Available Online: http://ijmaa.in

The Shilov Boundary and Peak Points of the Discrete Beurling Algebras on \mathbb{Z}^2_+ and \mathbb{Z}^2

H. V. Dedania^{1,*}, Vaishali N. Goswami¹

¹Department of Mathematics, Sardar Patel University, Gujarat, India

Abstract

Let ω be a weight function on \mathbb{Z}_+^2 or \mathbb{Z}^2 . The Gel'fand spaces of the discrete Beurling algebras $l^1(\mathbb{Z}_+^2,\omega)$ and $l^1(\mathbb{Z}_+^2,\omega)$ are studied in [2]. In this paper, we study their Shilov boundary, peak points and strong boundary points.

Keywords: Gel'fand space; Gel'fand transform; Shilov boundary; Peak point; Strong boundary Point.

2020 Mathematics Subject Classification: Primary 46J05; Secondary 46J10.

1. Introduction

Throughout, let \mathcal{A} be a unital, semisimple, commutative Banach algebra. Let $\Delta(\mathcal{A})$ denote the Gel'fand space of \mathcal{A} , let $\widehat{a}:\Delta(\mathcal{A})\longrightarrow\mathbb{C}$; $\varphi\mapsto\varphi(a)$ be the Gel'fand transform of a, let $\Gamma_{\mathcal{A}}:\mathcal{A}\longrightarrow\mathcal{C}_0(\Delta(\mathcal{A}))$; $a\mapsto\widehat{a}$ be the Gel'fand representation of \mathcal{A} , and $\widehat{A}=\Gamma_{\mathcal{A}}(\mathcal{A})=\{\widehat{a}:a\in\mathcal{A}\}$. Then $\Delta(\mathcal{A})$ is a compact Hausdorff space equipped with the weak* topology, $\Gamma_{\mathcal{A}}$ is a norm decreasing, one-to-one, algebra homomorphism, and \widehat{A} is a unital subalgebra of $C(\Delta(\mathcal{A}))$ which strongly separates the points of $\Delta(\mathcal{A})$, i.e. if $\varphi\neq\psi$, then there exists $a\in\mathcal{A}$ such that $\widehat{a}(\varphi)=0$ and $f(\psi)=1$ [3]. By [4], there always exists a smallest closed subset $\partial\mathcal{A}$ of $\Delta(\mathcal{A})$ such that $|\widehat{a}|_{\partial\mathcal{A}}=|\widehat{a}|_{\Delta(\mathcal{A})}$ ($a\in\mathcal{A}$), where $|\widehat{a}|_F=\sup\{|\varphi(a)|:\varphi\in F\}$; such a closed set $\partial\mathcal{A}$ is called the Shilov boundary of \mathcal{A} [4]. A point $\varphi\in\Delta(\mathcal{A})$ is a peak point for \mathcal{A} if there exists $a\in\mathcal{A}$ such that $\widehat{a}(\varphi)=1$ and $|\widehat{a}(\psi)|<1$ for all $\varphi\neq\psi\in\Delta(\mathcal{A})$ [4]. Let $S_0(\mathcal{A})$ denote the set of all peak points for \mathcal{A} . A point $\varphi\in\Delta(\mathcal{A})$ is a strong boundary point for \mathcal{A} if, for each neighbourhood U of φ , there exists $a\in\mathcal{A}$ with $\widehat{a}(\varphi)=|\widehat{a}|_{\Delta(\mathcal{A})}=1$ and $|\widehat{a}|_{\Delta(\mathcal{A})\setminus U}<1$ [3]. Let $T_0(\mathcal{A})$ denote the set of all strong boundary points for \mathcal{A} . Then it is always true that $S_0(\mathcal{A})\subset T_0(\mathcal{A})\subset\partial\mathcal{A}$.

Let S be the semigroup $(\mathbb{Z}_+^2,+)$ or the group $(\mathbb{Z}_+^2,+)$. A weight ω on S is a strictly positive function $\omega:S\longrightarrow (0,\infty)$ satisfying $\omega(s+t)\leq \omega(s)\omega(t)$ for all $s,t\in S$. Let $l^1(S,\omega)$ be the set of all functions $f:S\longrightarrow \mathbb{C}$ such that $\Sigma\{|f(s)|\omega(s):s\in S\}<\infty$. For $f,g\in l^1(S,\omega)$, the convolution product f*g of f

^{*}Corresponding author (hvdedania@gmail.com)

and g is defined as

$$f * g(s) = \sum \{f(u)g(v) : u, v \in S \text{ and } u + v = s\}$$
 $(s \in S).$

Then $l^1(S,\omega)$ is a unital, commutative Banach algebra with pointwise linear operations, the convolution product, and the norm $\|f\|_{\omega} = \sum \{|f(s)|\omega(s): s \in S\}$. The reader should refer to [3] for the definition and some basic properties.

The Gel'fand theory of the Beurling algebras $l^1(\mathbb{Z}_+,\omega)$ and $l^1(\mathbb{Z},\omega)$ are very well understood. For example: (i) their Gel'fand space can be identified with some closed disc \mathbb{D}_r with center zero and radius r and the closed annulus $\Gamma(r_1,r_2)$ with center zero and radii $0 < r_1 \le r_2$, respectively; (ii) their Shilov boundaries are just the topological boundaries of \mathbb{D}_r and $\Gamma(r_1,r_2)$, respectively. So it is natural to study the Gel'fand theory and various boundaries of the algebras $l^1(\mathbb{Z}_+^2,\omega)$ and $l^1(\mathbb{Z}_+^2,\omega)$. Their Gel'fand spaces are studied in [2]. In this paper, we study their geometrical properties; more specifically, we study Shilov boundary, peak points, strong boundary points, and polynomial convexity. It is already proved that $\Delta(l^1(\mathbb{Z}_+^2,\omega)) \cong \mathbb{G}(\omega)$ and $\Delta(l^1(\mathbb{Z}_+^2,\omega)) \cong \mathbb{T}(\omega)$, where $\mathbb{G}(\omega)$ and $\mathbb{T}(\omega)$ are union of product of closed discs and closed annuli in \mathbb{C}^2 , respectively [2]. Here, we shall prove that $\mathbb{G}(\omega)$ is always polynomially convex, while $\mathbb{T}(\omega)$ is never.

It follows from [1] that, unlike $l^1(\mathbb{Z}_+^2, \omega)$, the algebra $l^1(\mathbb{Z}_+^2, \omega)$ is always semisimple. Under some condition on the weight ω , the algebra $l^1(\mathbb{Z}_+^2, \omega)$ is semisimple too.

2. Main Section

To make this paper self instructed, we state here some notations, definitions and results from [2] without proofs.

Notations: Let ω be a weight on \mathbb{Z}_+^2 . Then we set the following notations.

$$\begin{array}{lll} \mathbb{D}_{r} & = & \{z \in \mathbb{C} : |z| \leq r\}; \Gamma(r) = \{z \in \mathbb{C} : |z| = r\}; \\ \Gamma(r,s) & = & \{z \in \mathbb{C} : r \leq |z| \leq s\}; \\ \mu & = & \inf\{\omega(m,n)^{\frac{1}{m+n}} : (m,n) \in \mathbb{Z}_{+}^{2} \setminus \{(0,0)\}\}; \\ \beta_{1,0} & = & \inf\{\omega(m,0)^{\frac{1}{m}} : (m \in \mathbb{N})\}; \\ \beta_{2,0} & = & \inf\{\omega(0,n)^{\frac{1}{n}} : (n \in \mathbb{N})\}; \\ \mathbb{G}(\omega) & = & \cup_{i \in \Lambda} (\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}), \text{ where } r_{i}, s_{i} \in \mathbb{R}_{+}; \\ \mathbb{G}_{db}(\omega) & = & \cup_{i \in \Lambda} (\Gamma(r_{i}) \times \Gamma(s_{i})); \\ \xi & = & \sup\{|zw| : (z,w) \in \mathbb{G}_{db}(\omega)\}; \\ \mathbb{G}_{p}(\omega) & = & \{(z,w) \in \mathbb{G}(\omega) : |z||w| = \xi\}; \end{array}$$

Let ω be a weight on \mathbb{Z}^2 . Then we set the following notations.

$$\mathbb{T}(\omega) = \bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(s_r, t_r)), \text{ where } r, s_r, t_r \in \mathbb{R}_+; \\
\mathbb{T}_{ab}(\omega) = [\bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(s_r))] \cup [\bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(t_r))]; \\
\xi_1 = \sup\{|zw| : (z, w) \in \bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(t_r))\}; \\
\xi_2 = \inf\{|zw| : (z, w) \in \bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(s_r))\}; \\
\xi_3 = \sup\{|z^{-1}w| : (z, w) \in \bigcup_{r \in \Lambda} (\Gamma(r) \times \Gamma(t_r))\}; \\
\xi_4 = \inf\{|z^{-1}w| : (z, w) \in \bigcup_{i \in \Lambda} (\Gamma(r) \times \Gamma(s_r))\}; \\
\mathbb{T}_{p_i}(\omega) = \{(z, w) \in \mathbb{T}(\omega) : |z||w| = \xi_i\} \text{ for } i = 1 \text{ or } 2; \\
\mathbb{T}_{p_i}(\omega) = \{(z, w) \in \mathbb{T}(\omega) : |z^{-1}w| = \xi_i\} \text{ for } i = 3 \text{ or } 4;$$

Definition 2.1. Let ω_1 and ω_2 be weights on \mathbb{Z}_+ or \mathbb{Z} . Then ω is called a product weight on \mathbb{Z}_+^2 or \mathbb{Z}^2 if $\omega(m,n) = \omega_1(m)\omega_2(n)$ $(m,n \in \mathbb{Z}_+$ or $\mathbb{Z})$.

The next result is proved in [2, Theorem 3.3].

Theorem 2.2. Let ω be a weight on \mathbb{Z}^2_+ . Then there is a subset $\{(r_i, s_i) : i \in \Lambda\}$ of \mathbb{R}^2_+ such that

$$\Delta(l^1(\mathbb{Z}^2_+,\omega)) \cong \mathbb{G}(\omega) = \cup_{i \in \Lambda} (\mathbb{D}_{r_i} \times \mathbb{D}_{s_i})$$

in such a way that, for each $\varphi \in \Delta(l^1(\mathbb{Z}_+^2, \omega))$ there exists $(z, w) \in \mathbb{G}(\omega)$ such that $\widehat{f}(\varphi) = \widehat{f}(\varphi_{z,w}) = \widehat{f}(z,w) = \sum \{f(m,n)z^mw^n : m,n \in \mathbb{Z}_+\}$ for all $f \in l^1(\mathbb{Z}_+^2,\omega)$. In particular, if $m \in \mathbb{Z}_+$ and if $p = \sum \{\alpha_{kl}\delta_{e_1}^k\delta_{e_2}^l : k+l \le m\} \in l^1(\mathbb{Z}_+^2,\omega)$, then $\widehat{p}(z,w) = \sum \{\alpha_{kl}z^kw^l : k+l \le m\}$.

Next Lemma will be required at later stage.

Lemma 2.3. Let ω be a weight on \mathbb{Z}_+^2 . Then the Beurling algebra $l^1(\mathbb{Z}_+^2, \omega)$ is semisimple iff $\mu > 0$.

Proof. Let ω be semisimple. Suppose, if possible, that $\mu = 0$. Let $0 < \varepsilon < 1$. Since $\mu = 0$, there exists $(m,n) \in \mathbb{Z}_+^2 \setminus \{(0,0)\}$ such that $\omega(m,n)^{\frac{1}{m+n}} < \varepsilon$. This implies that, for each $k \in \mathbb{N}$,

$$\omega(km,kn)^{\frac{1}{k}} \leq \omega(m,n) < \epsilon^{m+n} < \epsilon.$$

Therefore, $\inf\{\omega(km,kn)^{\frac{1}{k}}:k\in\mathbb{N}\}=0$, which is a contradiction. Hence $\mu>0$. Conversely, let $\mu>0$. Then, for any $(m,n)\in\mathbb{Z}_+^2\setminus\{(0,0)\}$, it is clear that $\inf\{\omega(km,kn)^{\frac{1}{k}}:k\in\mathbb{N}\}\geq\mu^{m+n}>0$. Hence ω is semisimple. \square

Definition 2.4 ([4]). Let $n \in \mathbb{N}$. A compact subset K of \mathbb{C}^n , is said to be polynomially convex if, for every $z \in \mathbb{C}^n \setminus K$, there exists a polynomial p in n-variables such that p(z) = 1 and |p(w)| < 1 for all $w \in K$.

Lemma 2.5. The Gel'fand set $\mathbb{G}(\omega)$ is polynomially convex.

Proof. Let $\delta_e = \delta_{(0,0)}$ denote the identity of $l^1(\mathbb{Z}_+^2, \omega)$ and let $(z_1, w_1) \notin \mathbb{G}(\omega)$. Then, for any $\varphi \in \Delta(l^1(\mathbb{Z}_+^2, \omega))$, either $\varphi(\delta_{e_1}) \neq z_1$ or $\varphi(\delta_{e_2}) \neq w_1$. Consider the ideal $I = \{(\delta_{e_1} - z_1 \delta_e) * g_1 + (\delta_{e_2} - z_1 \delta_e) * g_1 + (\delta_{e_1} - z_1 \delta_e) * g_2 + (\delta_{e_2} - z_1 \delta_e) * g_1 + (\delta_{e_2} - z_1 \delta_e) * g_2 + (\delta_{e$

 $w_1\delta_e)*g_2:g_1,g_2\in l^1(\mathbb{Z}_+^2,\omega)\}$ of $l^1(\mathbb{Z}_+^2,\omega)$. Then we must have $I=l^1(\mathbb{Z}_+^2,\omega)$. If possible, suppose that, $I\neq l^1(\mathbb{Z}_+^2,\omega)$. Then there exists $\varphi\in\Delta(l^1(\mathbb{Z}_+^2,\omega))$ such that $I\subset\ker\varphi\subset l^1(\mathbb{Z}_+^2,\omega)$. Since $\delta_{e_1}-z_1\delta_{e},\delta_{e_2}-w_1\delta_{e}\in I$, so $\varphi(\delta_{e_1})-z_1=\varphi(\delta_{e_1}-z_1\delta_{e})=0=\varphi(\delta_{e_2}-w_1\delta_{e})=\varphi(\delta_{e_2})-w_1$, which is a contradiction. Thus $I=l^1(\mathbb{Z}_+^2,\omega)$, and hence there exist $g_1,g_2\in l^1(\mathbb{Z}_+^2,\omega)$ such that

$$\delta_e = (\delta_{e_1} - z_1 \delta_e) * g_1 + (\delta_{e_2} - w_1 \delta_e) * g_2.$$

Choose $\delta > 0$ such that $\delta(\|\delta_{e_1} - z_1\delta_e\|_{\omega} + \|\delta_{e_2} - w_1\delta_e)\|_{\omega}) < 1$. Since $l^1(\mathbb{Z}_+^2, \omega)$ is generated by δ_{e_1} and δ_{e_2} , there exist $m_0, n_0 \in \mathbb{Z}_+$ such that $p_1 = \sum\limits_{k+l \leq m_0} \alpha_{kl} \delta_{e_1}^k \delta_{e_2}^l$, $p_2 = \sum\limits_{k+l \leq n_0} \beta_{kl} \delta_{e_1}^k \delta_{e_2}^l$, and $\|p_j - g_j\| \leq \delta$ for j = 1, 2. By substituting the values of δ_e above, it follows that

$$\|\delta_{e} - ((\delta_{e_{1}} - z_{1}\delta_{e}) * p_{1} + (\delta_{e_{2}} - w_{1}\delta_{e}) * p_{2})\|_{\omega} \leq \|\delta_{e_{1}} - z_{1}\delta_{e}\|_{\omega} \|g_{1} - p_{1}\|_{\omega} + \|\delta_{e_{2}} - w_{1}\delta_{e})\|_{\omega} \|g_{2} - p_{2}\|_{\omega}$$

$$< 1.$$

Let $p = \delta_e - (\delta_{e_1} - z_1 \delta_e) * p_1 - (\delta_{e_2} - w_1 \delta_e) * p_2 \in l^1(\mathbb{Z}_+^2, \omega)$. Then $\widehat{p}(z, w) = 1 - (z - z_1)\widehat{p}_1(z, w) - (w - w_1)\widehat{p}_2(z, w)$ $((z, w) \in \mathbb{G}(\omega))$ and \widehat{p} is a polynomial in two variables z and w. Clearly $\widehat{p}(z_1, w_1) = 1$. Let $(z, w) \in \mathbb{G}(\omega)$ be arbitrary. Then, by Theorem 2.2,

$$\begin{split} |\widehat{p}(z,w)| &= |\widehat{p}(\varphi(\delta_{e_{1}}),\varphi(\delta_{e_{2}}))| \\ &= |1 - (\varphi(\delta_{e_{1}}) - z_{1})\widehat{p}_{1}(\varphi(\delta_{e_{1}}),\varphi(\delta_{e_{2}})) - (\varphi(\delta_{e_{2}}) - w_{1})\widehat{p}_{2}(\varphi(\delta_{e_{1}}),\varphi(\delta_{e_{2}}))| \\ &= |\varphi(\delta_{e}) - \varphi(\delta_{e_{1}} - z_{1}\delta_{e})\varphi(p_{1}) - \varphi(\delta_{e_{2}} - w_{1}\delta_{e})\varphi(p_{2})| \\ &\leq \|\delta_{e} - (\delta_{e_{1}} - z_{1}\delta_{e}) * p_{1} - (\delta_{e_{2}} - w_{1}\delta_{e}) * p_{2}\|_{\omega} \\ &< 1. \end{split}$$

This proves that $G(\omega)$ is polynomially convex.

Lemma 2.6 ([3]). Let A be a semisimple commutative Banach algebra. Then $S_0(A) \subset T_0(A) \subset \partial A$. If $\Delta(A)$ is metrizable, then $\partial(A) = T_0(A) = S_0(A)$.

Lemma 2.7. Let $(z_0, w_0) \in \mathbb{G}(\omega)$ and let $S = S_0(l^1(\mathbb{Z}_+^2, \omega))$ or $T_0(l^1(\mathbb{Z}_+^2, \omega))$ or $\partial l^1(\mathbb{Z}_+^2, \omega)$. If $(z_0, w_0) \in S$, then $\Gamma(|z_0|) \times \Gamma(|w_0|) \subset S$.

Proof. Since $\Delta(l^1(\mathbb{Z}^2_+,\omega))\cong \mathbb{G}(\omega)$ is metrizable, it is sufficient to prove only for $S_0(l^1(\mathbb{Z}^2_+,\omega))$ due to Lemma 2.6 above. Assume that $(z_0,w_0)\in S_0(l^1(\mathbb{Z}^2_+,\omega))$. Then there exists $f\in l^1(\mathbb{Z}^2_+,\omega)$ such that $\widehat{f}(z_0,w_0)=1$ and $|\widehat{f}(z,w)|<1$ for all $(z,w)\neq(z_0,w_0)$. Let $(z_1,w_1)\in\Gamma(|z_0|)\times\Gamma(|w_0|)$ be arbitrary and let $\theta_1,\theta_2\in\mathbb{R}$ such that $z_0=e^{i\theta_1}z_1$ and $w_0=e^{i\theta_2}w_1$. Take $g(m,n)=e^{i(m\theta_1+n\theta_2)}f(m,n)$. Then $g\in l^1(\mathbb{Z}^2_+,\omega)$ and $\widehat{g}(z,w)=\widehat{f}(e^{i\theta_1}z,e^{i\theta_2}w)$. Hence $\widehat{g}(z_1,w_1)=\widehat{f}(e^{i\theta_1}z_1,e^{i\theta_2}w_1)=\widehat{f}(z_0,w_0)=1$ and $|\widehat{g}(z,w)|=|\widehat{f}(e^{i\theta_1}z,e^{i\theta_2}w)|<1$ for all $(z,w)\neq(z_1,w_1)$. Thus $(z_1,w_1)\in S_0(l^1(\mathbb{Z}^2_+,\omega))$.

Theorem 2.8. Let ω be a weight on \mathbb{Z}_+^2 . Then $\partial l^1(\mathbb{Z}_+^2, \omega) \subset \mathbb{G}_{db}(\omega)$.

Proof. Let $f \in l^1(\mathbb{Z}_+^2, \omega)$. Since \widehat{f} is continuous and $G(\omega)$ is compact, there exists $(z_0, w_0) \in G(\omega)$ such that $|\widehat{f}|_{\Delta(l^1(\mathbb{Z}_+^2, \omega))} = |\widehat{f}(z_0, w_0)|$. Since $G(\omega) = \bigcup_{i \in \Lambda} \mathbb{D}_{r_i} \times \mathbb{D}_{s_i}$, there exists $i \in \Lambda$ such that $(z_0, w_0) \in \mathbb{D}_{r_i} \times \mathbb{D}_{s_i}$. Define $g_1 : \mathbb{D}_{r_i} \longrightarrow \mathbb{C}$ as $g_1(z) = \widehat{f}(z, w_0)$ $(z \in \mathbb{D}_{r_i})$. Since \widehat{f} is continuous on $\mathbb{D}_{r_i} \times \mathbb{D}_{s_i}$ and analytic on $int(\mathbb{D}_{r_i} \times \mathbb{D}_{s_i})$, g_1 is continuous on \mathbb{D}_{r_i} and analytic on $int(\mathbb{D}_{r_i})$. So by the maximum modulus principle, there exists $z_1 \in \Gamma(r_i)$ such that $|\widehat{f}(z, w_0)| = |g_1(z)| \leq |g_1(z_1)| = |\widehat{f}(z_1, w_0)|$. Next define $g_2 : \mathbb{D}_{s_i} \longrightarrow \mathbb{C}$ as $g_2(w) = \widehat{f}(z_1, w)$ $(w \in \mathbb{D}_{s_i})$. As above argument, there exists $w_1 \in \Gamma(s_i)$ such that $|\widehat{f}(z_1, w)| = |g_2(w)| \leq |g_2(w_1)| = |\widehat{f}(z_1, w_1)|$ $(w \in \mathbb{D}_{s_i})$. Hence $|\widehat{f}|_{G(\omega)} = |\widehat{f}(z_0, w_0)| \leq |\widehat{f}(z_1, w_0)| \leq |\widehat{f}(z_1, w_1)| \leq |\widehat{f}|_{\Gamma(r_i) \times \Gamma(s_i)}$. Thus $\bigcup_{i \in \Lambda} (\Gamma(r_i) \times \Gamma(s_i))$ is a boundary of $l^1(\mathbb{Z}_+^2, \omega)$. Hence we get $\partial l^1(\mathbb{Z}_+^2, \omega) \subset G_{db}(\omega)$.

We believe that the two sets $\partial l^1(\mathbb{Z}_+^2, \omega)$ and $\mathbb{G}_{db}(\omega)$ should be identical. Unfortunately, we could not prove it. However, if the weight ω is a product weight, then it is true; this is proved in the next result.

Theorem 2.9. Let ω be a weight on \mathbb{Z}_+^2 .

- (I) If $\mu = 0$, then $\mathbb{G}(\omega) = (\mathbb{D}_{\beta_{1,0}} \times \{0\}) \cup (\{0\} \times \mathbb{D}_{\beta_{2,0}})$ and following holds.
 - (a) If $\beta_{1,0} = \beta_{2,0} = 0$, then $\partial l^1(\mathbb{Z}^2_+, \omega) = \{(0,0)\}$;
 - (b) If $\beta_{1,0} = 0$ and $\beta_{2,0} > 0$, then $\partial l^1(\mathbb{Z}^2_+, \omega) = \{0\} \times \Gamma(\beta_{2,0})$;
 - (c) If $\beta_{1,0} > 0$ and $\beta_{2,0} = 0$, then $\partial l^1(\mathbb{Z}^2_+, \omega) = \Gamma(\beta_{1,0}) \times \{0\}$;
 - (d) If $\beta_{1,0}, \beta_{2,0} > 0$, then $\partial l^1(\mathbb{Z}^2_+, \omega) = (\Gamma(\beta_{1,0}) \times \{0\}) \cup (\{0\} \times \Gamma(\beta_{2,0}))$.
- (II) If $\mu > 0$, then $\mathbb{G}_p(\omega) \subset \partial l^1(\mathbb{Z}_+^2, \omega)$;
- (III) If ω is a product weight, then $\partial l^1(\mathbb{Z}_+^2, \omega) = \mathbb{G}_{db}(\omega)$.

Proof. (I) If $\mathbb{D}_r \times \mathbb{D}_s \subset \mathbb{G}(\omega)$ for some r,s>0, then $\mu \geq \min\{r,s\}>0$. So, by [2], $\mathbb{G}(\omega)=(\mathbb{D}_{\beta_{1,0}}\times\{0\})\cup(\{0\}\times\mathbb{D}_{\beta_{2,0}})$. If $\beta_{1,0}=\beta_{2,0}=0$, then $\mathbb{G}(\omega)=\{(0,0)\}$. Clearly $\partial l^1(\mathbb{Z}_+^2,\omega)=\{(0,0)\}$. If $\beta_{1,0}=0$ and $\beta_{2,0}>0$, then $\mathbb{G}(\omega)=\{0\}\times\mathbb{D}_{\beta_{2,0}}$. Take $f=\frac{1}{2}(\delta_{(0,0)}+\beta_{2,0}^{-1}\delta_{(0,1)})\in l^1(\mathbb{Z}_+^2,\omega)$. Then the Gel'fand transform \widehat{f} of f will be $\widehat{f}(0,w)=\frac{1}{2}(1+\beta_{2,0}^{-1}w)$ such that $\widehat{f}(0,\beta_{2,0})=1$ and $|\widehat{f}(0,w)|<1$ for all $(0,w)\neq(0,\beta_{2,0})$. Thus $(0,\beta_{2,0})$ is a peak point and hence by Lemma 2.7, $\{0\}\times\mathbb{F}(\beta_{2,0})\subset\partial l^1(\mathbb{Z}_+^2,\omega)$. But in this case, $\mathbb{G}_{db}(\omega)=\{0\}\times\mathbb{F}(\beta_{2,0})$. So by Theorem 2.9, $\partial l^1(\mathbb{Z}_+^2,\omega)=\{0\}\times\mathbb{F}(\beta_{2,0})$. This proves (b). The proof of c follows by the similar arguments given in (b) above. Now assume that $\beta_{1,0}>0$ and $\beta_{2,0}>0$. Let $f=\frac{1}{2}(\delta_{(0,0)}+\beta_{1,0}^{-1}\delta_{(1,0)}+\frac{\beta_{2,0}^{-1}}{2}\delta_{(0,1)})$. Then the Gel'fand transform \widehat{f} of f is given by $\widehat{f}(z,w)=\frac{1}{2}(1+\beta_{1,0}^{-1}z+\frac{\beta_{2,0}^{-1}}{2}w)$. Let $(z,w)\in\mathbb{G}(\omega)$ be such that $(z,w)\neq(\beta_{1,0},0)$. Then either z=0 or w=0. Hence $\widehat{f}(\beta_{1,0},0)=1$ and $|\widehat{f}(z,w)|<1$ for all $(z,w)\neq(\beta_{1,0},0)$. Thus $(\beta_{1,0},0)\in\partial l^1(\mathbb{Z}_+^2,\omega)$. So we have $\mathbb{F}(\beta_{1,0},0)\times\{0\}\subset\partial l^1(\mathbb{Z}_+^2,\omega)$. Similarly, we can show that $\{0\}\times\mathbb{F}(\beta_{2,0})\subset\partial l^1(\mathbb{Z}_+^2,\omega)$. This proves (d).

(II) Assume that $\mu > 0$. Since $\mathbb{G}_{db}(\omega)$ is compact, the set $\mathbb{G}_p(\omega) = \{(z, w) : |zw| = \xi\}$ is non-empty.

Let $(z_0, w_0) \in \mathbb{G}_p(\omega)$. Consider, $f = \frac{1}{2}(\delta_{(0,0)} + z_0^{-1}w_0^{-1}\delta_{(1,1)}) \in l^1(\mathbb{Z}_+^2, \omega)$. The Gel'fand transform of f is given by

$$\widehat{f}(z,w) = \frac{1}{2}(1 + z_0^{-1}w_0^{-1}zw).$$

Then $\widehat{f}(z_0, w_0) = 1$ and $|\widehat{f}(z, w)| < 1$ for all $(z, w) \neq (z_0, w_0)$. Hence (z_0, w_0) is a peak point. Therefore $\mathbb{G}_p(\omega) \subset S_0(l^1(\mathbb{Z}_+^2, \omega))$.

(III) If ω is a product weight, then by [2, Theorem 3.7(i)], we have $\mathbb{G}(\omega) = \mathbb{D}_{\beta_1,0} \times \mathbb{D}_{\beta_2,0}$. If $\beta_{i,0} = 0$ for i = 1 or 2. Then, by the similar arguments given in (II) above, the result follows. Now let $\beta_{i,0} \neq 0$ (i = 1,2) and let $(z_0, w_0) \in \Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0})$. Consider $f = \frac{1}{4}(\delta_{(0,0)} + z_0^{-1}\delta_{e_1} + w_0^{-1}\delta_{e_2} + z_0^{-1}w_0^{-1}\delta_{(1,1)})$. Then the Gel'fand transform \widehat{f} of f is given by

$$\widehat{f}(\varphi) = \widehat{f}(\phi_{z,w}) = \widehat{f}(z,w) = \frac{1}{4}(1 + z_0^{-1}z)(1 + w_0^{-1}w) \ ((z,w) \in \mathbb{D}_{\beta_1,0} \times \mathbb{D}_{\beta_{2,0}}).$$

Then $\widehat{f}(z_0, w_0) = 1$ and $|\widehat{f}(z, w)| < 1$ $(z, w) \neq (z_0, w_0)$. Hence $\Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0}) \subset \partial l^1(\mathbb{Z}_+^2, \omega)$. Note that, for any $f \in l^1(\mathbb{Z}_+^2, \omega)$, the Gel'fand transform \widehat{f} is continuous on $\mathbb{D}_{\beta_1,0} \times \mathbb{D}_{\beta_{2,0}}$ and analytic on the interior of $\mathbb{D}_{\beta_1,0} \times \mathbb{D}_{\beta_{2,0}}$. Hence, by the maximum modulus principle, $\Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0}) \subset \partial l^1(\mathbb{Z}_+^2, \omega)$. Clearly, $\mathbb{G}_{db}(\omega) = \Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0})$. Hence, by Theorem 2.9, $\partial l^1(\mathbb{Z}_+^2, \omega) = \Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0})$.

Theorem 2.10 ([2]). Let ω be any weight on \mathbb{Z}^2 . Then there exists a subset Λ of \mathbb{R}_+^{\bullet} and a subset $\{(s_r, t_r) : r \in \Lambda\}$ of $\mathbb{R}_+^{\bullet 2}$ such that

$$\Delta(l^1(\mathbb{Z}^2,\omega)) \cong \cup_{r \in \Lambda} (\Gamma(r) \times \Gamma(s_r,t_r)).$$

The following proof can be compared with the proof of Lemma 2.5.

Lemma 2.11. Let ω be a weight on \mathbb{Z}^2 . Then

- (i) $\mathbb{T}(\omega)$ is never polynomially convex;
- (ii) Let $z_1, w_1 \neq 0$ be such that $(z_1, w_1) \notin \mathbb{T}(\omega)$. Then there exists $f \in l^1(\mathbb{Z}^2, \omega)$ such that $\widehat{f}(z_1, w_1) = 1$ and $|\widehat{f}(z, w)| < 1$ for all $(z, w) \in \mathbb{T}(\omega)$;
- *Proof.* (*i*) Assume that $\mathbb{T}(\omega)$ is polynomially convex. Since for each $r \in \Lambda$ the point $(0, t_r) \notin \mathbb{T}(\omega)$, we get a polynomial p_r such that $p_r(0, t_r) = 1$ and $|p_r(z, w)| < 1$ for all $(z, w) \in \mathbb{T}(\omega)$. Fix some $r \in \Lambda$ and define a polynomial $q : \mathbb{C} \longrightarrow \mathbb{C}$ by $q(z) = p_r(z, t_r)$. Then |q(z)| < 1 for all $z \in \mathbb{C}$ with |z| = r and $q(0) = p_r(0, t_r) = 1$, which is a contradiction to the maximum modulus principle.
- (ii) Let $(z_1, w_1) \notin \mathbb{T}(\omega)$, $\varphi \in \Delta(l^1(\mathbb{Z}^2, \omega))$, and let $ker(\varphi) = M$. Then $\varphi(\delta_{e_1}) \neq z_1$ or $\varphi(\delta_{e_2}) \neq w_1$. Take a set $I = \{(\delta_{e_1} z_1\delta_e) * g_1 + (\delta_{e_2} w_1\delta_e) * g_2 : g_1, g_2 \in l^1(\mathbb{Z}^2, \omega)\}$ of $l^1(\mathbb{Z}^2, \omega)$. Then clearly, I is an ideal. Also the elements $\delta_{e_1} z_1\delta_e$ and $\delta_{e_2} w_1\delta_e \in I$ but at least one of these two elements does not belong to $ker(\varphi)$ for each $\varphi \in \Delta(l^1(\mathbb{Z}^2, \omega))$. This implies that $I \subset ker\varphi$ for any $\varphi \in \Delta(l^1(\mathbb{Z}^2, \omega))$ is not possible. Thus $I = l^1(\mathbb{Z}^2, \omega)$. Hence there exists $g_1, g_2 \in l^1(\mathbb{Z}^2, \omega)$ such that

$$\delta_e = (\delta_{e_1} - z_1 \delta_e) * g_1 + (\delta_{e_2} - w_1 \delta_e) * g_2.$$

Choose $\delta > 0$ such that $\delta(\|\delta_{e_1} - z_1\delta_e\|_{\omega} + \|\delta_{e_2} - w_1\delta_e)\|_{\omega}) < 1$. Since $l^1(\mathbb{Z}^2, \omega)$ is generated by $\delta_{e_1}, \delta_{-e_1}, \delta_{e_2}$, and δ_{-e_2} , there exists polynomials p_1, p_2 in 4-variables such that $\|p_j(\delta_{e_1}, \delta_{-e_1}, \delta_{e_2}, \delta_{e_2}) - g_j\|_{\omega} \leq \delta$ for j = 1, 2. It follows that

$$\begin{split} \|\delta_{e} - (\delta_{e_{1}} - z_{1}\delta_{e}) * p_{1}(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}) - (\delta_{e_{2}} - w_{1}\delta_{e}) * p_{2}(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}) \|_{\omega} \\ & \leq \|\delta_{e_{1}} - z_{1}\delta_{e}\|_{\omega} \|g_{1} - p_{1}(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}})\|_{\omega} \\ & + \|\delta_{e_{2}} - w_{1}\delta_{e})\|_{\omega} \|g_{2} - p_{2}(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}})\|_{\omega} \\ & < 1. \end{split}$$

Now, define a map $f: \mathbb{Z}^2 \longrightarrow \mathbb{C}$ as follows

$$f = \delta_e - (\delta_{e_1} - z_1 \delta_e) * p_1(\delta_{e_1}, \delta_{-e_1}, \delta_{e_2}, \delta_{-e_2}) - (\delta_{e_2} - w_1 \delta_e) * p_2(\delta_{e_1}, \delta_{-e_1}, \delta_{e_2}, \delta_{-e_2}).$$

Then $f \in l^1(\mathbb{Z}^2, \omega)$ and the Gel'fand transform of f is given by

$$\widehat{f}(z,w) = 1 - (z - z_1)p_1(z,z^{-1},w,w^{-1}) - (w - w_1)p_2(z,z^{-1},w,w^{-1}).$$

Then $\widehat{f}(z_1, w_1) = 1$, and by the similar arguments given in Lemma 2.5, we have $|\widehat{f}(z, w)| < 1$ for every $(z, w) \in \mathbb{T}(\omega)$.

Theorem 2.12. Let ω be a weight on \mathbb{Z}^2 . Then $\partial l^1(\mathbb{Z}^2, \omega) \subset \mathbb{T}_{ab}(\omega)$.

Proof. It is enough to show that the set $\mathbb{T}_{ab}(\omega)$ is boundary for $l^1(\mathbb{Z}^2,\omega)$. Let $f \in l^1(\mathbb{Z}^2,\omega)$ and let $(z_0,w_0) \in \mathbb{T}(\omega)$ such that $|\widehat{f}|_{\mathbb{T}(\omega)} = |\widehat{f}(z_0,w_0)|$. Since $\mathbb{T}(\omega) = \cup_{r \in \Lambda} (\Gamma(r) \times \Gamma(s_r,t_r))$, $(z_0,w_0) \in \Gamma(r) \times \Gamma(s_r,t_r)$ for some $r \in \Lambda$. Define $g: \Gamma(s_r,t_r) \longrightarrow \mathbb{C}$ as $g(w) = \widehat{f}(z_0,w)$. Then g is continuous on $\Gamma(s_r,t_r)$ and analytic on its interior. So there exists $w_1 \in \Gamma(s_r) \cup \Gamma(t_r)$ such that $|\widehat{f}(z_0,w)| = |g(w)| \le |g(w_1)| \le |\widehat{f}(z_0,w_1)|$ for all $w \in \Gamma(s_r,t_r)$. This implies $|\widehat{f}|_{\mathbb{T}(\omega)} \le |\widehat{f}(z_0,w_1)|$. Note that $(z_0,w_1) \in \Gamma(|z_0|) \times \Gamma(s_r) \cup \Gamma(|z_0|) \times \Gamma(t_r)$. Thus $\mathbb{T}_{ab}(\omega)$ is a boundary for $l^1(\mathbb{Z}^2,\omega)$. Hence $\partial l^1(\mathbb{Z}^2,\omega) \subset \mathbb{T}_{ab}(\omega)$.

Theorem 2.13. Let ω be a weight on \mathbb{Z}^2 . Then

- (i) $\cup_{i=1}^4 \mathbb{T}_{p_i}(\omega) \subset \partial l^1(\mathbb{Z}^2,\omega)$);
- (ii) If ω be a product weight, then $\cup_{i=1}^4 \mathbb{T}_{p_i}(\omega) = \partial l^1(\mathbb{Z}^2, \omega) = \mathbb{T}_{ab}(\omega)$.

Proof. (i) Since $\mathbb{T}_{ab}(\omega)$ is compact, each set \mathbb{T}_{p_i} is non-empty. Let $(z_0, w_0) \in \mathbb{T}_{p_1}(\omega)$. Then $|z_0 w_0| = \xi_1$. Take $f = \frac{1}{2}(\delta_{(0,0)} + z_0^{-1}w_0^{-1}\delta_{(1,1)}) \in l^1(\mathbb{Z}^2, \omega)$. Then the Gel'fand transform \widehat{f} of f is given by

$$\widehat{f}(z,w) = \frac{1}{2}(1 + z_0^{-1}w_0^{-1}zw) \ \ ((z,w) \in \mathbb{T}(\omega)).$$

Clearly, $\widehat{f}(z_0, w_0) = 1$ and $|\widehat{f}(z, w)| < 1$ for all $(z, w) \neq (z_0, w_0)$. So (z_0, w_0) is a peak point, and hence $(z_0, w_0) \in \partial l^1(\mathbb{Z}^2, \omega)$ due to Lemma 2.6.

Similarly, if $(z_0, w_0) \in \mathbb{T}_{p_2}$, then $|z_0 w_0| = \xi_2$. Take $f = \frac{1}{2}(\delta_{(0,0)} + z_0 w_0 \delta_{(-1,-1)})$. Then $\widehat{f}(z_0, w_0) = 1$ and $|\widehat{f}(z, w)| < 1$ for all $(z, w) \neq (z_0, w_0)$. Thus $\mathbb{T}_{p_2} \subset S_0(l^1(\mathbb{Z}^2, \omega)) = \partial l^1(\mathbb{Z}^2, \omega)$. If $(z_0, w_0) \in \mathbb{T}_{p_3}$, then take $f = \frac{1}{2}(\delta_{(0,0)} + z_0^{-1} w_0 \delta_{(1,-1)})$; and if $(z_0, w_0) \in \mathbb{T}_{p_4}$, then take $f = \frac{1}{2}(\delta_{(0,0)} + z_0 w_0^{-1} \delta_{(-1,1)})$. Then, as per the above arguments, we can show that \mathbb{T}_{p_3} , $\mathbb{T}_{p_4} \subset \partial l^1(\mathbb{Z}^2, \omega)$.

(ii) Since ω is a product weight, by [2, Theorem 3.7(ii)], the Gel'fand space of $l^1(\mathbb{Z}^2, \omega)$ is homeomorphic to $\Gamma(\alpha_{1,0}, \beta_{1,0}) \times \Gamma(\alpha_{2,0}, \beta_{2,0})$. It is clear from the maximum modulus principle that $\partial l^1(\mathbb{Z}^2, \omega) \subset (\Gamma(\alpha_{1,0}) \times \Gamma(\alpha_{2,0})) \cup (\Gamma(\beta_{1,0}) \times \Gamma(\alpha_{2,0})) \cup (\Gamma(\alpha_{1,0}) \times \Gamma(\beta_{2,0})) \cup (\Gamma(\beta_{1,0}) \times \Gamma(\beta_{2,0}))$. Conversely, let $(z_0, w_0) \in \Gamma(\alpha_{1,0}) \times \Gamma(\alpha_{2,0})$, then $|z_0 w_0| = \xi_4$ and hence, by the argument given in (i) above, (z_0, w_0) is a peak point, and hence $(z_0, w_0) \in \partial l^1(\mathbb{Z}^2, \omega)$. Similarly, we can show that other sets are also subsets of $\partial l^1(\mathbb{Z}^2, \omega)$.

Acknowledgement

The corresponding author is thankful to CSIR-HRDG, New Delhi for providing Senior Research Fellowship.

References

- [1] S. J. Bhatt, and H. V. Dedania, A Beurling algebra is semisimple, an elementary proof, Bull. Australian Math. Soc., 66(2002), 91-93.
- [2] H. V. Dedania, and V. N. Goswami, *The Gel'fand spaces of discrete Beurling algebras on* \mathbb{Z}_+^2 *and* \mathbb{Z}^2 , Italian Journal of Pure and Applied Mathematics(to appear).
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Science Pub., London Math. Soc. Monographs, 2000.
- [4] E. Kaniuth, A course in Commutative Banach Algebras, Springer, New York, 2009.