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Abstract

In this paper, we prove some common fixed point theorem for Lipschitz type mapping with

condition C and C ′.

Keywords: Common fixed point; Gornicki mappings; Lipschitz type mapping.

2020 Mathematics Subject Classification: 47H09; 47H10; 54H25.

1. Introduction

It is well known that in the setting of metric space, strict contractive condition do not ensure the

existence of common fixed point unless the space is assumed compact or the strict conditions are

replaced by stronger conditions as in [2]-[3]. In 1986, Jungck [5] introduced the notion of compatible

maps. This concept was frequently used to prove existence theorems in common fixed point theory.

However, the study of common fixed points of non compatible mappings is also very interesting.

Work along these lines has recently been initiated by Pant [4]. In 2002, Aamri [1] introduced a new

property which generalize the concept of non compatible mappings, and give some common fixed

point theorems under strict contractive conditions. In 2021, Popescu [17] introduced a new class of

Picard operator, namely, the Gornicki mappings, which extends the notion of enriched contractions

[11]. Aamri [1] proved new common fixed point theorem using E.A. properties. Currently Ravindra K.

Bisht [12] proved fixed point theorem for Lipschitz type mapping satisfying condition C. Our aim of

this paper to prove common fixed point theorem for this Lipschitz type mapping using property E.A.

2. Preliminaries

Definition 2.1 ([1]). Let S and T be two self mappings of a metric space (X, d). We say that T and S satisfy

the property (E.A) if there exists a sequence xn such that lim
n→∞

Txn = lim
n→∞

= Sxn = t for some t ∈ X.
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Theorem 2.2 ([1]). Let S and T be two weakly compatible self mappings of a metric space (X, d) such that

(i) T and S satisfy the property (E.A),

(ii) d(Tx, Ty) < max d(Sx, Sy), d(Tx,Sx)+d(Ty,Sy)
2 , d(Ty,Sx)+d(Tx,Sy)

2 f or all x ̸= y ∈ X.

(iii) TX ⊂ SX.

Then S and T have unique common fixed point.

Definition 2.3 ([17]). Let (X, d) be a complete metric space and let T : X → X be a self mapping. We say that T

is a Gornicki mapping if T satisfies d(Tx, Ty) ≤ M[d(x, y) + d(x, Tx) + d(y, Ty)] and there exist non negative

real constants a, b with a < 1 such that for arbitrary x ∈ X there exists u ∈ X with d(u, Tu) ≤ ad(x, Tx) and

d(u, x) ≤ bd(x, Tx).

Definition 2.4 ([12]). Suppose α ∈ A( f ), κ ∈ K( f ) and l ∈ L( f ), such that for each x ∈ X, there exists y ∈ X

satisfying

(i) d(y, Ty) ≤ α(x, y)d(x, Tx);

(ii) d(x, y) ≤ κ(x, y)[d(x, Tx)]l(x,y),

where A denote the class of function α : X × X → [0, ∞), satisfying for any xn ⊂ X, if f (xn) converges, then

limn→∞ sα(xn, xn+1) < 1 Then T has a unique fixed point.

Definition 2.5 ([12]). A mapping χ is defined by χ(t) < t for all t > 0 ,where χ : [0, ∞) → [0, ∞] be a

continuous mapping.

Definition 2.6 ([13]). Let f and g be R-weakly commuting self-mappings of type A f or of type Ag of a complete

metric space (X, d) such that f X ⊆ gX and d( f x, f y) ≤ hd(gx, gy), 0 ≤ h < 1. Then f and g have a common

fixed point if and only if f and g are ( f , g)-orbitally continuous.

Theorem 2.7 ([12]). Suppose that (X, d) is a complete metric space and T : X → X is a mapping satisfying

d(Tx, Ty) ≤ M[d(x, y) + d(x, Tx) + d(y, Ty)], where M ∈ [0, 1) and the following condition: C Assume that

there exist real constants a, b with a ∈ [0, 1) and b > 0 such that for arbitrary x ∈ X there exists u ∈ X

satisfying

(i) d(u, Tu) ≤ ad(x, Tx);

(ii) d(u, x) ≤ bd(x, Tx).

Then T has a fixed point.

Theorem 2.8. Suppose that (X, d) is a complete metric space and T : X → X is an orbitally continuous

mapping satisfying C. Then T has a fixed point.
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3. Main Results

Theorem 3.1. Suppose (X, d) is a complete metric space and T, S : X → X is an arbitally continuous mapping

and one-one mapping such that;

(1) T and S satisfy condition C;

(2) d(Tx, Ty) < max
{

d(Sx, Sy), [d(Tx,Sx)+d(Ty,Sy)]
2 , [d(Ty,Sx)+d(Tx,Sy)]

2

}
f or allx ̸= y ∈ X; Then T and S

have a unique common fixed point.

Proof. Suppose (X, d) is a complete metric space and T, S : X → X is an arbitally continuous mapping

satisfying (1), (2) by Theorem (2.7), T has a fixed point, i.e, T(z1) = z1. S has a fixed point, i.e,

S(z2) = z2, since, (X, d) is a complete metric space. Therefore, there exists z1 ∈ X such that xn → z1

as n → ∞ but T is arbital continuous. So, lim
n→∞

Txn = Tz1 = z1. Similarly, lim
n→∞

Sxn = sz2 = z2 from

condition (2),

d(Txn, Tz2) < max
{

d(Sxn, Sz2),
[d(Txn, Sxn) + d(Tz2, Sz2)]

2
,
[d(Tz2, Sxn) + d(Txn, Sz2)]

2

}
letting n → ∞,

d(Tz1, Tz2) < max
{

d(Sz2, Sz2),
[d(Tz1, Sz2) + d(Tz2, Sz2)]

2
,
[d(Tz2, Sz2) + d(Tz1, Sz2)]

2

}
< max

{
0,

d(Tz1, Tz2)

2
,

d(Tz1, Tz2)

2

}
<

d(Tz1, Tz2)

2

which is contradiction, so, Tz1 = Tz2 implies z1 = z2, since T is one-one, using (3) and (4), lim
n→∞

Txn =

Tz1 = z1 = z2 = Sz2 = lim
n→∞

Sxn. Clearly T and S satisfy the property E.A. So, By Theorem 1, T and S

have a unique common fixed point.

Example 3.2. Let X = [2, ∞] with usual metric d(x, y) = |x − y| define T, S : X → X by T(x) = 2x + 3,

S(x) = x2 for all x ∈ X. Then

(1) T and S is one-one mapping and satisfy condition C.

(2) d(Tx, Ty) = |2x + 3 − x2| < max
{

d(Sx, Sy), [d(Tx,Sx)+d(Ty,Sy)]
2 , [d(Ty,Sx)+d(Tx,Sy)]

2

}
Then T and S have a common fixed point T(3) = 2.3 + 3 = 9 = S(3) = 32 = 9, 3 is a fixed point for T and S.

Theorem 3.3. Suppose (X, d) is a complete metric space and A, B : X → X is an orbitally continuous and

one-one mapping such that,

(1) A and B satisfy condition C′

(2) d(Ax, Ay) ≤ χ{[d(x, y) + d(x, Ax) + d(y, Ay)]}

Then A and B have common fixed point.
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Proof. Let (X, d) is a complete metric space and A, B : X → X is an orbitally continuous and one-one

mapping satisfying condition (1) and (2), then by Theorem (3.1), A has a fixed point, i.e Ay1 = y1 and B

has a fixed point, i.e By2 = y2. Since (X, d) is complete. Therefore there exists y1 ∈ X such that xn → y1

as n → ∞, but A is orbital continuous, so, lim
n→∞

Axn = Ay1 = y1. Similarly, lim
n→∞

Bxn = By2 = y2 from

condition (2),

d(Axn, Ay2) ≤ χ[d(xn, y2) + d(xn, Axn) + d(y2, Ay2)]

letting n → ∞

d(Ay1, Ay2) ≤ χ[d(y1, y2) + d(y1, Ay1) + d(y2, Ay2)]

≤ [d(Ay1, Ay2), d(y2, Ay2)]

≤ χ[d(Ay1, Ay2)]

< d(Ay1, Ay2), since χ(t) < t

which is contradiction., so, Ay1 = Ay2 implies y1 = y2, since A is one-one, using (3) and (4), lim
n→∞

Axn =

Ay1 = y1 = y2 = By2 = lim
n→∞

Bxn. Clearly A and B satisfy the property E.A. So, By Theorem (1), A and

B have a unique common fixed point.
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