The Shilov Boundary and Peak Points of the Discrete Beurling Algebras on \mathbb{Z}_{+}^{2} and \mathbb{Z}^{2}

H. V. Dedania ${ }^{1, *}$, Vaishali N. Goswami ${ }^{1}$

${ }^{1}$ Department of Mathematics, Sardar Patel University, Gujarat, India

Abstract

Let ω be a weight function on \mathbb{Z}_{+}^{2} or \mathbb{Z}^{2}. The Gel'fand spaces of the discrete Beurling algebras $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ and $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ are studied in [2]. In this paper, we study their Shilov boundary, peak points and strong boundary points.

Keywords: Gel'fand space; Gel'fand transform; Shilov boundary; Peak point; Strong boundary Point.

2020 Mathematics Subject Classification: Primary 46J05; Secondary 46J10.

1. Introduction

Throughout, let \mathcal{A} be a unital, semisimple, commutative Banach algebra. Let $\Delta(\mathcal{A})$ denote the Gel'fand space of \mathcal{A}, let $\widehat{a}: \Delta(\mathcal{A}) \longrightarrow \mathbb{C} ; \varphi \mapsto \varphi(a)$ be the Gel'fand transform of a, let $\Gamma_{\mathcal{A}}: \mathcal{A} \longrightarrow C_{0}(\Delta(\mathcal{A}))$; $a \mapsto \widehat{a}$ be the Gel'fand representation of \mathcal{A}, and $\widehat{A}=\Gamma_{\mathcal{A}}(\mathcal{A})=\{\widehat{a}: a \in \mathcal{A}\}$. Then $\Delta(\mathcal{A})$ is a compact Hausdorff space equipped with the weak* topology, $\Gamma_{\mathcal{A}}$ is a norm decreasing, one-to-one, algebra homomorphism, and \widehat{A} is a unital subalgebra of $C(\Delta(\mathcal{A}))$ which strongly separates the points of $\Delta(\mathcal{A})$, i.e. if $\varphi \neq \psi$, then there exists $a \in \mathcal{A}$ such that $\widehat{a}(\varphi)=0$ and $f(\psi)=1$ [3]. By [4], there always exists a smallest closed subset $\partial \mathcal{A}$ of $\Delta(\mathcal{A})$ such that $|\widehat{a}|_{\partial \mathcal{A}}=|\widehat{a}|_{\Delta(\mathcal{A})}(a \in \mathcal{A})$, where $|\widehat{a}|_{F}=\sup \{|\varphi(a)|: \varphi \in F\}$; such a closed set $\partial \mathcal{A}$ is called the Shilov boundary of \mathcal{A} [4]. A point $\varphi \in \Delta(\mathcal{A})$ is a peak point for \mathcal{A} if there exists $a \in A$ such that $\widehat{a}(\varphi)=1$ and $|\widehat{a}(\psi)|<1$ for all $\varphi \neq \psi \in \Delta(\mathcal{A})$ [4]. Let $S_{0}(\mathcal{A})$ denote the set of all peak points for \mathcal{A}. A point $\varphi \in \Delta(\mathcal{A})$ is a strong boundary point for \mathcal{A} if, for each neighbourhood U of φ, there exists $a \in A$ with $\widehat{a}(\varphi)=|\widehat{a}|_{\Delta(\mathcal{A})}=1$ and $|\widehat{a}|_{\Delta(\mathcal{A}) \backslash U}<1$ [3]. Let $T_{0}(\mathcal{A})$ denote the set of all strong boundary points for \mathcal{A}. Then it is always true that $S_{0}(\mathcal{A}) \subset T_{0}(\mathcal{A}) \subset \partial \mathcal{A}$.
Let S be the semigroup $\left(\mathbb{Z}_{+}^{2},+\right)$ or the group $\left(\mathbb{Z}^{2},+\right)$. A weight ω on S is a strictly positive function $\omega: S \longrightarrow(0, \infty)$ satisfying $\omega(s+t) \leq \omega(s) \omega(t)$ for all $s, t \in S$. Let $l^{1}(S, \omega)$ be the set of all functions $f: S \longrightarrow \mathbb{C}$ such that $\sum\{|f(s)| \omega(s): s \in S\}<\infty$. For $f, g \in l^{1}(S, \omega)$, the convolution product $f * g$ of f

[^0]and g is defined as
$$
f * g(s)=\sum\{f(u) g(v): u, v \in S \text { and } u+v=s\} \quad(s \in S) .
$$

Then $l^{1}(S, \omega)$ is a unital, commutative Banach algebra with pointwise linear operations, the convolution product, and the norm $\|f\|_{\omega}=\sum\{|f(s)| \omega(s): s \in S\}$. The reader should refer to [3] for the definition and some basic properties.
The Gel'fand theory of the Beurling algebras $l^{1}\left(\mathbb{Z}_{+}, \omega\right)$ and $l^{1}(\mathbb{Z}, \omega)$ are very well understood. For example: (i) their Gel'fand space can be identified with some closed disc \mathbb{D}_{r} with center zero and radius r and the closed annulus $\Gamma\left(r_{1}, r_{2}\right)$ with center zero and radii $0<r_{1} \leq r_{2}$, respectively; (ii) their Shilov boundaries are just the topological boundaries of \mathbb{D}_{r} and $\Gamma\left(r_{1}, r_{2}\right)$, respectively. So it is natural to study the Gel'fand theory and various boundaries of the algebras $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ and $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Their Gel'fand spaces are studied in [2]. In this paper, we study their geometrical properties; more specifically, we study Shilov boundary, peak points, strong boundary points, and polynomial convexity. It is already proved that $\Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right) \cong \mathbb{G}(\omega)$ and $\Delta\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right) \cong \mathbb{T}(\omega)$, where $\mathbb{G}(\omega)$ and $\mathbb{T}(\omega)$ are union of product of closed discs and closed annuli in \mathbb{C}^{2}, respectively [2]. Here, we shall prove that $\mathbb{G}(\omega)$ is always polynomially convex, while $\mathbb{T}(\omega)$ is never.
It follows from [1] that, unlike $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$, the algebra $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ is always semisimple. Under some condition on the weight ω, the algebra $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ is semisimple too.

2. Main Section

To make this paper self instructed, we state here some notations, definitions and results from [2] without proofs.
Notations: Let ω be a weight on \mathbb{Z}_{+}^{2}. Then we set the following notations.

$$
\begin{array}{ll}
\mathbb{D}_{r} & =\{z \in \mathbb{C}:|z| \leq r\} ; \Gamma(r)=\{z \in \mathbb{C}:|z|=r\} ; \\
\Gamma(r, s) & =\{z \in \mathbb{C}: r \leq|z| \leq s\} ; \\
\mu & =\inf \left\{\omega(m, n)^{\frac{1}{m+n}}:(m, n) \in \mathbb{Z}_{+}^{2} \backslash\{(0,0)\}\right\} ; \\
\beta_{1,0} & =\inf \left\{\omega(m, 0)^{\frac{1}{m}}:(m \in \mathbb{N})\right\} ; \\
\beta_{2,0} & =\inf \left\{\omega(0, n)^{\frac{1}{n}}:(n \in \mathbb{N})\right\} ; \\
\mathbb{G}(\omega) & =\cup_{i \in \Lambda}\left(\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}\right), \text { where } r_{i}, s_{i} \in \mathbb{R}_{+} ; \\
\mathbb{G}_{d b}(\omega) & =\cup_{i \in \Lambda}\left(\Gamma\left(r_{i}\right) \times \Gamma\left(s_{i}\right)\right) ; \\
\xi & =\sup \left\{|z w|:(z, w) \in \mathbb{G}_{d b}(\omega)\right\} ; \\
\mathbb{G}_{p}(\omega) & =\{(z, w) \in \mathbb{G}(\omega):|z||w|=\xi\} ;
\end{array}
$$

Let ω be a weight on \mathbb{Z}^{2}. Then we set the following notations.

$$
\begin{array}{ll}
\mathbb{T}(\omega) & =\cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}, t_{r}\right)\right), \text { where } r, s_{r}, t_{r} \in \mathbb{R}_{+} ; \\
\mathbb{T}_{a b}(\omega)=\left[\cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}\right)\right)\right] \cup\left[\cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(t_{r}\right)\right)\right] ; \\
\xi_{1} & =\sup \left\{|z w|:(z, w) \in \cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(t_{r}\right)\right)\right\} ; \\
\xi_{2} & =\inf \left\{|z w|:(z, w) \in \cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}\right)\right)\right\} ; \\
\xi_{3} & =\sup \left\{\left|z^{-1} w\right|:(z, w) \in \cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(t_{r}\right)\right)\right\} ; \\
\xi_{4} & =\inf \left\{\left|z^{-1} w\right|:(z, w) \in \cup_{i \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}\right)\right)\right\} ; \\
\mathbb{T}_{p_{i}}(\omega) & =\left\{(z, w) \in \mathbb{T}(\omega):|z||w|=\xi_{i}\right\} \text { for } i=1 \text { or } 2 ; \\
\mathbb{T}_{p_{i}}(\omega)=\left\{(z, w) \in \mathbb{T}(\omega):\left|z^{-1} w\right|=\xi_{i}\right\} \text { for } i=3 \text { or } 4 ;
\end{array}
$$

Definition 2.1. Let ω_{1} and ω_{2} be weights on \mathbb{Z}_{+}or \mathbb{Z}. Then ω is called a product weight on \mathbb{Z}_{+}^{2} or \mathbb{Z}^{2} if $\omega(m, n)=\omega_{1}(m) \omega_{2}(n)\left(m, n \in \mathbb{Z}_{+}\right.$or $\left.\mathbb{Z}\right)$.

The next result is proved in [2, Theorem 3.3].
Theorem 2.2. Let ω be a weight on \mathbb{Z}_{+}^{2}. Then there is a subset $\left\{\left(r_{i}, s_{i}\right): i \in \Lambda\right\}$ of \mathbb{R}_{+}^{2} such that

$$
\Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right) \cong \mathbb{G}(\omega)=\cup_{i \in \Lambda}\left(\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}\right)
$$

in such a way that, for each $\varphi \in \Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$ there exists $(z, w) \in \mathbb{G}(\omega)$ such that $\widehat{f}(\varphi)=\widehat{f}\left(\phi_{z, w}\right)=$ $\widehat{f}(z, w)=\sum\left\{f(m, n) z^{m} w^{n}: m, n \in \mathbb{Z}_{+}\right\}$for all $f \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. In particular, if $m \in \mathbb{Z}_{+}$and if $p=$ $\sum\left\{\alpha_{k l} \delta_{e_{1}}^{k} \delta_{e_{2}}^{l}: k+l \leq m\right\} \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$, then $\widehat{p}(z, w)=\sum\left\{\alpha_{k l} z^{k} w^{l}: k+l \leq m\right\}$.

Next Lemma will be required at later stage.
Lemma 2.3. Let ω be a weight on \mathbb{Z}_{+}^{2}. Then the Beurling algebra $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ is semisimple iff $\mu>0$.
Proof. Let ω be semisimple. Suppose, if possible, that $\mu=0$. Let $0<\epsilon<1$. Since $\mu=0$, there exists $(m, n) \in \mathbb{Z}_{+}^{2} \backslash\{(0,0)\}$ such that $\omega(m, n)^{\frac{1}{m+n}}<\epsilon$. This implies that, for each $k \in \mathbb{N}$,

$$
\omega(k m, k n)^{\frac{1}{k}} \leq \omega(m, n)<\epsilon^{m+n}<\epsilon
$$

Therefore, $\inf \left\{\omega(k m, k n)^{\frac{1}{k}}: k \in \mathbb{N}\right\}=0$, which is a contradiction. Hence $\mu>0$.
Conversely, let $\mu>0$. Then, for any $(m, n) \in \mathbb{Z}_{+}^{2} \backslash\{(0,0)\}$, it is clear that $\inf \left\{\omega(k m, k n)^{\frac{1}{k}}: k \in \mathbb{N}\right\} \geq$ $\mu^{m+n}>0$. Hence ω is semisimple.

Definition 2.4 ([4]). Let $n \in \mathbb{N}$. A compact subset K of \mathbb{C}^{n}, is said to be polynomially convex if, for every $z \in \mathbb{C}^{n} \backslash K$, there exists a polynomial p in n-variables such that $p(z)=1$ and $|p(w)|<1$ for all $w \in K$.

Lemma 2.5. The Gel'fand set $\mathbb{G}(\omega)$ is polynomially convex.
Proof. Let $\delta_{e}=\delta_{(0,0)}$ denote the identity of $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ and let $\left(z_{1}, w_{1}\right) \notin \mathbb{G}(\omega)$. Then, for any $\varphi \in$ $\Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$, either $\varphi\left(\delta_{e_{1}}\right) \neq z_{1}$ or $\varphi\left(\delta_{e_{2}}\right) \neq w_{1}$. Consider the ideal $I=\left\{\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * g_{1}+\left(\delta_{e_{2}}-\right.\right.$
$\left.\left.w_{1} \delta_{e}\right) * g_{2}: g_{1}, g_{2} \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right\}$ of $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Then we must have $I=l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. If possible, suppose that, $I \neq l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Then there exists $\varphi \in \Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$ such that $I \subset \operatorname{ker} \varphi \subset l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Since $\delta_{e_{1}}-z_{1} \delta_{e}, \delta_{e_{2}}-w_{1} \delta_{e} \in I$, so $\varphi\left(\delta_{e_{1}}\right)-z_{1}=\varphi\left(\delta_{e_{1}}-z_{1} \delta_{e}\right)=0=\varphi\left(\delta_{e_{2}}-w_{1} \delta_{e}\right)=\varphi\left(\delta_{e_{2}}\right)-w_{1}$, which is a contradiction. Thus $I=l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$, and hence there exist $g_{1}, g_{2} \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ such that

$$
\delta_{e}=\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * g_{1}+\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * g_{2} .
$$

Choose $\delta>0$ such that $\left.\delta\left(\left\|\delta_{e_{1}}-z_{1} \delta_{e}\right\|_{\omega}+\| \delta_{e_{2}}-w_{1} \delta_{e}\right) \|_{\omega}\right)<1$. Since $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ is generated by $\delta_{e_{1}}$ and $\delta_{e_{2}}$, there exist $m_{0}, n_{0} \in \mathbb{Z}_{+}$such that $p_{1}=\sum_{k+l \leq m_{0}} \alpha_{k l} \delta_{e_{1}}^{k} \delta_{e_{2},}^{l} \quad p_{2}=\sum_{k+l \leq n_{0}} \beta_{k l} \delta_{e_{1}}^{k} \delta_{e_{2}}^{l}$, and $\left\|p_{j}-g_{j}\right\| \leq \delta$ for $j=1,2$. By substituting the values of δ_{e} above, it follows that

$$
\left.\left\|\delta_{e}-\left(\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * p_{1}+\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * p_{2}\right)\right\|_{\omega} \leq\left\|\delta_{e_{1}}-z_{1} \delta_{e}\right\|_{\omega}\left\|g_{1}-p_{1}\right\|_{\omega}+\| \delta_{e_{2}}-w_{1} \delta_{e}\right)\left\|_{\omega}\right\| g_{2}-p_{2} \|_{\omega}
$$

$$
<1
$$

Let $p=\delta_{e}-\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * p_{1}-\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * p_{2} \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Then $\widehat{p}(z, w)=1-\left(z-z_{1}\right) \widehat{p_{1}}(z, w)-(w-$ $\left.w_{1}\right) \widehat{p_{2}}(z, w)((z, w) \in \mathbb{G}(\omega))$ and \widehat{p} is a polynomial in two variables z and w. Clearly $\widehat{p}\left(z_{1}, w_{1}\right)=1$. Let $(z, w) \in \mathbb{G}(\omega)$ be arbitrary. Then, by Theorem 2.2,

$$
\begin{aligned}
|\widehat{p}(z, w)| & =\left|\widehat{p}\left(\varphi\left(\delta_{e_{1}}\right), \varphi\left(\delta_{e_{2}}\right)\right)\right| \\
& =\left|1-\left(\varphi\left(\delta_{e_{1}}\right)-z_{1}\right) \widehat{p_{1}}\left(\varphi\left(\delta_{e_{1}}\right), \varphi\left(\delta_{e_{2}}\right)\right)-\left(\varphi\left(\delta_{e_{2}}\right)-w_{1}\right) \widehat{p_{2}}\left(\varphi\left(\delta_{e_{1}}\right), \varphi\left(\delta_{e_{2}}\right)\right)\right| \\
& =\left|\varphi\left(\delta_{e}\right)-\varphi\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) \varphi\left(p_{1}\right)-\varphi\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) \varphi\left(p_{2}\right)\right| \\
& \leq\left\|\delta_{e}-\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * p_{1}-\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * p_{2}\right\|_{\omega} \\
& <1 .
\end{aligned}
$$

This proves that $\mathbb{G}(\omega)$ is polynomially convex.
Lemma 2.6 ([3]). Let \mathcal{A} be a semisimple commutative Banach algebra. Then $S_{0}(\mathcal{A}) \subset T_{0}(\mathcal{A}) \subset \mathcal{A}$. If $\Delta(\mathcal{A})$ is metrizable, then $\partial(\mathcal{A})=T_{0}(\mathcal{A})=S_{0}(\mathcal{A})$.

Lemma 2.7. Let $\left(z_{0}, w_{0}\right) \in \mathbb{G}(\omega)$ and let $S=S_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$ or $T_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$ or $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. If $\left(z_{0}, w_{0}\right) \in$ S, then $\Gamma\left(\left|z_{0}\right|\right) \times \Gamma\left(\left|w_{0}\right|\right) \subset S$.

Proof. Since $\Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right) \cong \mathbb{G}(\omega)$ is metrizable, it is sufficient to prove only for $S_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$ due to Lemma 2.6 above. Assume that $\left(z_{0}, w_{0}\right) \in S_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$. Then there exists $f \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ such that $\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \neq\left(z_{0}, w_{0}\right)$. Let $\left(z_{1}, w_{1}\right) \in \Gamma\left(\left|z_{0}\right|\right) \times \Gamma\left(\left|w_{0}\right|\right)$ be arbitrary and let $\theta_{1}, \theta_{2} \in \mathbb{R}$ such that $z_{0}=e^{i \theta_{1}} z_{1}$ and $w_{0}=e^{i \theta_{2}} w_{1}$. Take $g(m, n)=e^{i\left(m \theta_{1}+n \theta_{2}\right)} f(m, n)$. Then $g \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ and $\widehat{g}(z, w)=\widehat{f}\left(e^{i \theta_{1}} z, e^{i \theta_{2}} w\right)$. Hence $\widehat{g}\left(z_{1}, w_{1}\right)=\widehat{f}\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} w_{1}\right)=\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{g}(z, w)|=\left|\widehat{f}\left(e^{i \theta_{1}} z, e^{i \theta_{2}} w\right)\right|<1$ for all $(z, w) \neq\left(z_{1}, w_{1}\right)$. Thus $\left(z_{1}, w_{1}\right) \in S_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$.

Theorem 2.8. Let ω be a weight on \mathbb{Z}_{+}^{2}. Then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right) \subset \mathbb{G}_{d b}(\omega)$.

Proof. Let $f \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Since \widehat{f} is continuous and $\mathbb{G}(\omega)$ is compact, there exists $\left(z_{0}, w_{0}\right) \in \mathbb{G}(\omega)$ such that $|\widehat{f}|_{\Delta\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)}=\left|\widehat{f}\left(z_{0}, w_{0}\right)\right|$. Since $\mathbb{G}(\omega)=\cup_{i \in \Lambda} \mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}$, there exists $i \in \Lambda$ such that $\left(z_{0}, w_{0}\right) \in$ $\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}$. Define $g_{1}: \mathbb{D}_{r_{i}} \longrightarrow \mathbb{C}$ as $g_{1}(z)=\widehat{f}\left(z, w_{0}\right)\left(z \in \mathbb{D}_{r_{i}}\right)$. Since \widehat{f} is continuous on $\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}$ and analytic on $\operatorname{int}\left(\mathbb{D}_{r_{i}} \times \mathbb{D}_{s_{i}}\right), g_{1}$ is continuous on $\mathbb{D}_{r_{i}}$ and analytic on $\operatorname{int}\left(\mathbb{D}_{r_{i}}\right)$. So by the maximum modulus principle, there exists $z_{1} \in \Gamma\left(r_{i}\right)$ such that $\left|\widehat{f}\left(z, w_{0}\right)\right|=\left|g_{1}(z)\right| \leq\left|g_{1}\left(z_{1}\right)\right|=\left|\widehat{f}\left(z_{1}, w_{0}\right)\right|$. Next define $g_{2}: \mathbb{D}_{s_{i}} \longrightarrow \mathbb{C}$ as $g_{2}(w)=\widehat{f}\left(z_{1}, w\right)\left(w \in \mathbb{D}_{s_{i}}\right)$. As above argument, there exists $w_{1} \in \Gamma\left(s_{i}\right)$ such that $\left|\widehat{f}\left(z_{1}, w\right)\right|=\left|g_{2}(w)\right| \leq\left|g_{2}\left(w_{1}\right)\right|=\left|\widehat{f}\left(z_{1}, w_{1}\right)\right| \quad\left(w \in \mathbb{D}_{s_{i}}\right)$. Hence $|\widehat{f}|_{\mathbf{G}(\omega)}=\left|\widehat{f}\left(z_{0}, w_{0}\right)\right| \leq$ $\left|\widehat{f}\left(z_{1}, w_{0}\right)\right| \leq\left|\widehat{f}\left(z_{1}, w_{1}\right)\right| \leq|\widehat{f}|_{\Gamma\left(r_{i}\right) \times \Gamma\left(s_{i}\right)}$. Thus $\cup_{i \in \Lambda}\left(\Gamma\left(r_{i}\right) \times \Gamma\left(s_{i}\right)\right)$ is a boundary of $l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Hence we get $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right) \subset \mathbb{G}_{d b}(\omega)$.

We believe that the two sets $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$ and $\mathbb{G}_{d b}(\omega)$ should be identical. Unfortunately, we could not prove it. However, if the weight ω is a product weight, then it is true; this is proved in the next result.

Theorem 2.9. Let ω be a weight on \mathbb{Z}_{+}^{2}.
(I) If $\mu=0$, then $\mathbb{G}(\omega)=\left(\mathbb{D}_{\beta_{1,0}} \times\{0\}\right) \cup\left(\{0\} \times \mathbb{D}_{\beta_{2,0}}\right)$ and following holds.
(a) If $\beta_{1,0}=\beta_{2,0}=0$, then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\{(0,0)\}$;
(b) If $\beta_{1,0}=0$ and $\beta_{2,0}>0$, then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\{0\} \times \Gamma\left(\beta_{2,0}\right)$;
(c) If $\beta_{1,0}>0$ and $\beta_{2,0}=0$, then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\Gamma\left(\beta_{1,0}\right) \times\{0\}$;
(d) If $\beta_{1,0}, \beta_{2,0}>0$, then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\left(\Gamma\left(\beta_{1,0}\right) \times\{0\}\right) \cup\left(\{0\} \times \Gamma\left(\beta_{2,0}\right)\right)$.
(II) If $\mu>0$, then $\mathrm{G}_{p}(\omega) \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$;
(III) If ω is a product weight, then $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\mathbb{G}_{d b}(\omega)$.

Proof. (I) If $\mathbb{D}_{r} \times \mathbb{D}_{s} \subset \mathbb{G}(\omega)$ for some $r, s>0$, then $\mu \geq \min \{r, s\}>0$. So, by [2], $\mathbb{G}(\omega)=\left(\mathbb{D}_{\beta_{1,0}} \times\right.$ $\{0\}) \cup\left(\{0\} \times \mathbb{D}_{\beta_{2,0}}\right)$. If $\beta_{1,0}=\beta_{2,0}=0$, then $\mathbb{G}(\omega)=\{(0,0)\}$. Clearly $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\{(0,0)\}$. If $\beta_{1,0}=0$ and $\beta_{2,0}>0$, then $\mathbb{G}(\omega)=\{0\} \times \mathbb{D}_{\beta_{2,0}}$. Take $f=\frac{1}{2}\left(\delta_{(0,0)}+\beta_{2,0}^{-1} \delta_{(0,1)}\right) \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Then the Gel'fand transform \widehat{f} of f will be $\widehat{f}(0, w)=\frac{1}{2}\left(1+\beta_{2,0}^{-1} w\right)$ such that $\widehat{f}\left(0, \beta_{2,0}\right)=1$ and $|\widehat{f}(0, w)|<1$ for all $(0, w) \neq\left(0, \beta_{2,0}\right)$. Thus $\left(0, \beta_{2,0}\right)$ is a peak point and hence by Lemma 2.7, $\{0\} \times \Gamma\left(\beta_{2,0}\right) \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. But in this case, $\mathbb{G}_{d b}(\omega)=\{0\} \times \Gamma\left(\beta_{2,0}\right)$. So by Theorem 2.9, $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\{0\} \times \Gamma\left(\beta_{2,0}\right)$. This proves (b). The proof of c follows by the similar arguments given in (b) above. Now assume that $\beta_{1,0}>0$ and $\beta_{2,0}>0$. Let $f=\frac{1}{2}\left(\delta_{(0,0)}+\beta_{1,0}^{-1} \delta_{(1,0)}+\frac{\beta_{2,0}^{-1}}{2} \delta_{(0,1)}\right)$. Then the Gel'fand transform \widehat{f} of f is given by $\widehat{f}(z, w)=\frac{1}{2}\left(1+\beta_{1,0}^{-1} z+\frac{\beta_{2,0}^{-1}}{2} w\right)$. Let $(z, w) \in \mathbb{G}(\omega)$ be such that $(z, w) \neq\left(\beta_{1,0}, 0\right)$. Then either $z=0$ or $w=0$. Hence $\widehat{f}\left(\beta_{1,0}, 0\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \neq\left(\beta_{1,0}, 0\right)$. Thus $\left(\beta_{1,0}, 0\right) \in \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. So we have $\Gamma\left(\beta_{1,0}\right) \times\{0\} \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Similarly, we can show that $\{0\} \times \Gamma\left(\beta_{2,0}\right) \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. This proves (d).
(II) Assume that $\mu>0$. Since $\mathbb{G}_{d b}(\omega)$ is compact, the set $\mathbb{G}_{p}(\omega)=\{(z, w):|z w|=\xi\}$ is non-empty.

Let $\left(z_{0}, w_{0}\right) \in \mathbb{G}_{p}(\omega)$. Consider, $f=\frac{1}{2}\left(\delta_{(0,0)}+z_{0}^{-1} w_{0}^{-1} \delta_{(1,1)}\right) \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. The Gel'fand transform of f is given by

$$
\widehat{f}(z, w)=\frac{1}{2}\left(1+z_{0}^{-1} w_{0}^{-1} z w\right)
$$

Then $\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \neq\left(z_{0}, w_{0}\right)$. Hence $\left(z_{0}, w_{0}\right)$ is a peak point. Therefore $\mathbb{G}_{p}(\omega) \subset S_{0}\left(l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)\right)$.
(III) If ω is a product weight, then by [2, Theorem 3.7(i)], we have $\mathbb{G}(\omega)=\mathbb{D}_{\beta_{1}, 0} \times \mathbb{D}_{\beta_{2,0}}$. If $\beta_{i, 0}=0$ for $i=1$ or 2 . Then, by the similar arguments given in (II) above, the result follows. Now let $\beta_{i, 0} \neq$ $0(i=1,2)$ and let $\left(z_{0}, w_{0}\right) \in \Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right)$. Consider $f=\frac{1}{4}\left(\delta_{(0,0)}+z_{0}^{-1} \delta_{e_{1}}+w_{0}^{-1} \delta_{e_{2}}+z_{0}^{-1} w_{0}^{-1} \delta_{(1,1)}\right)$. Then the Gel'fand transform \widehat{f} of f is given by

$$
\widehat{f}(\varphi)=\widehat{f}\left(\phi_{z, w}\right)=\widehat{f}(z, w)=\frac{1}{4}\left(1+z_{0}^{-1} z\right)\left(1+w_{0}^{-1} w\right)\left((z, w) \in \mathbb{D}_{\beta_{1}, 0} \times \mathbb{D}_{\beta_{2,0}}\right)
$$

Then $\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{f}(z, w)|<1(z, w) \neq\left(z_{0}, w_{0}\right)$. Hence $\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right) \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Note that, for any $f \in l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$, the Gel'fand transform \widehat{f} is continuous on $\mathbb{D}_{\beta_{1}, 0} \times \mathbb{D}_{\beta_{2,0}}$ and analytic on the interior of $\mathbb{D}_{\beta_{1}, 0} \times \mathbb{D}_{\beta_{2,0}}$. Hence, by the maximum modulus principle, $\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right) \subset \partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)$. Clearly, $\mathbb{G}_{d b}(\omega)=\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right)$. Hence, by Theorem 2.9, $\partial l^{1}\left(\mathbb{Z}_{+}^{2}, \omega\right)=\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right)$.

Theorem 2.10 ([2]). Let ω be any weight on \mathbb{Z}^{2}. Then there exists a subset Λ of $\mathbb{R}_{+}^{\mathbf{a}}$ and a subset $\left\{\left(s_{r}, t_{r}\right)\right.$: $r \in \Lambda\}$ of $\mathbb{R}_{+}^{\bullet 2}$ such that

$$
\Delta\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right) \cong \cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}, t_{r}\right)\right)
$$

The following proof can be compared with the proof of Lemma 2.5.
Lemma 2.11. Let ω be a weight on \mathbb{Z}^{2}. Then
(i) $\mathbb{T}(\omega)$ is never polynomially convex;
(ii) Let $z_{1}, w_{1} \neq 0$ be such that $\left(z_{1}, w_{1}\right) \notin \mathbb{T}(\omega)$. Then there exists $f \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ such that $\widehat{f}\left(z_{1}, w_{1}\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \in \mathbb{T}(\omega)$;

Proof. (i) Assume that $\mathbb{T}(\omega)$ is polynomially convex. Since for each $r \in \Lambda$ the point $\left(0, t_{r}\right) \notin \mathbb{T}(\omega)$, we get a polynomial p_{r} such that $p_{r}\left(0, t_{r}\right)=1$ and $\left|p_{r}(z, w)\right|<1$ for all $(z, w) \in \mathbb{T}(\omega)$. Fix some $r \in \Lambda$ and define a polynomial $q: \mathbb{C} \longrightarrow \mathbb{C}$ by $q(z)=p_{r}\left(z, t_{r}\right)$. Then $|q(z)|<1$ for all $z \in \mathbb{C}$ with $|z|=r$ and $q(0)=p_{r}\left(0, t_{r}\right)=1$, which is a contradiction to the maximum modulus principle.
(ii) Let $\left(z_{1}, w_{1}\right) \notin \mathbb{T}(\omega), \varphi \in \Delta\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$, and let $\operatorname{ker}(\varphi)=M$. Then $\varphi\left(\delta_{e_{1}}\right) \neq z_{1}$ or $\varphi\left(\delta_{e_{2}}\right) \neq w_{1}$. Take a set $I=\left\{\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * g_{1}+\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * g_{2}: g_{1}, g_{2} \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right\}$ of $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Then clearly, I is an ideal. Also the elements $\delta_{e_{1}}-z_{1} \delta_{e}$ and $\delta_{e_{2}}-w_{1} \delta_{e} \in I$ but atleast one of these two elements does not belong to $\operatorname{ker}(\varphi)$ for each $\varphi \in \Delta\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$. This implies that $I \subset \operatorname{ker} \varphi$ for any $\varphi \in \Delta\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$ is not possible. Thus $I=l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Hence there exists $\left.g_{1}, g_{2} \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$ such that

$$
\delta_{e}=\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * g_{1}+\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * g_{2} .
$$

Choose $\delta>0$ such that $\left.\delta\left(\left\|\delta_{e_{1}}-z_{1} \delta_{e}\right\|_{\omega}+\| \delta_{e_{2}}-w_{1} \delta_{e}\right) \|_{\omega}\right)<1$. Since $\left.l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$ is generated by $\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}$, and $\delta_{-e_{2}}$, there exists polynomials p_{1}, p_{2} in 4 -variables such that $\| p_{j}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{e_{2}}\right)-$ $g_{j} \|_{\omega} \leq \delta$ for $j=1,2$. It follows that

$$
\begin{aligned}
\| \delta_{e}-\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * p_{1}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right) & -\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * p_{2}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right) \|_{\omega} \\
& \leq\left\|\delta_{e_{1}}-z_{1} \delta_{e}\right\|_{\omega}\left\|g_{1}-p_{1}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right)\right\|_{\omega} \\
& \left.+\| \delta_{e_{2}}-w_{1} \delta_{e}\right)\left\|_{\omega}\right\| g_{2}-p_{2}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right) \|_{\omega} \\
& <1 .
\end{aligned}
$$

Now, define a map $f: \mathbb{Z}^{2} \longrightarrow \mathbb{C}$ as follows

$$
f=\delta_{e}-\left(\delta_{e_{1}}-z_{1} \delta_{e}\right) * p_{1}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right)-\left(\delta_{e_{2}}-w_{1} \delta_{e}\right) * p_{2}\left(\delta_{e_{1}}, \delta_{-e_{1}}, \delta_{e_{2}}, \delta_{-e_{2}}\right) .
$$

Then $f \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ and the Gel'fand transform of f is given by

$$
\widehat{f}(z, w)=1-\left(z-z_{1}\right) p_{1}\left(z, z^{-1}, w, w^{-1}\right)-\left(w-w_{1}\right) p_{2}\left(z, z^{-1}, w, w^{-1}\right) .
$$

Then $\widehat{f}\left(z_{1}, w_{1}\right)=1$, and by the similar arguments given in Lemma 2.5 , we have $|\widehat{f}(z, w)|<1$ for every $(z, w) \in \mathbb{T}(\omega)$.

Theorem 2.12. Let ω be a weight on \mathbb{Z}^{2}. Then $\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right) \subset \mathbb{T}_{a b}(\omega)$.
Proof. It is enough to show that the set $\mathbb{T}_{a b}(\omega)$ is boundary for $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Let $f \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ and let $\left(z_{0}, w_{0}\right) \in \mathbb{T}(\omega)$ such that $|\widehat{f}|_{\mathbb{T}(\omega)}=\left|\widehat{f}\left(z_{0}, w_{0}\right)\right|$. Since $\mathbb{T}(\omega)=\cup_{r \in \Lambda}\left(\Gamma(r) \times \Gamma\left(s_{r}, t_{r}\right)\right),\left(z_{0}, w_{0}\right) \in$ $\Gamma(r) \times \Gamma\left(s_{r}, t_{r}\right)$ for some $r \in \Lambda$. Define $g: \Gamma\left(s_{r}, t_{r}\right) \longrightarrow \mathbb{C}$ as $g(w)=\widehat{f}\left(z_{0}, w\right)$. Then g is continuous on $\Gamma\left(s_{r}, t_{r}\right)$ and analytic on its interior. So there exists $w_{1} \in \Gamma\left(s_{r}\right) \cup \Gamma\left(t_{r}\right)$ such that $\left|\widehat{f}\left(z_{0}, w\right)\right|=|g(w)| \leq$ $\left|g\left(w_{1}\right)\right| \leq\left|\widehat{f}\left(z_{0}, w_{1}\right)\right|$ for all $w \in \Gamma\left(s_{r}, t_{r}\right)$. This implies $|\widehat{f}|_{\mathbb{T}(\omega)} \leq\left|\widehat{f}\left(z_{0}, w_{1}\right)\right|$. Note that $\left(z_{0}, w_{1}\right) \in$ $\left(\Gamma\left(\left|z_{0}\right|\right) \times \Gamma\left(s_{r}\right)\right) \cup \Gamma\left(\left|z_{0}\right|\right) \times \Gamma\left(t_{r}\right)$. Thus $\mathbb{T}_{a b}(\omega)$ is a boundary for $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Hence $\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right) \subset$ $\mathbb{T}_{a b}(\omega)$.

Theorem 2.13. Let ω be a weight on \mathbb{Z}^{2}. Then
(i) $\left.\cup_{i=1}^{4} \mathbb{T}_{p_{i}}(\omega) \subset \partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)$;
(ii) If ω be a product weight, then $\cup_{i=1}^{4} \mathbb{T}_{p_{i}}(\omega)=\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)=\mathbb{T}_{a b}(\omega)$.

Proof. (i) Since $\mathbb{T}_{a b}(\omega)$ is compact, each set $\mathbb{T}_{p_{i}}$ is non-empty. Let $\left(z_{0}, w_{0}\right) \in \mathbb{T}_{p_{1}}(\omega)$. Then $\left|z_{0} w_{0}\right|=\xi_{1}$. Take $f=\frac{1}{2}\left(\delta_{(0,0)}+z_{0}^{-1} w_{0}^{-1} \delta_{(1,1)}\right) \in l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Then the Gel'fand transform \widehat{f} of f is given by

$$
\widehat{f}(z, w)=\frac{1}{2}\left(1+z_{0}^{-1} w_{0}^{-1} z w\right) \quad((z, w) \in \mathbb{T}(\omega)) .
$$

Clearly, $\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \neq\left(z_{0}, w_{0}\right)$. So $\left(z_{0}, w_{0}\right)$ is a peak point, and hence $\left(z_{0}, w_{0}\right) \in \partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ due to Lemma 2.6.
Similarly, if $\left(z_{0}, w_{0}\right) \in \mathbb{T}_{p_{2}}$, then $\left|z_{0} w_{0}\right|=\xi_{2}$. Take $f=\frac{1}{2}\left(\delta_{(0,0)}+z_{0} w_{0} \delta_{(-1,-1)}\right)$. Then $\widehat{f}\left(z_{0}, w_{0}\right)=1$ and $|\widehat{f}(z, w)|<1$ for all $(z, w) \neq\left(z_{0}, w_{0}\right)$. Thus $\mathbb{T}_{p_{2}} \subset S_{0}\left(l^{1}\left(\mathbb{Z}^{2}, \omega\right)\right)=\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. If $\left(z_{0}, w_{0}\right) \in \mathbb{T}_{p_{3}}$, then take $f=\frac{1}{2}\left(\delta_{(0,0)}+z_{0}^{-1} w_{0} \delta_{(1,-1)}\right)$; and if $\left(z_{0}, w_{0}\right) \in \mathbb{T}_{p_{4}}$, then take $f=\frac{1}{2}\left(\delta_{(0,0)}+z_{0} w_{0}^{-1} \delta_{(-1,1)}\right)$. Then, as per the above arguments, we can show that $\mathbb{T}_{p_{3}}, \mathbb{T}_{p_{4}} \subset \partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)$.
(ii) Since ω is a product weight, by [2, Theorem 3.7(ii)], the Gel'fand space of $l^{1}\left(\mathbb{Z}^{2}, \omega\right)$ is homeomorphic to $\Gamma\left(\alpha_{1,0}, \beta_{1,0}\right) \times \Gamma\left(\alpha_{2,0}, \beta_{2,0}\right)$. It is clear from the maximum modulus principle that $\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right) \subset\left(\Gamma\left(\alpha_{1,0}\right) \times \Gamma\left(\alpha_{2,0}\right)\right) \cup\left(\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\alpha_{2,0}\right)\right) \cup\left(\Gamma\left(\alpha_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right)\right) \cup\left(\Gamma\left(\beta_{1,0}\right) \times \Gamma\left(\beta_{2,0}\right)\right)$. Conversely, let $\left(z_{0}, w_{0}\right) \in \Gamma\left(\alpha_{1,0}\right) \times \Gamma\left(\alpha_{2,0}\right)$, then $\left|z_{0} w_{0}\right|=\xi_{4}$ and hence, by the argument given in (i) above, $\left(z_{0}, w_{0}\right)$ is a peak point, and hence $\left(z_{0}, w_{0}\right) \in \partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)$. Similarly, we can show that other sets are also subsets of $\partial l^{1}\left(\mathbb{Z}^{2}, \omega\right)$.

Acknowledgement

The corresponding author is thankful to CSIR-HRDG, New Delhi for providing Senior Research Fellowship.

References

[1] S. J. Bhatt, and H. V. Dedania, A Beurling algebra is semisimple, an elementary proof, Bull. Australian Math. Soc., 66(2002), 91-93.
[2] H. V. Dedania, and V. N. Goswami, The Gel'fand spaces of discrete Beurling algebras on \mathbb{Z}_{+}^{2} and \mathbb{Z}^{2}, Italian Journal of Pure and Applied Mathematics(to appear).
[3] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Science Pub., London Math. Soc. Monographs, 2000.
[4] E. Kaniuth, A course in Commutative Banach Algebras, Springer, New York, 2009.

[^0]: *Corresponding author (hvdedania@gmail.com)

