1 Group Theory and Matrix Operations

Group Properties in Cryptography

A group is defined as a set G with a binary operation “∗” satisfying the following properties:

1. Closure: For any a, b ∈ G, the result of the operation a ∗ b ∈ G.

2. Associativity: For any a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity: There exists an element e ∈ G such that for any a ∈ G, a ∗ e = e ∗ a = a.

4. Inverses: For every a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

In this cryptographic scheme, the group under consideration is the set of invertible 4 × 4 matrices over

the finite field Zq, denoted as GL4(Zq). The group operation is matrix multiplication modulo q [13].

Matrix Groups over Zq

Let q be a prime modulus, and consider a 4 × 4 matrix M over Zq. The set of all invertible matrices

forms a group:

• Identity matrix: The identity element I4 is:

I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


which satisfies M · I4 = I4 · M = M for any matrix M.

• Matrix inverse: Each matrix M ∈ GL4(Zq) has an inverse M−1, such that:

M · M−1 = M−1 · M = I4
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These properties enable secure operations like encryption and decryption, as the group structure

ensures that transformations (e.g., encryption) can be reversed (e.g., decryption).

5.2 Secure Messaging with Alphabet Matrices

In this section, we illustrate how alphabetic characters can be represented as matrices for encryption

and decryption within the group structure. Each letter of the alphabet is encoded as a distinct 4 × 4

matrix over Zq.

Matrix Representation of Alphabets

Let’s map each letter of the English alphabet to a unique 4 × 4 matrix modulo q. For example:

• A be represented as:

A 7→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


• B be represented as:

B 7→


2 1 0 0

0 2 1 0

0 0 2 1

1 0 0 2


• C be represented as:

C 7→


3 0 1 0

0 3 0 1

1 0 3 0

0 1 0 3


• Similarly, other letters D, E, . . . , Z are represented as different 4 × 4 matrices over Zq.

Group Operations on Alphabet Matrices

To encrypt a message, each letter of the plaintext is mapped to its corresponding matrix and then

transformed using the shared secret key matrix K. The group operation used for encryption is matrix

multiplication modulo q.
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Example of Encrypting the Word "ABC" Suppose we wish to encrypt the word "ABC" using the

shared secret key matrix:

K =


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


The matrices for "A," "B," and "C" are:

MA =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , MB =


2 1 0 0

0 2 1 0

0 0 2 1

1 0 0 2

 , MC =


3 0 1 0

0 3 0 1

1 0 3 0

0 1 0 3


The ciphertext matrices are obtained by multiplying each letter’s matrix by the shared key K, modulo

q:

• Encryption of "A":

CA = MA · K mod q =


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


• Encryption of "B":

CB = MB · K mod q =


18 9 7 2

8 20 13 1

9 2 8 6

17 3 10 8


• Encryption of "C":

CC = MC · K mod q =


21 9 20 2

12 18 7 5

17 3 8 15

3 7 6 12


These ciphertext matrices CA, CB, and CC correspond to the encrypted version of "ABC".

Decryption Process

To decrypt the ciphertext, the receiver uses the shared key K and its inverse K−1. For a ciphertext

matrix C:

M = C · K−1 mod q
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This reverses the encryption process and recovers the original matrix representation of the plaintext

message.

Decryption of "CA" (for "A")

MA = CA · K−1 mod q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The same process applies to decrypt CB and CC, recovering the matrices for "B" and "C," respectively.

5.3 Group-Theoretical Security Benefits

The group structure and modular arithmetic used in lattice-based cryptography provide robust

security features:

• High dimensionality: Operations occur in high-dimensional matrix spaces, making brute-force

attacks computationally infeasible.

• Non-commutativity: Matrix multiplication is non-commutative, providing additional complexity

and security.

• Quantum resistance: Lattice-based problems like the Shortest Vector Problem (SVP) are believed

to be resistant to quantum attacks [11,12].

6. Secure Money Transfer Scenarios Using Blockchain

In this section, we provide detailed mathematical solutions for two practical scenarios of secure

money transfer within Nigeria and internationally using a lattice-based cryptographic scheme within

a blockchain environment. The scenarios demonstrate how amounts in Naira (�) are encrypted and

securely transmitted using shared key matrices in a blockchain setting.

6.1 Secure Money Transfer Within Nigeria

Consider that Alice wants to securely send 500,000 Naira (�500,000) to Bob within Nigeria through a

blockchain-enabled platform. The cryptographic protocol uses lattice-based key exchange and

encryption for secure transfer.
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Key Components

• Transaction Matrix M: The transfer amount is represented as a 4 × 4 matrix over Zq, where q is

a large prime number. Here, the matrix M represents the block data for the transfer:

M =


500000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


This matrix encodes the transfer amount with padding zeros.

• Shared Secret Key K: The shared key is derived through a lattice-based key exchange between

Alice and Bob (as described in Section 3). Let the shared secret key matrix be:

K =


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


• Error Matrix E: An error matrix E is used to introduce noise to the ciphertext for security against

potential lattice attacks:

E =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



Encryption Process

To securely transmit the amount M, Alice encrypts M using the shared key K and the error matrix E.

The encrypted ciphertext matrix C is calculated as follows:

C = M · K + E mod q

Let’s perform the matrix multiplication step-by-step:
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Matrix Multiplication M · K

M · K =


500000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ·


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


The result is:

M · K =


500000 · 7 500000 · 3 500000 · 5 500000 · 2

0 0 0 0

0 0 0 0

0 0 0 0

 =


3500000 1500000 2500000 1000000

0 0 0 0

0 0 0 0

0 0 0 0


Adding Error Matrix E

C = M · K + E =


3500000 1500000 2500000 1000000

0 0 0 0

0 0 0 0

0 0 0 0

+


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


The resulting ciphertext matrix is:

C =


3500001 1500001 2500001 1000001

1 1 1 1

1 1 1 1

1 1 1 1



Transmission Over Blockchain

The encrypted matrix C is transmitted over the blockchain. Due to its cryptographic encoding, the

transfer remains secure, ensuring data confidentiality and integrity.

Decryption by Bob

Upon receiving C, Bob decrypts the ciphertext using the shared secret key K and its inverse K−1:
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1. Subtract the Error Matrix:

C − E =


3500001 1500001 2500001 1000001

1 1 1 1

1 1 1 1

1 1 1 1

−


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


Resulting in:

C − E =


3500000 1500000 2500000 1000000

0 0 0 0

0 0 0 0

0 0 0 0


2. Multiply by the Inverse of K:

M = (C − E) · K−1 mod q

Since the inverse of K will effectively reverse the transformation, Bob recovers the original matrix:

M =


500000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Thus, Bob knows that the transferred amount is 500,000 Naira.

6.2 Secure Money Transfer Outside Nigeria (International Transfer)

Now, suppose Alice wants to securely send 2 million Naira (�2,000,000) to Bob, who is located outside

Nigeria, e.g., in the USA.

Key Components

• Transaction Matrix M:

M =


2000000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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• Shared Secret Key K:

K =


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


• Error Matrix E:

E =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



Encryption Process

The encryption process for international transfer is the same:

• Matrix Multiplication:

M · K =


2000000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ·


7 3 5 2

4 6 7 1

9 2 8 5

3 1 2 4


The result is:

M · K =


14000000 6000000 10000000 4000000

0 0 0 0

0 0 0 0

0 0 0 0


• Adding Error Matrix:

C = M · K + E =


14000000 6000000 10000000 4000000

0 0 0 0

0 0 0 0

0 0 0 0

+


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


The resulting ciphertext is:

C =


14000001 6000001 10000001 4000001

1 1 1 1

1 1 1 1

1 1 1 1


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Transmission Over Blockchain

The ciphertext C is securely transmitted over the blockchain, providing a secure and verifiable means

of transferring funds internationally.

Decryption by Bob

Upon receiving the ciphertext C, Bob decrypts it:

• Subtract Error Matrix:

C − E =


14000001 6000001 10000001 4000001

1 1 1 1

1 1 1 1

1 1 1 1

−


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


Resulting in:

C − E =


14000000 6000000 10000000 4000000

0 0 0 0

0 0 0 0

0 0 0 0


• Multiply by Inverse of K:

M = (C − E) · K−1 mod q

The inverse operation recovers:

M =


2000000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Thus, Bob retrieves the original amount of 2 million Naira.

Conversion to Local Currency

After decryption, Bob can convert the amount from Naira to his local currency (e.g., USD) based on

the current exchange rate.

7. Security Analysis

The proposed scheme’s security relies on the hardness of lattice problems such as SVP and LWE [14].

Due to the high dimensionality and noise involved in lattice operations, it is computationally infeasible
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for an attacker to recover the secret key without solving these problems.

8. Conclusion

The integration of lattice-based cryptographic schemes in blockchain networks presents a promising

solution to quantum-resistant security. By utilizing a 4 × 4 matrix structure for key exchange,

encryption, and decryption, this paper outlines a secure and efficient cryptographic scheme for

financial systems. The use of group theory enhances the complexity and security of the scheme,

ensuring that transactions, particularly those involving the transfer of money like the Naira, remain

secure against quantum attacks.
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