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Abstract

In the present work, to provide the preconditioning effect on each row of the coefficient matrix of a

linear system, we consider a new preconditioner (I + C + P2) which is formed by combining the

preconditioners (I + C) [3] and (I + P2) [2] and applied to two classical iterative methods namely

Jacobi method and Gauss-Seidel method. We provide some comparison theorems and numerical

examples to illustrate the efficiency of the two new methods. The comparison theorems and

numerical experiments show that both the new methods are better than the respective classical

iterative methods and finally the results also show that the new Gauss-Seidel method is faster than

the new Jacobi iterative method.

Keywords: Preconditioned linear system, M-matrix, Comparison theorem, Modified iterative

method.

1. Introduction

We consider the following preconditioned linear system

PAx = Pb

Where, A = (aij)n×n is a known nonsingular M-matrix, P is called a preconditioner, b is a known n × 1

and x is an unknown n× 1 vectors. Throughout the present paper, without loss of generality, we always

assume that the coefficient matrix A has a splitting of the form A = I − L − U; where, I is the identity

matrix, L and U are strictly lower triangular and strictly upper triangular matrices obtained from A,

respectively. To improve the convergence rate of the iterative methods, many researchers proposed

different modified iterative methods with different preconditioners. Some of the preconditioners are

stated below:
*Corresponding author (samirabehera@yahoo.in)
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In 1991, Gunawardena et al. [1] first proposed the preconditioner Ps = I + S, where S is defined as:

S =
(
sij
)
=

 −ai,i+1, 1 ≤ i ≤ n − 1

0, otherwise

In 2001, D. J. Evans et al. [2] proposed the preconditioners P = I + P1 and = I + P2; where P1 and P2

are defined as:

P1 =
(

pnj
)
=

 −anj, j = 1

0, otherwise

P2 = (pin) =

 −ain, i = 1

0, otherwise

In 1987, J. P. Milaszewicz [3] proposed the preconditioner Pc = I + C, where C is defined as:

C =
(
cij
)
=

 −aij, 2 ≤ i ≤ n, j = 1

0, otherwise

In 2003, Morimoto et al. [4] proposed a preconditioned method with the preconditioner PR = I + R,

where R is defined by

R =
(
rij
)
=

 −aij, i = n, 1 ≤ j ≤ n − 1

0, otherwise

In 2008, Niki et al. [5] considered a preconditioner P = I + S + R, where S and R are defined

above. In 2000, Jing-yu ZHAO et al. [6] considered a preconditioned Gauss-Seidel method with

the preconditioner P = I + S + P1, where S and P1 are mentioned above. In 2002, Kotakemori et al. [7]

proposed the preconditioner Pm as follows:

Pm = I + Smax, where Smax is defined as

Smax = (sm
ij ) =

 −ai,ki , i = 1, 2, · · · , n − 1, j > i

0, otherwise

ki = min
{

j : max
j

∣∣aij
∣∣ , i < n

}
.

In 2004, M. Morimoto et al. [8] considered a preconditioner Psm as follows:

Psm = I + S + Sm
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where S is mentioned above and Sm is defined as

Sm = ((sm)ij) =

 −ai,ki , i = 1, 2, · · · , n − 2, j > i + 1

0, otherwise

ki = min
{

j : max
j

∣∣aij
∣∣ , i < n − 1, j > i + 1

}
.

In 2009, Bing Zheng et al. [9] considered the two preconditioned Gauss-Seidel methods with the

preconditioners Pmax = I + Smax + Rmax and PR = I + Smax + R, where Rmax is defined as

Rmax = (rm
ij ) =

 −an,kn , i = n, j = kn

0, otherwise

and kn = min{j :
∣∣an,j

∣∣ = max {|an,l | , l = 1, 2, · · · , n − 1}}. In 2013, Zhouji Chen [10] proposed the

preconditioner Ps max as follows:

Ps max = I + S + Sm + Rmax,

where S, Sm and Rmax are defined above and so on. For our convenience, we use index G for solving

the linear systems by preconditioned Gauss-Seidel method and for solving by preconditioned Jacobi

method, we use index J. For the preconditioner Pc2 = I +C + P2, we have Ac2 = Pc2A = (I + C + P2) A

which can be split as

Ac2G = Mc2G − Nc2G

=
(

I − L + C − D′ − E′ − D
′′
)
− (U − P2+F′ + F

′′
)

Ac2J = Mc2J − Nc2J

=
(

I − D′ − D
′′
)− (L − C + E′ + U − P2+F′ + F

′′
)

where D′, E′ and F′ are the diagonal, strictly lower and strictly upper triangular parts of CU, D
′′

and

F
′′

are the diagonal and strictly upper triangular parts of P2L, respectively and also CL = 0, P2U = 0.

It can be notice that when 0 < aijaji < 1 for i = 1 and j = 2, 3, · · · , n; then both M−1
c2J

and M−1
c2G

are well

defined. Then the modified Jacobi and the modified Gauss-Seidel iteration matrices for Ac2J and Ac2G

are respectively defined as Tc2J = M−1
c2J

Nc2J and Tc2G = M−1
c2G

Nc2G . We organize the remaining portion

of the paper as follows: Section 2 is the preliminaries. We discuss the convergence property and some

comparison theorems of the proposed methods in section 3. Three simple numerical examples are

given in section 4 to verify our theoretical analysis. At the end, in section 5, conclusion is drawn.
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2. Preliminary Notes

Suppose A = (aij)n×n and B = (bij)n×n, then we can say that A ≥ B if aij ≥ bij holds for all i, j =

1, 2, · · · , n and A ≥ 0 (called nonnegative) if aij ≥ 0 for all i, j = 1, 2, · · · , n, where 0 is an n × n zero

matrix. For the n × 1 vectors a, b; a ≥ b and a ≥ 0 can also be defined in the similar manner.

Definition 2.1. Let A = (aij) be an n × n matrix. Then the maximum of the module of the eigenvalues of A is

called the spectral radius of A and is denoted by ρ(A) i.e.

ρ (A) = max{|λ| : λ is an eigenvalue of A}.

Definition 2.2. Let A be a real matrix. Then the representation A = M − N is called a splitting of A if M is a

nonsingular matrix. The splitting is called

(1) convergent if ρ
(

M−1N
)
< 1;

(2) regular if M−1 ≥ 0 and N ≥ 0;

(3) weak regular if M−1 ≥ 0 and M−1N ≥ 0;

(4) nonnegative if M−1N ≥ 0;

(5) M-splitting if M is a nonsingular M-matrix and N ≥ 0.

Definition 2.3. The splitting A = M − N is called the Jacobi splitting of A if M = I is nonsingular and

N = L + U. In addition, the splitting is called

(1) Jacobi convergent if ρ
(

M−1N
)
< 1;

(2) Jacobi regular if M−1 = I−1 ≥ 0 and N = (L + U) ≥ 0.

Definition 2.4. A splitting of matrix A i.e., A = M − N is called a Gauss-Seidel splitting if M = I − L is

nonsingular and N = U. In addition, the splitting is called

(1) Gauss-Seidel convergent if ρ
(

M−1N
)
< 1;

(2) Gauss-Seidel regular if M−1 = (I − L)−1 ≥ 0 and N = U ≥ 0;

(3) Gauss-Seidel weak regular if M−1 ≥ 0 and M−1N ≥ 0.

Definition 2.5 ([11]). A matrix A = (aij)n×n is an L-matrix if aii > 0, 1 ≤ i ≤ n and aij ≤ 0; 1 ≤ i ≤ n,

1 ≤ j ≤ n, i ̸= j. A nonsingular L-matrix A is said to be a nonsingular M-matrix if A−1 ≥ 0.

Definition 2.6. A Z-matrix A is called an M-matrx, if all the diagonal entries of A are positive, all the real

eigenvalues of A are positive and the real part of any eigenvalue of A is positive.
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Definition 2.7. Preconditioning is a procedure that transforms a given system into a form which is much more

suitable for numerical solution and it is mainly related to reduce the condition number of the problem or to reduce

the spectral radius of the iteration matrix.

Lemma 2.8 ([12]). Let A = M − N be an M-splitting of A. Then ρ
(

M−1N
)
< 1 if and only if A is a

nonsingular M-matrix.

Lemma 2.9 ([13]). Let A be a nonsingular M-matrix and let A = M1 − N1 = M2 − N2 be the two convergence

splitting, the first one weak regular and second one regular if M−1
1 ≥ M−1

2 , then

ρ
(

M−1
1 N1

)
≤ ρ

(
M−1

2 N2

)
< 1.

Lemma 2.10 ([14]). Let A be a nonsingular L-matrix. Then A is called a nonsingular M-matrix if and only if

there exists a positive vector y such that Ay > 0.

Lemma 2.11 ([12]). Let A be irreducible, A = M − N be an M-splitting. Then there is a positive vector x such

that M−1Nx = ρ
(

M−1N
)

x and ρ
(

M−1N
)
> 0.

Lemma 2.12 ([15]). Let A = (aij) ∈ Rn×n be an irreducible M-matrix with ai,i+1 ̸= 0 for 1 ≤ i ≤ n − 1, and

let As = (I + S) A = Ms − Ns be the Gauss-Seidel splitting of As. Then M−1
s Ns has a positive perron vector

and ρ
(

M−1
s Ns

)
> 0.

Lemma 2.13 ([1]). Let A be a nonnegative matrix. Then

(1) If αx ≤ Ax for some nonnegative vector x, x ̸= 0, then α ≤ ρ (A).

(2) If Ax ≤ βx for some positive vector x, then ρ (A) ≤ β. Moreover, if A is irreducible and if 0 ̸= αx ≤ Ax ≤

βx for some nonnegative vector x, then α ≤ ρ (A) ≤ β and x is a positive vector.

Lemma 2.14 ([16]). Let A be an M-matrix and let As = (I + S) A = Ms − Ns be the Gauss-Seidel splitting

of As. If ρ
(

M−1
s Ns

)
> 0, then Ax ≥ 0 for any nonnegative perron vector of M−1

s Ns.

Lemma 2.15 ([17]). Let A be a nonnegative nxn nonzero matrix, then

(1) ρ (A), the spectral radius of A, is an eigenvalue;

(2) A has a nonnegative eigenvector corresponding to ρ (A);

(3) ρ (A) is a simple eigenvalue of A;

(4) ρ (A) increases when any entry of A increases.
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3. Convergence Property and Comparison Theorems

In this section, we establish some comparison theorems for the preconditioned Jacobi and the

preconditioned Gauss-Seidel methods with the preconditioner Pc2 = I + C + P2 and also discuss the

convergence property of the two preconditioned methods. We also assume that, A = (aij)n×n is a

nonsingular M-matrix with an,1 ̸= 0 and ai,i+1 ̸= 0 for 1 ≤ i ≤ n − 1.

Theorem 3.1. Let A be a nonsingular M-matrix and we assume that 0 < ai,jaj,i < 1 for i = 1 and j =

2, 3, · · · , n. Then Ac2J = Mc2J − Nc2J is a regular and Jacobi convergent splitting.

Proof. We observe that when 0 < ai,jaj,i < 1, i = 1, j = 2, 3, · · · , n; then the diagonal elements of Ac2J

are positive and Mc2J
−1 is well defined. It is well known by Lemma 2.10. (see [14]) that, an L-matrix

A is a nonsingular M-matrix if and only if there exists a positive vector y such that Ay > 0. By taking

such y, the fact that I + C + P2 ≥ 0 gives Ac2J y = (I + C + P2) Ay > 0 and hence the L-matrix Ac2J is a

nonsingular M-matrix which means that Ac2J
−1 ≥ 0. Thus by Lemma 2.8, we have ρ(Mc2J

−1Nc2J ) < 1

i.e. ρ(Tc2J ) < 1.

Again, we notice that when 0 < ai,jaj,i < 1, i = 1, j = 2, 3, · · · , n; we have D′ + D
′′
< I so that

(I − D′ − D
′′
) ≥ 0. Therefore

Mc2J
−1 = (I − D′ − D

′′
)
−1

= [I − (D′ + D
′′
)]
−1

= I +
(

D′ + D
′′
)
+ (D′ + D

′′
)

2
+ · · · ≥ 0

and Nc2J = L − C + E′ + U − P2 + F′ + F
′′ ≥ 0, since L ≥ C ≥ 0, U ≥ P2 ≥ 0 and E′ + F′ + F

′′ ≥ 0.

Hence Ac2J = Mc2J − Nc2J is a regular Jacobi convergent splitting by Definition 2.3 and Lemma 2.8.

Theorem 3.2. Let A be a nonsingular M-matrix. Then under the assumption of the Theorem 3.1, the following

inequality holds:

ρ(Tc2J ) ≤ ρ(TJ) < 1

Proof. From Theorem 3.1, we know that Ac2J = Pc2A = Mc2J − Nc2J , where Mc2J = I − D′ − D
′′

and

Nc2J = L − C + E′ + U − P2 + F′ + F
′′
, is a regular Jacobi convergent splitting. On the other hand, the

iteration matrix of the classical Jacobi method for A is TJ = I−1(L + U). Since A is a nonsingular

M-matrix and hence the classical Jacobi splitting A = MJ − NJ = I − (L + U) of A is clearly regular

and convergent i.e., ρ(TJ) < 1.

Now, let us consider the following splitting of A:

Ac2J = Pc2A = (I + C + P2)A = Mc2J − Nc2J
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Then

A = (I + C + P2)
−1Mc2J − (I + C + P2)

−1Nc2J

We let, M1 = (I + C + P2)
−1Mc2J and N1 = (I + C + P2)

−1Nc2J . Then, it can be easily seen that

M1
−1N1 = Mc2J

−1Nc2J and hence ρ(M1
−1N1) < 1.

Again, we note that

M1
−1 = Mc2J

−1 (I + C + P2)

=
(

I − D′ − D
′′
)−1

(I + C + P2)

≥ (I − D′ − D
′′
)
−1

I [Since I + C + P2 ≥ I]

= [I −
(

D′ + D
′′
)
]
−1

≥ I−1

= MJ
−1

i.e., M1
−1 ≥ MJ

−1 and also A = M1 − N1 = MJ − NJ are the two convergent and regular splitting.

Therefore, it is obvious from Lemma 2.9, that

ρ(M1
−1N1) ≤ ρ(MJ

−1NJ) < 1

Thus, ρ(Mc2J
−1Nc2J ) ≤ ρ(MJ

−1NJ) < 1 i.e., ρ(Tc2J ) ≤ ρ(TJ) < 1.

Theorem 3.3. Let A be a nonsingular M-matrix. Then under the assumption of the Theorem 3.1, Ac2G =

Mc2G − Nc2G is a regular and Gauss-Seidel convergent splitting.

Proof. Under the assumption of the Theorem 3.1, the diagonal elements of Ac2G are positive and thus

Mc2G
−1 is well defined. Using Lemma 2.10, (see [14]) that an L-matrix A is a nonsingular M-matrix if

and only if there exists a positive vector y such that Ay > 0. By taking such y, the fact that I +C + P2 ≥

0 gives Ac2G y = (I + C + P2) Ay > 0. Thus the L-matrix Ac2G is a nonsingular M-matrix i.e., Ac2G
−1 ≥ 0

and so by Lemma 2.8, we get ρ(Mc2G
−1Nc2G) < 1 i.e., ρ(Tc2G) < 1.

Clearly, L + E′ − C ≥ 0, since L ≥ C ≥ 0. Under the assumption of the Theorem 3.1, we have

D′ + D
′′
< I so that (I − D′ − D

′′
) ≥ 0. Hence

Mc2G
−1 = (I − L + C − D′ − E′ − D

′′
)
−1

=
[
(I − D′ − D

′′
)− (L + E′ − C)

]−1

=
[

I − (I − D′ − D
′′
)
−1
(L + E′ − C)

]−1(
I − D′ − D

′′
)−1

=

{
I +

[(
I − D′ − D

′′
)−1

(L + E′ − C)
]
+

[(
I − D′ − D

′′
)−1 (

L + E′ − C
)]2

+ · · ·
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· · ·+
[
(I − D′ − D

′′
)
−1
(L + E′ − C)

]n−1
}
(I − D′ − D

′′
)
−1

≥ 0

and Nc2G = U − P2 + F′ + F
′′ ≥ 0, since U ≥ P2 ≥ 0 and F′ + F

′′ ≥ 0. Therefore, it follows from

Definition 2.4 and Lemma 2.8, that Ac2G = Mc2G − Nc2G is a regular and Gauss-Seidel convergent

splitting.

Theorem 3.4. Let A be a nonsingular M-matrix. Then under the assumption of the Theorem 3.1, the following

inequality holds:

ρ(Tc2G) ≤ ρ(TG) < 1

Proof. For the M-matrix A, the iteration matrix of the classical Gauss-Seidel method is

TG = (I − L)−1U. As A is a nonsingular M-matrix and so the classical Gauss-Seidel splitting

A = MG − NG = (I − L)− U of A is clearly regular and convergent i.e., ρ(TG) < 1. From Theorem

3.3, we get, Ac2G = Pc2A = Mc2G − Nc2G , where Mc2G = I − L + C − D′ − E′ − D
′′

and

Nc2G = U − P2 + F′ + F
′′

is the regular Gauss-Seidel convergent splitting i.e., ρ
(

Mc2G
−1Nc2G

)
< 1

i.e.m ρ (Tc2G) < 1.

Now, let us consider the following splitting of A:

Ac2G = Pc2A = (I + C + P2)A = Mc2G − Nc2G

Or,

A = (I + C + P2)
−1Mc2G − (I + C + P2)

−1Nc2G

We assume, M2 = (I + C + P2)
−1Mc2G and N2 = (I + C + P2)

−1Nc2G . One can easily verify that

M2
−1N2 = Mc2G

−1Nc2G and thus ρ(M2
−1N2) < 1. Also, we can notice that

M2
−1 = Mc2G

−1 (I + C + P2)

= (I − L + C − D′ − E′ − D
′′
)−1(I + C + P2)

=
[
(I − D′ − D

′′
)− (L + E′ − C)

]−1
(I + C + P2)

=
[

I − (I − D′ − D
′′
)−1(L + E′ − C)

]−1
(I + C + P2)(I − D′ − D

′′
)−1

≥
[

I − (I − D′ − D
′′
)−1(L + E′ − C)

]−1
(I + C + P2)I−1

=
[

I − (I − D′ − D
′′
)−1(L + E′ − C)

]−1
(I + C + P2)

≥
[

I − (I − D′ − D
′′
)−1(L + E′ − C)

]−1
(I + C)

=

{
I +

[
(I − D′ − D

′′
)−1(L + E′ − C)

]
+

[
(I − D′ − D

′′
)−1(L + E′ − C)

]2
+ · · ·

· · ·+
[
(I − D′ − D

′′
)−1(L + E′ − C)

]n−1
}
(I + C)

= (I + C) +
[
(I − D′ − D

′′
)−1(L + E′ − C)

]
(I + C) +

[
(I − D′ − D

′′
)−1(L + E′ − C)

]2
(I + C) + · · ·
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· · ·+
[
(I − D′ − D

′′
)−1(L + E′ − C)

]n−1
(I + C)

≥ I + L + L2 + · · ·+ Ln−1

= (I − L)−1

= MG
−1

i.e. M2
−1 ≥ MG

−1 and also A = M2 − N2 = MG − NG be the two convergent and regular splitting.

Therefore, it follows from Lemma 2.9, that ρ(M2
−1N2) ≤ ρ(MG

−1NG) < 1 i.e., ρ(Mc2G
−1Nc2G) ≤

ρ(MG
−1NG) < 1 i.e., ρ(Tc2G) ≤ ρ(TG) < 1.

Theorem 3.5. Let A be a nonsingular M-matrix. Then under the assumption of the Theorem 3.1, the following

inequality holds:

ρ (Tc2G) ≤ ρ
(
Tc2J

)
< 1

Proof. Since A is a nonsingular M-matrix and hence A−1 ≥ 0. For Jacobi splitting, Ac2J = Pc2A =

Mc2J − Nc2J , we have Mc2J = I − D′ − D
′′

and Nc2J = L − C + E′ + U − P2 + F′ + F
′′
. We know from

Theorem 3.1, that Ac2J = Pc2A is a regular Jacobi convergent splitting i.e., ρ
(

M−1
c2J

Nc2J

)
< 1 i.e.,

ρ
(
Tc2J

)
< 1.

For Gauss-Seidel splitting, Ac2G = Pc2A = Mc2G − Nc2G , we have Mc2G = I − L + C − D′ − E′ − D
′′

and Nc2G = U − P2 + F′ + F
′′
. From Theorem 3.3, we know that Ac2G = Pc2A is a regular Gauss-Seidel

convergent splitting i.e., ρ
(

M−1
c2G

Nc2G

)
< 1 i.e., ρ (Tc2G) < 1. In order to show the required inequality,

we consider the following splitting of A:

Ac2G = Pc2A = (I + C + P2) A = Mc2G − Nc2G

Or,

A = (I + C + P2)
−1Mc2G − (I + C + P2)

−1Nc2G

We assume, M3 = (I + C + P2)
−1Mc2G and N3 = (I + C + P2)

−1Nc2G . Again,

Ac2J = Pc2A = (I + C + P2) A = Mc2J − Nc2J

Then

A = (I + C + P2)
−1 Mc2J − (I + C + P2)

−1 Nc2J

We suppose, M4 = (I + C + P2)
−1Mc2J and N4 = (I + C + P2)

−1Nc2J . One can easily obtain that,

M−1
3 N3 = M−1

c2G
Nc2G and M−1

4 N4 = M−1
c2J

Nc2J and also A = M3 − N3 = M4 − N4 are the two regular

and convergent splitting. Hence ρ
(

M−1
3 N3

)
< 1 and ρ

(
M−1

4 N4

)
< 1. We also can notice that

M−1
3 = M−1

c2G
(I + C + P2)



Two Modified Iterative Methods for Solving Linear Systems by M-matrix / Anamul Haque Laskar 168

= (I − L + C − D′ − E′ − D
′′
)−1(I + C + P2)

=
[
(I − D′ − D

′′
)− (L + E′ − C)

]−1
(I + C + P2)

=
[

I − (I − D′ − D
′′
)−1(L + E′ − C)

]−1
(I − D′ − D

′′
)−1(I + C + P2)

≥ I−1(I − D′ − D
′′
)−1(I + C + P2)

= I(I − D′ − D
′′
)−1(I + C + P2)

= (I − D′ − D
′′
)−1(I + C + P2)

= M−1
c2J

(I + C + P2)

=
[
(I + C + P2)

−1Mc2J

]−1

= M−1
4

M−1
3 ≥ M−1

4

Thus, from Lemma 2.9, we have

ρ
(

M−1
3 N3

)
≤ ρ

(
M−1

4 N4

)
< 1

i.e.,

ρ
(

M−1
c2G

Nc2G

)
≤ ρ

(
M−1

c2J
Nc2J

)
< 1

i.e.,

ρ (Tc2G) ≤ ρ
(
Tc2J

)
< 1

4. Numerical Examples

In this section, we give three simple numerical examples to confirm our theoretical analysis given

in Section 3. The spectral radii for the iteration matrices of the two modified iterative methods are

computed using MATLAB R12.

Example 4.1. We consider the following 4 × 4 matrix of the form:

A =


1 −0.2 −0.3 −0.2

−0.2 1 −0.3 −0.1

−0.1 −0.2 1 −0.3

−0.2 −0.3 −0.3 1


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After computation, we obtain

ρ (TJ) = 0.6668, ρ (TG) = 0.4671, ρ
(
Tc2J

)
= 0.5956, ρ (Tc2G) = 0.3863

Clearly,

ρ
(
Tc2J

)
= 0.5956 < ρ (TJ) = 0.6668

ρ (Tc2G) = 0.3863 < ρ (TG) = 0.4671

ρ (Tc2G) = 0.3863 < ρ
(
Tc2J

)
= 0.5956

Example 4.2. We consider the following 4 × 4 matrix of the form:

A =


1 −0.1 −0.2 −0.5

−0.1 1 −0.1 −0.5

−0.3 −0.1 1 −0.1

−0.4 −0.3 −0.1 1


After computation, we obtain

ρ (TJ) = 0.7332, ρ (TG) = 0.5408, ρ
(
Tc2J

)
= 0.6034, ρ (Tc2G) = 0.3673

Obviously,

ρ
(
Tc2J

)
= 0.6034 < ρ (TJ) = 0.7332

ρ (Tc2G) = 0.3673 < ρ (TG) = 0.5408

ρ (Tc2G) = 0.3673 < ρ
(
Tc2J

)
= 0.6034

Example 4.3. We consider the following 5 × 5 matrix of the form:

A =



1 −0.2 −0.3 −0.1 −0.2

−0.1 1 −0.1 −0.3 −0.1

−0.2 −0.1 1 −0.1 −0.2

−0.2 −0.1 −0.1 1 −0.3

−0.1 −0.2 −0.2 −0.1 1


After computation, we get

ρ (TJ) = 0.6551, ρ (TG) = 0.4608, ρ
(
Tc2J

)
= 0.5813, ρ (Tc2G) = 0.3720
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Obviously,

ρ
(
Tc2J

)
= 0.5813 < ρ (TJ) = 0.6551

ρ (Tc2G) = 0.3720 < ρ (TG) = 0.4608

ρ (Tc2G) = 0.3720 < ρ
(
Tc2J

)
= 0.5813

5. Conclusion

In this paper, we have discussed basically two preconditioned iterative methods namely the

preconditioned Jacobi and the preconditioned Gauss-Seidel iterative methods for solving linear

systems of equations. The comparison theorems and the numerical experiments show that the two

preconditioned iterative methods converge faster than the respective classical iterative methods and

also the preconditioned Gauss-Seidel method is superior as compared to the preconditioned Jacobi

method with the preconditioner (I + C + P2).
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