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Abstract

The construction of two factor BAFD’s with block size equal to the levels levels of the first factor

or block size equal the levels of the second factor has been pointed out. It should be noted that

the construction methods involved utilizes balanced arrays, orthogonal arrays and transitive arrays.

Several theorems that enable generation of resolvable balanced incomplete block designs have been

proved. These theorems involve galois fields and methods of step cycles. Using resolvable balanced

incomplete block designs and balanced arrays we have also pointed out the construction of two

factor BAFD’s with block size which is equal to a common multiple of the levels of the two factors.

It should also be noted that the designs constructed are such that the main effects of each of the

two factors are estimated with full/maximum efficiency. The designs are balanced with orthogonal

factorial structure (OFS).

Keywords: Block size; balanced arrays; orthogonal arrays; transitive arrays; resolvable balanced
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1. Introduction

In many situations there arise scenarios when an experimenter has to use factors at different levels.

The problem of obtaining confounded plans for such cases has received a good deal of attention. To

this extent, [39], by trial and hit methods obtained confounded plans of the type 3m × 2n, where m and

n are any positive integers. Using orthogonal arrays of strength 2 [28] gave methods for constructing

Extended Group Design (EGD) designs for s1 × s2 experiments in blocks of size s1 < s2. Thomson

[35] starting from a basic s1 × s2 design in blocks of size s2 (s2 < s1, s1 being a prime number or

power of prime) obtained three factor designs. Rao [30] constructed some series of designs from
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orthogonal latin squares for s1 × s2 experiments in block of size s1 and s2 − 1 replications. Tharthare

[34] gave a cass of balanced designs with OFS. Muller [26] considered the use of balanced incomplete

block designs for the construction of s1 × s2 balanced factorial with OFS when s1 > s2. Informative

accounts and subsequent developments have been done by [16,22,33]. Sreenath [31] proposed a general

method of obtaining block design for asymmetrical confounded factorial designs using block designs

for asymmetrical factorial experiments.

Rajarathinam [29] used the methods that are used in construction of variance balanced designs in order

to construct variance balanced block designs that are highly efficient. Ghosh [15] also extended the

work of [29] in the construction of variance balanced block designs using methods used in construction

of variance balanced designs.

Gupta [17] describes a general method of construction of supersaturated designs for asymmetric

factorials obtained by exploiting the concept of resolvable orthogonal arrays and Hadamard matrices.

El-Helbawy [18] considered three forms of a general null hypothesis Ho on the factorial parameters of

a general asymmetrical factorial paired comparison experiment in order to determine optimal or

efficient designs. Kumar [21] constructed designs by using confounding through equation methods.

Construction of confounded asymmetrical factorial experiments in row-column settings and efficiency

factor of confounded effects was worked out. Agarwal [1] attempted to construct asymmetrical

factorial type switch over designs having strip type arrangement of combination of the levels. To start

with two factors at different levels were been considered. Jyoti Divecha [13] described a method of

constructing cost-efficient response surface designs (RSDs) as compared to the replicated central

composite designs (RCCDs), that are useful for modelling and optimization of the experiments

asymmetric in some qualitative, quantitative factors with at least two unrestricted quantitative factors

while the remaining take two or three levels. Voss [36] identified a Kronecker product structure for a

particular class of asymmetric factorial designs in blocks, including the classes of designs generated

by several of the generalizations of the classical method in the literature. Das [11] focuses on the

construction and analysis of an extra ordinary type of asymmetrical factorial experiment which

corresponds to fraction of a symmetrical factorial experiment as indicated by [10]. Gupta [7]

establishes a lower bound for tr[(Md)
2] with respect to a main effects model, where d is

an s1 × s2×, · · · ,×sm levels of asymmetric orthogonal array of strength at least 1. Nonisomorphic

asymmetrical MS-optimal orthogonal arrays of strength 1 with N = 6, 8 and 12 runs are also

presented, where A design d is called D-optimal if it maximizes det(Md) and is called MS-optimal if it

maximizes tr(Md) and minimizes tr[(Md)
2] among those which maximize tr(Md), where Md stands

for the information matrix produced from d under a given model.

Mainardi [24] conceptualized the fundamental aspects of the Complete, Fractional, Central Composite

Rotational and Asymmetrical factorial designs. Recent applications of these powerful tools were

described. Bahl [4] developed a method for the construction of p × 3 × 2 asymmetrical factorial

experiments with (p− 1) replications. Suen [32] proposed A general method of obtaining block designs
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for asymmetrical confounded factorial experiments using the block designs for symmetrical factorial

experiments. Xue Min Zi [40] asymmetrical factorial designs containing clear effects. Metrika [25]

explained how to choose an optimal (s2)sn design for the practical need, where s is any prime or prime

power accordingly considers the clear effects criterion for selecting good designs. Murthy [27] deals

with situations where there was a need for designing an asymmetrical factorial experiment involving

interactions. Failing to get a satisfactory answer to this problem from the literature, the authors have

developed an adhoc method of constructing a design. It is transparent from that the design provides

efficient estimates for all the required main effects and interactions. The later part of this paper deals

with the issues of how this method is extended to more general situations and how this adhoc method

is translated into a systematic approach. [2] developed The R package DoE.base which can be used for

creating full factorial designs and general factorial experiments based on orthogonal arrays. Besides

design creation, some analysis functionality is also available, particularly (augmented) half-normal

effects plots.

Jalil [20] Alludes that monograph is an outcome of the research works on the construction of factorial

experiments (symmetrical and asymmetrical). In this booklet, construction frameworks have been

described for factorial experiments. The construction frameworks include general construction method

of pn factorial experiments, construction methods with confounded effects and detection method of

confounded effects in a confounded plan. The concepts of combinatorial, matrix operations and linear

equation technique have been deployed to develop the methods. Dipa Rani Das [9] discussed an

Alternative Method of Construction and Analysis of Asymmetrical Factorial Experiment of the type 6

in Blocks of Size 12. Dipa Rani Das [11] focuses on the construction and analysis of an extra ordinary

type of asymmetrical factorial experiment which corresponds to fraction of a symmetrical factorial

experiment as indicated by [10]. For constructing this design, we have used 3 choices and for each

choice we have used 5 different cases. Finding the block contents for each case we have seen that there

are mainly two different cases for each choice. In case of analysis of variance, we have seen that, for the

case where the highest order interaction effect is confounded in 4 replications, the loss of information

is same for all the choices.

Klaus Hinkelmann [19] in his book chapter he discuss different methods of constructing systems of

confounding for asymmetrical factorial designs, including: Combining symmetrical systems of

confounding via the Kronecker product method, use of pseudo-factors, the method of generalized

cyclic designs, method of finite rings (this method is also used to extend the Kempthorne

parameterization from symmetrical to asymmetrical factorials), and the method of balanced factorial

designs. We show the equivalence of balanced factorial designs and extended group divisible

partially balanced incomplete block designs, establishing again a close link between incomplete block

designs and confounding in factorial designs.

Angela Dean [12] in her book chapter discusses confounding in single replicate experiments in which

at least one factor has more than two levels. First, the case of three-levelled factors is considered
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and the techniques are then adapted to handle m-levelled factors, where m is a prime number. Next,

pseudo factors are introduced to facilitate confounding for factors with non-prime numbers of levels.

Asymmetrical experiments involving factors or pseudo factors at both two and three levels are also

considered, as well as more complicated situations where the treatment factors have a mixture of

2, 3, 4, and 6 levels. Analysis of an experiment with partial confounding is illustrated using the SAS

and R software packages.

Gachii [14] alludes that Asymmetrical single replicate factorial designs in blocks are constructed using

the deletion technique. Results are given that are useful in simplifying expressions for calculating

loss of information on main effects and interactions, due to confounding with blocks. Designs for

estimating main effects and low order interactions are also given. 1. Introduction Consider a single

replicate factorial experiment.

Conto Lopez [23] in his work presents the results of a systematic literature review (SLR) and a

taxonomical classification of studies about run orders for factorial designs published between 1952

and 2021. The objective here is to describe the findings and main and future research directions in

this field. The main components considered in each study and the methodologies they used to obtain

run sequences are also highlighted, allowing professionals to select an appropriate ordering for their

problem. This review shows that obtaining orderings with good properties for an experimental design

with any number of factors and levels is still an unresolved issue.

Rahul Mukerjee [5] in his present book gives, for the first time in book form, a comprehensive and

up-to-date account of this modern theory. Many major classes of designs are covered in the book.

While maintaining a high level of mathematical rigor, it also provides extensive design tables for

research and practical purposes. Sunanda Bagchi [3] in his work discusses the construction of ‘inter-

class orthogonal’ main effect plans (MEPs) for asymmetrical experiments. In such a plan, the factors

are partitioned into classes so that any two factors from different classes are orthogonal. The researcher

also defined the concept of “partial orthogonality” between a pair of factors. In many of our plans,

partial orthogonality has been achieved when (total) orthogonality is not possible due to divisibility

or any other restriction. We present a method of obtaining inter-class orthogonal MEPs. Using this

method and also a method of ‘cut and paste’ we have obtained several series of inter-class orthogonal

MEPs. One of them happens to be a series of orthogonal MEP (OMEPs) [see Theorem 3.6], which

includes an OMEP for a 330 experiment on 64 runs.

Ching-Shui Cheng [8] book provides a rigorous, systematic, and up-to-date treatment of the theoretical

aspects of factorial design. To prepare readers for a general theory, the author first presents a unified

treatment of several simple designs, including completely randomized designs, block designs, and

row-column designs. As such, the book is accessible to readers with minimal exposure to experimental

design. Liuping Hu [6] Lee discrepancy has wide applications in design of experiments, which can be

used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy

for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound
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is more accurate for a lot of designs than other existing lower bound, which is a useful complement

to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs

with mixed levels in terms of Lee discrepancy.

The purpose of this paper is to use the methods used in construction of variance balanced design in

order to construct variance balanced asymmetrical factorial designs that posses additional property

known as orthogonal factorial structure (OFS). Specifically we shall in this paper construct

asymmetrical factorial designs with OFS where two factors are involved and in which main effects are

estimated with full efficiencies while two order interactions are estimated with maximum efficiency.

In this regard, [38] explained the definitions given below in a detailed context.

2. Definitions

Definition 2.1. Let Ψ(j1, . . . , jm) denote the treatment effect corresponding to a treatment combination j1 . . . jm.

These treatment effects are unknown parameters in the context of a factorial experiment; a linear parametric

function
s1−1

∑
j1=0

· · ·
sm−1

∑
jm=0

ℓ(j1· · ·jm)Ψ(j1· · ·jm) (1)

where ℓ(j1· · ·jm) are real numbers, not all zero, such that

s1−1

∑
j1=0

· · ·
sm−1

∑
jm=0

ℓ(j1· · ·jm) = 0 (2)

is called a treatment contrast.

Definition 2.2. A design is called connected if rank(C) = v − 1. C is the design matrix(incidence matrix) and

v is the total number of treatment combinations.

Definition 2.3. A treatment contrast is of the form ℓ
′
Ψ, where the v×1 coefficient vector ℓ is non-null and

the sum of elements of ℓ equal to zero. Such a treatment contrast will be said to be normalised if ℓ
′
ℓ = 1. Two

treatment contrasts ℓ
′
1Ψ and ℓ

′
2Ψ will be called mutually orthogonal if ℓ

′
1ℓ2 = 0. A set of treatment contrasts

will be called orthonormal if the contrasts in the set are all normalised and mutually orthogonal.

Definition 2.4. A treatment contrast ℓ
′
Ψ is estimable if ℓ

′ ∈ R(C), where for any matrix A, R(A) stands for

it’s row space.

Definition 2.5. Clearly, for an estimable treatment contrast ℓ
′
Ψ, there exists a v×1 vector ℓ∗ such that ℓ

′
=

ℓ∗
′
C. The best linear unbiased estimator (BLUE) of ℓ

′
Ψ is given by ℓ

′
Ψ̂ = ℓ∗

′
Q. All treatment contrasts are

estimable if and only if the design is connected.

Definition 2.6. A factorial design will be said to have orthogonal factorial structure (OFS) if the BLUEs of

estimable treatment contrasts belonging to distinct interactions are mutually orthogonal, i.e. uncorrelated.
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Definition 2.7. In a factorial design, an interaction Fy, y ∈ Ω, will be said to be balanced if either

(a). all treatment contrasts belonging to Fy are estimable and the BLUEs of all normalised contrasts belonging

to Fy have the same variance or;

(b). No contrast belonging to Fy is estimable.

Definition 2.8. An experiment involving m≥2 factors F1, F2, . . ., Fm that appear at s1, . . ., sm(≥ 2) levels is

called an s1×· · ·×sm factorial experiment (or an s1×· · ·×sm factorial for brevity).

The purpose of this paper is to give simplified methods of constructing two factor asymmetrical

factorial designs that are characterized by balance with orthogonal factorial structure.

In this paper we shall involve well known arrangements of arrays such as Difference Schemes,

Orthogonal Arrays, Balanced Arrays, Transitive Arrays, and Hadarmard Matrices whose definitions

are given below.

Definition 2.9. An r × c array D with entries from A is called a difference scheme based on (A,+) if it has

the property that for all i and j with 1 ≤ i, j ≤ c, the vector difference between the ith and jth columns contains

every element of A equally often if i ̸= j

Definition 2.10. A k × b array A with entries from a set of v symbols is called an orthogonal array of strength t

if each t × b subarray of A contains all possible vt column vectors with the same frequency λ = b
vt . It is denoted

OA(b, k, v, t; λ); the number λ is called the index of the array. The numbers b and k are known as the number of

assemblies and constraints of the orthogonal array respectively.

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

Table 1: This difference scheme is derived from (GF(3),+)

Example 2.11.

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1
OA(8, 4, 2, 3; 1)

Definition 2.12. Let A be a k × b array with entries from a set of v symbols. Consider the vt ordered t-tuples

(x1, . . . , xt) that can be formed from a t-rowed subarray of A, and let there be associated a non-negative integer

λ(x1, . . . , xt) that is invariant under permutations of x1, . . . , xt. If for any t-rowed subarray of A the vt ordered

t-tuples (x1, . . . , xt), each occur λ(x1, . . . , xt) times as a column, then A is said to ba a balanced array of strength

t. It is denoted by BA(b, k, v, t) and the numbers λ(x1, . . . , xt) are called the index parameters of the array.
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Clearly a BA(b, k, v, t) with λ(x1, . . . , xt) = λ for all t-tuples (x1, . . . , xt) is simply an orthogonal array

OA(b, k, v, t; λ).

Example 2.13.

0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 1

1 1 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 0
BA(10, 5, 2, 2)

Definition 2.14. A transitive array TA(b, k, v, t; λ) is a k × b array of v symbols such that for any choice of t

rows, the v!
(v−t)! ordered t-tuples of distinct symbols each occur λ times as a column.

Example 2.15.

0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1
TA(12, 4, 4, 2; 1)

Definition 2.16. A hadamard matrix of order n is an n × n matrix Hn of +1′s and −1′s whose rows are

orthogonal, that is, which satisfies

HnHT
n = nIn (3)

For example, here are hadamard matrices of order 1, 2 and 4.

H1 = [1], H2 =

1 1

1 −1

 , H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (4)

Theorem 2.17. For all k and s,there always exists a BA[T][k, s, λ] for some λ, where BA[T][k, s, λ] is a

BA[[T][k, s, λ]] with parameters λ(x, y) = (k − 1) or kλ accordingly as x = y or Not.

Proof. For all k and s, there exists a TA[(ks− 1)ksn, ks, ks, 2] for some n. Let the symbols of the transitive

array be denoted by [0, 1, ..., ks − 1]. If we replace each symbol in the transitive array by x(modk). Then

the transitive array becomes a BA[(ks − 1)ksn, ks, s, 2] with parameters λ(x, y) = (k − 1)kn or k2n

according as x = y or not, which is a BA[T][ks, s, kn]. The method of construction in Theorem 2.17

does not usually provide balanced arrays with a small number of assemblies as we desire.
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Definition 2.18. An orthogonal array OA[N, k, s, 2] is said to be a-resolvable if it is statistically equivalent

to the juxtaposition of N
as arrays such that each factor occurs in each of these arrays a times at each level. A

1-resolvable orthogonal array is also called completely resolvable, otherwise it is called Partly resolvable.

Let Ω∗ be the set of all m− component binary vectors, that is Ω∗ = Ω ∪ {(0, 0, . . . , 0)} where Ω is the

set of all none null binary component vectors for y = (y1, y2, . . . , ym) ∈ Ω let

Zy = ⊗m
i=1Zi

yi (5)

where for 1 ≤ i ≤ m,

Zyi
i = Ii if yi = 1 (6)

= Ji if yi = 0 (7)

where I is an identity matrix and J is matrix of 1′s both of order m × m From (5) and (6) we can

ultimately obtain

C = r(⊗m
i=1 Ii)− k−1NN′ (8)

where C is the design matrix and N is the incidence matrix of a BAFD. (8) shows that the design has

property A see [38]. For connected equireplicate designs with property A and a common replication

number r the interaction efficiencies are given by

E(y) = 1 − 1
rk

g(y)and E(y) = 1 if and only if g(y)=0 (9)

[38] proved the following Corollary 2.20

Definition 2.19. A BA(T)(k, s, 1) is a balanced array which is obtained by deleting S assemblies of the form

(i, i, · · · , i)T for i = 0, 1, 2, · · · , s − 1

Corollary 2.20. If s is a prime power, then there exists a TA[s(s − 1), s, s, 2].

While the following corollaries and theorem are well proved and suitable examples given in [37].

Corollary 2.21. If a hadarmard matrix of order 4k exists, then a BA(T)[k, 2, 1] exists, and can always be

constructed.

Corollary 2.22. If k and s are both powers of the same prime p a BA(T)[k, s, 1] can always be constructed.

Corollary 2.23. If s = pn, k = 2sl where p is an odd prime, n ≥ 1 and l ≥ 0, then a BA(T)[k, s, 1] can always

be constructed.

Theorem 2.24. The existence of a partly resolvable (Definition 2.18) OA[ks2, ks, s, 2] is equivalent to the

existence of a BA[T][k, s, 1].

Example 2.25. Table 2 shows a difference scheme D(6, 6, 3) constructed in a similar way from GF(3).
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0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

Table 2: A difference Scheme D(6, 6, 3)

Example 2.26. Suppose k = 2 and that s = 5, we can construct OA[50, 10, 5, 2] by developing a difference

scheme D(10, 10, 5) and also a BA[45, 10, 5, 2]. The Difference Scheme D(10, 10, 5) is

0 0 0 0 0 0 0 0 0 0
0 4 3 1 2 1 0 4 2 3
0 3 1 2 4 4 2 0 1 3
0 1 2 4 3 1 2 3 0 4
0 2 4 3 1 4 1 3 2 0
0 2 3 2 3 0 4 1 4 1
0 1 1 3 0 2 4 4 3 2
0 0 4 4 2 3 3 1 1 2
0 3 0 1 1 2 3 2 4 4
0 4 2 0 4 3 1 2 3 1

Table 3: Table D(10, 10, 5)

Example 2.27. For k = 3 and s = 3 we can construct a BA(T)[3, 3, 1] by first constructing a completely

resolvable OA[27, 9, 3, 2]. Applying theorem 2.24, we obtain BA(T)[3, 3, 1].

Example 2.28. Let M = [0, 1, 2]. Among the Differences of corresponding elements of any two rows of the

following array, 0 occurs 6 times, where 1 and 2 each occur 8 times.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 1 0 0 2 1 2 1 2 1 1 0 2 0 0 1 2 1 2
1 1 2 2 0 1 0 0 2 1 2 2 2 1 1 0 2 0 0 1 2 1
2 1 1 2 2 0 1 0 0 2 1 1 2 2 1 1 0 2 0 0 1 2
1 2 1 1 2 2 0 1 0 0 2 2 1 2 2 1 1 0 2 0 0 1
2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0 0
0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0
0 0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2
1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1 0
0 1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1
2 0 1 0 0 2 1 2 1 1 2 1 0 2 0 0 1 2 1 2 2 1
2 2 0 1 0 0 2 1 2 1 1 1 1 0 2 0 0 1 2 1 2 2

hence we can construct a BA[66, 12, 3, 2] with parameters λ(x, y) = 6 or 8 according as x = y or not. i.e

BA(T)[4, 3, 2].

Example 2.29. Let M = [0, 1, 2, 3]. Among the differences of the corresponding elements of any two rows of the

following array, 0 occurs 4 times, where 1, 2 and 3 occur 6 times each.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 2 0 2 1 1 3 2 3 1 0 3 2 0 2 3 3 1 2 1
3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1 2
2 3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1
3 2 3 3 0 1 2 0 2 1 1 1 2 1 1 0 3 2 0 2 3 3
1 3 2 3 3 0 1 2 0 2 1 3 1 2 1 1 0 3 2 0 2 3
1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0 2
2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0
0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2
2 0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3
1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1 0
0 1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1

hence we can construct a BA[88, 12, 4, 2] with parameters λ(x, y) = 4 or 6 according as x = y or not,i.e

BA(T)[3, 4, 2]

Example 2.30. For k = 3 and s = 3 we can construct a BA(T)[3, 3, 1] by first constructing a completely

resolvable OA[27, 9, 3, 2]. Applying theorem 2.24, we obtain BA(T)[3, 3, 1].
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Example 2.31. Let M = [0, 1, 2]. Among the Differences of corresponding elements of any two rows of the

following array,0 occurs 6 times, where 1 and 2 each occur 8 times.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 1 0 0 2 1 2 1 2 1 1 0 2 0 0 1 2 1 2
1 1 2 2 0 1 0 0 2 1 2 2 2 1 1 0 2 0 0 1 2 1
2 1 1 2 2 0 1 0 0 2 1 1 2 2 1 1 0 2 0 0 1 2
1 2 1 1 2 2 0 1 0 0 2 2 1 2 2 1 1 0 2 0 0 1
2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0 0
0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0
0 0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2
1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1 0
0 1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1
2 0 1 0 0 2 1 2 1 1 2 1 0 2 0 0 1 2 1 2 2 1
2 2 0 1 0 0 2 1 2 1 1 1 1 0 2 0 0 1 2 1 2 2

hence we can construct a BA[66, 12, 3, 2] with parameters λ(x, y) = 6 or 8 according as x = y or not. i.e

BA(T)[4, 3, 2].

Example 2.32. Let M = [0, 1, 2, 3]. Among the differences of the corresponding elements of any two rows of the

following array,0 occurs 4 times, where 1, 2 and 3 occur 6 times each.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 2 0 2 1 1 3 2 3 1 0 3 2 0 2 3 3 1 2 1
3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1 2
2 3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1
3 2 3 3 0 1 2 0 2 1 1 1 2 1 1 0 3 2 0 2 3 3
1 3 2 3 3 0 1 2 0 2 1 3 1 2 1 1 0 3 2 0 2 3
1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0 2
2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0
0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2
2 0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3
1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1 0
0 1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1

hence we can construct a BA[88, 12, 4, 2] with parameters λ(x, y) = 4 or 6 according as x = y or not,i.e

BA(T)[3, 4, 2].

3. s1 × s2 BAFD’S with Block Size s1(s1 ≤ s2)

We shall discuss the construction of two factor BAFD’s. Construction of more than two factor BAFD’s

using two factor BAFD’s will be discussed in another paper. We are only interested in BAFD’s in which

the main effects are estimated with high efficiencies. These designs can usually be constructed using

arrays discussed in the previous chapter. Let F1 and F2 be the two factors in a BAFD at s1 and s2 levels

respectively. We assume that s1 ≤ s2 without loss of generality. Let N denote the incidence matrix of

BAFD. By equations (5) and (6), the eigenvalues of NNT are:

g(1, 0) = r + (s2 − 1)λ01 − λ10 − (s2 − 1)λ11 (10)

g(0, 1) = r − λ01 + (s1 − 1)λ10 − (s1 − 1)λ11 (11)

g(1, 1) = r − λ01 − λ10 + λ11 (12)

using the equality due to [28]

∑(θ(k1) · θ(k2) · · · θ(km) · λk1k2···km) = r(k − 1) (13)
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and (9), where θ(kt) = 1 or (st − 1) according as kt = 0 or 1 and ∑ denotes the summation over 2m − 1

terms, we obtain

r(k − 1) = (s1 − 1)λ10 + (s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11 (14)

and so we can derive the efficiencies of the main effects as follows;-

E[0, 1] = 1 − 1
rk

g[0, 1]

= 1 −
[

r−λ01+(s1−1)λ10−(s1−1)λ11
rk

]
=

kr − r + λ01 − (s1 − 1)λ10 + (s1 − 1)λ11

kr

=

(s1 − 1)λ10 + (s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11

+λ01 − (s1 − 1)λ10 + (s1 − 1)λ11

kr

=
(s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11 + λ01 + (s1 − 1)λ11

kr

=
[s2 − 1 + 1]λ01 + [s1 − 1]λ11[s2 − 1 + 1]

kr

=
s2[λ01 + (s1 − 1)λ11]

kr

=
s2[λ01 + (s1 − 1)λ11]

kr[k − 1]
[k − 1]

=
s2[λ01 + (s1 − 1)λ11]

r[k − 1]
[k − 1]

k

=
[k − 1]s2

k
[λ01 + (s1 − 1)λ11]

r[k − 1]

=
[k − 1]s2

k
[λ01 + (s1 − 1)λ11]

[s1 − 1]λ10 + [s2 − 1]λ01 + [s1 − 1][s2 − 1]λ11
(15)

using equation (14). Similarly

E[1, 0] = 1 − 1
rk

g[1, 0]

=
[k − 1]s1

k
[λ10 + (s2 − 1)λ11]

[s2 − 1]λ01 + [s1 − 1]λ10 + [s1 − 1][s2 − 1]λ11
(16)

If the main effect of F1 are estimated with full efficiency i.e E[1, 0] = 1 then the block size k must be a

multiple of s1. We shall assume that k = s1 throughout this section. For k = s1 equation (16) becomes

E[1, 0] = (s1 − 1)
λ10 + (s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11
(17)

E[1, 0] = 1 if and only if λ01 = 0; that is two treatments at the same level of F1 never occur together in

the same block.

Theorem 3.1. In an s1 × s2 BAFD with block size s1, the main effects are estimated with full efficiency if and only

if λ01 = 0. This design is equivalent to a BA[λ10s2 + λ11s2(s2 − 1), s1, s2, 2] with parameters λ(x, y) = λ10 or
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λ11 according as x = y or not.

Proof. The first part of the theorem has been shown: we only need to prove the latter part. Suppose

such a balanced array exists: if we identify columns, rows and symbols with blocks, the levels of F1,

and the levels of F2 respectively then it is the specified BAFD. In proving Theorem 3.1, we did not use

the condition s1 ≤ s2; hence the theorem is true for all s1 and s2. For k = s1 and λ01 = 0 in equation

15, we have

E[0, 1] =
[s1 − 1]s2[0 + (s1 − 1)λ11]

s1

{
(s1 − 1)λ10 + 0 + (s1 − 1)(s2 − 1)λ11

}
=

(s1 − 1)2s2λ11

s1

{
(s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11

}
=

(s1 − 1)2s2λ11

s1(s1 − 1)
{

λ10 + (s2 − 1)λ11

}
=

(s1 − 1)s2λ11

s1

{
(s2 − 1)λ11 + λ10

} (18)

E[0, 1] has the maximum value of (s1−1)s2
s1(s2−1) when λ10 = 0.

Theorem 3.2. In an s1 × s2 BAFD with block size s1(s1 ≤ s2), if the main effects of F1 are estimated with full

efficiency and the main effects F2 are estimated with maximum efficiency (s1−1)s2
s1(s2−1) then the BAFD has parameters

λ10 = λ01 = 0 and λ11 ̸= 0. This design is equivalent to a TA[λ11s2(s2 − 1), s1, s2, 2].

Since λ10 = 0 means that two treatments at the same level of F2 do not occur together in the same block,

which implies s2 ≥ k = s1 we do not need s1 ≤ s2 in the construction of the designs in theorem 3.2. The

construction of TA[s2(s2 − 1)λ11, s1, s2, 2] has been discussed in [37]. Deleting any (s2 − s1) constraints

from a TA[s2(s2 − 1)λ11, s2, s2, 2] we obtain a TA[s2(s2 − 1)λ11, s1, s2, 2]. If we restrict λ11 = 1 then the

existence of a TA[s2(s2 − 1), s1, s2, 2] is equivalent to the existence of s1 − 1 mutually orthogonal latin

squares of order s2 or s1 − 2 mutually orthogonal latin squares of order s2 with different elements in

the diagonal.

Example 3.3. A 3 × 4 BAFD with b = 12, k = 3, r = 3, λ01 = λ10 = 0 and λ11 = 1 can be constructed from

a TA[12, 3, 4, 2]

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
levels of F1 Levels of F2

0 0 1 2 3 0 1 2 3 0 1 2 3
1 1 0 3 2 2 3 0 1 3 2 1 0
2 2 3 0 1 3 2 1 0 1 0 3 2

Table 4: Table of a 3 × 4 BAFD

In this design, E[1, 0] = 1, E[0, 1] = 8
9 and E[1, 1] = 5

9 .
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Example 3.4. A 3 × 6 BAFD with b = 30, k = 3, r = 5 λ01 = λ10 = 0 and λ11 = 1 can be constructed from a

TA[30, 3, 6, 2]. The efficiencies are E[1, 0] = 1.0, E[0, 1] = 4
5 and E[1, 1] = 3

5 .

Example 3.5. A 7 × 20 BAFD with b = 80, k = 7, r = 4, λ01 = λ10 = 0, λ11 = 1, can be constructed from a

TA[80, 7, 20, 2]. The efficiencies are E[1, 0] = 1.0, E[0, 1] = 120
133 and E[1, 1] = 23

28 .

Example 3.6. A 12 × 15 BAFD with b = 630, k = 12, r = 42, λ01 = λ10 = 0, λ11 = 3, can be constructed

from a TA[630, 12, 15, 2]. The efficiencies are E[1, 0] = 1.0, E[0, 1] = 165
168 and E[1, 1] = 51

56 .

Corollary 3.7. In an s2 symmetrical factorial design (FD) with block size s and if all the main effects are

estimated with full efficiency then the FD has parameters λ1 = 0 and λ2 ̸= 0.This design is equivalent to a

TA[λ2s(s − 1), s, s, 2].

Example 3.8. If s is a prime power, then there exists a TA[s(s − 1), s, s, 2] by corollary 2.20. Hence we can

always construct an s2 symmetrical FD with r = s − 1, b = s(s − 1), k = s, λ1 = 0, E1 = 1 and E2 = s−2
s−1

assuming that λ2 = 1.

Example 3.9. A 62 symmetrical FD with r = 10, b = 60, k = 6, λ1 = 0, λ2 = 2 can be constructed from a

TA[60, 6, 6, 2]. The efficiencies are: E1 = 1 and E2 = 4
5 .

Example 3.10. A 21 × 21 FD can be constructed from a TA[2, 100, 21, 21, 2] with λ1 = 0, λ2 = 5, b =

2, 100, k = 21 and r = 100. The efficiencies are E1 = 1 and E2 = 19
20 . Similarly we can construct 102, 122, 142

BAFD’S by using TA[360, 10, 10, 2], TA[660, 12, 12, 2] and TA[1092, 14, 14, 2] respectively.

4. s1 × s2 BAFD’s with Block Size s2(s1 < s2)

If the main effects of F2 are estimated with full efficiency then the block size k must be a multiple of

s2. Assume that k = s2 throughout this section. By Theorem 3.1, E[0, 1] = 1 if and only if λ10 = 0.

Furthermore the design is equivalent to a BA[λ01s1 + λ11s1(s1 − 1), s2, s1, 2] with parameters λ(x, y) =

λ01 or λ11 according as x = y or not, if we identify the columns, rows, and symbols of the balanced

array with blocks, the levels of F2 and the levels of F1 of the design.

Example 4.1. A 2 × 3 BAFD with b = 4, k = 3, r = 2, λ10 = 0 and λ01 = λ11 = 1 can be constructed from

the OA[4, 3, 2, 2]

Blocks 1 2 3 4
Levels of F2 levels of F1
0 0 0 1 1
1 0 1 0 1
2 0 1 1 0

Table 5: Table of a 2 × 3 BAFD

In this design, the efficiencies are: E[0, 1] = 1 and E[1, 0] = E[1, 1] = 2
3
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Example 4.2. A 11 × 12 BAFD with b = 121, k = 12, r = 11, λ10 = 0 and λ01 = λ11 = 1 can be constructed

from an OA[121, 12, 11, 2]. The efficiencies are E[0, 1] = 1, E[1, 0] = 11
12 and E(1, 1) = 11

12 .

Example 4.3. A 3 × 13 BAFD with b = 27, k = 13, r = 9, λ10 = 0, λ01 = λ11 = 3 can be constructed from an

OA[27, 13, 3, 2], E[0, 1] = 1.0, E[1, 0] = 12
13 , E[1, 1] = 12

13 .

Example 4.4. A 4 × 9 BAFD with b = 32, k = 9, r = 8, λ10 = 0, λ01 = λ11 = 2 can be constructed from an

OA[32, 9, 4, 2], E[0, 1] = 1.0, E[1, 0] = 8
9 , E[1, 1] = 8

9 .

Example 4.5. A 5 × 11 BAFD with b = 50, k = 11, r = 10, λ10 = 0, λ01 = λ11 = 2 can be constructed from

an OA[50, 11, 5, 2], E[0, 1] = 1.0, E[1, 0] = 10
11 , E[1, 1] = 10

11 .

Example 4.6. A 2 × 8 BAFD with b = 16, k = 8, r = 8, λ10 = 0, λ01 = λ11 = 4 can be constructed from an

OA[16, 8, 2, 2], E[0, 1] = 1.0, E[1, 0] = 7
8 , E[1, 1] = 7

8 .

For λ10 = 0 and k = s2 equation (16) becomes

E[1, 0] =
(k − 1)s1

k
λ10 + (s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11

=
(s2 − 1)s1

s2

(s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11

=
s1λ11(s2 − 1)2

s2(s2 − 1)[λ01 + (s1 − 1)λ11]

=
s1λ11(s2 − 1)

s2[λ01 + (s1 − 1)λ11]

=
(s2 − 1)s1λ11

s2[λ01 + (s1 − 1)λ11]

=
(s2 − 1)s1

s2[(s1 − 1) + λ01
λ11

]

=
(s2 − 1)s1

s2

1

(s1 − 1) + λ01
λ11

(19)

Note that λ01 ̸= 0, since k = s2 > s1 implies that at least two treatments in a given block have the same

level of F1. To maximize E(1, 0), it is required that λ01
λ11

be as small as possible.

Theorem 4.7. In an s1 × s2(s1 ≤ s2) BAFD with block size s2 and λ10 = 0 the following inequality holds:

λ01

λ11
≥ s2 − s1

s2
(20)

when the equality holds, E(1, 0) = 1.0 and E(1, 1) = s2−2
s2−1 .

Proof. g(0, 1) = 0 in this BAFD since the main effect of F2 is estimated with full efficiency. By equation

(11) we have

r = λ01 + (s1 − 1)λ11 (21)
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substituting r in equation (10) in equation (21), we have

g(1, 0) = λ01 + (s1 − 1)λ11 + (s2 − 1)λ01 − (s2 − 1)λ11

= s2λ01 + [s1 − 1 − s2 + 1]λ11

= s2λ01 − (s2 − s1)λ11

(22)

but g(1, 0) ≥ 0, since g(1, 0) is an eigenvalue of the none negative definite matrix NN
′
. Therefore we

have equation (20) and the equality holds if and only if g(1, 0) = 0. i.e E(1, 0) = 1, i.e.

g(1, 1) = r − λ01 − λ10 + λ11

= λ01 + (s1 − 1)λ11 − λ01 − 0 + λ11

= (s1 − 1)λ11 + λ11

but

E[1, 1] = 1 − 1
rk
[g(1, 1)]

= 1 − [s1 − 1]s2 + s2

s2[λ01 + (s1 − 1)λ11]

if λ01
λ11

= s2−s1
s2

and using equations (14) and (21)

= 1 − (s1 − 1)s2 + s2

s2[s2 − s1 + (s1 − 1)s2]

=
s2[s2 − s1 + (s1 − 1)s2] +−[(s1 − 1)s2 + s2]

s2[s2 − s1 + (s1 − 1)s2]

=
s2[s1s2 − s1]− s1s2

s2[s1s2 − s1]

=
s2s1s2 − s1s2 − s1s2

s2[s1s2 − s1]

=
s2 − 2
s2 − 1

as required.

Since a necessary condition for E[1, 0] = 1 is that block size k must be a multiple of s1 we must assume

that s2 = ms1(= k) for some integer m in order to construct a BAFD such that all main effects are

estimated with full efficiency. When s2 = ms1 equation (20) becomes

λ01

λ11
≥ m − 1

m
(23)

Corollary 4.8. In an s1 × s2 BAFD with block size s2(> s1) the main effects of F1 and F2 are estimated with

full efficiency if and only if s2 = ms1, λ10 = 0 and λ01
λ11

= m−1
m for some m. The design is equivalent to a
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BA[(ms1 − 1)s1λ, ms1, s1, 2] with parameters λ(x, y) = (m − 1)λ or mλ according as x = y or not, i.e. a

BA(T)(m, s1, λ).

By theorem 2.17 for any given m and s1 we can always construct a BA(T)(m, s1, λ) for some λ. Thus we can

always construct an ms1 × s1 BAFD such that all main effects are estimated with full efficiency, but a large

replication may be needed. The construction of a BA(T)(m, s1, 1) for some m and s1 are discussed in [37]. In

Example 2.31 and 2.32, we can also construct a BA(T)[4, 3, 2] and a BA(T)(3, 4, 2).

Example 4.9. A 2 × 4 BAFD with b = 6, k = 4, r = 3, λ10 = 0, can be constructed from a BA(T)(2, 2, 1) =

BA[6, 4, 2, 2] with λ(x, y) = 1 or 2 according as x = y or not

Blocks 1 2 3 4 5 6
Levels of F2 Levels of F1
0 1 0 1 0 1 0
1 0 1 1 0 0 1
2 1 0 0 1 0 1
3 0 1 0 1 1 0

Table 6: Table of a 2 × 4 BAFD

In this design, the efficiencies are: E[0, 1] = 1, E[1, 0] = 1 and E[1, 1] = 2
3 .

Example 4.10. A 7 × 42 BAFD with b = 287, k = 42, r = 41, λ10 = 0, λ01 = 5, λ11 = 6 can be constructed

from a BA(T)[6, 7, 1] = BA[287, 42, 7, 2] with λ(x, y) = 5 or 6 according as x = y or Not. The efficiencies of

this designs are: E[0, 1] = 1.0, E[1, 0] = 1.0 and E[1, 1] = 40
41 .

Example 4.11. A 17 × 238 BAFD with b = 4029, k = 238, r = 237, λ10 = 0, λ01 = 13, λ11 = 14, can be

constructed from a BA(T)[14, 17, 1] = BA[4029, 238, 17, 2] with λ(x, y) = 13 or 14 according as x = y or

Not. The efficiencies of this design are: E[0, 1] = 1.0, E[1, 0] = 1.0 and E[1, 1] = 236
237 .

Example 4.12. A 23 × 391 BAFD with b = 62790, k = 391, r = 2730, λ10 = 0, λ01 = 112, λ11 = 119 can be

constructed from a BA(T)[17, 23, 7] = BA[62, 790, 391, 23, 2] with λ(x, y) = 112 or 119 according as x = y

or Not. This design has efficiencies: E[0, 1] = 1.0, E[1, 0] = 1.0 and E[1, 1] = 389
390 .

5. s1 × s2 BAFD’s with Block Size a Common Multiple of s1 and s2

In an s1 × s2 BAFD with block size s2, if s2 is not a multiple of s1, then the main effect of F1 cannot

be estimated with full efficiency. To estimate all main effects with full efficiency, the block size k must

be a common multiple of s1 and s2. Let s1 = ps and s2 = qs where s > 1. A method is given below

to construct s1 × s2 BAFD with block size pqs such that all the main effects are estimated with full

efficiency.

Theorem 5.1. If there exists a resolvable BIBD with qs treatments and block size q, then there exists a ps × qs

BAFD with block size pqs such that all main effects are estimated with full efficiency.
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Proof. Construct a BA(T)(p, s, n) for some integer n by Theorem 2.17. In the resolvable BIBD, there

being s blocks in each replication , we can number the block in each replication by 0, 1, · · · , s − 1.

Replacing each symbol in the balanced array by a group of symbols which represents blocks in the

BIBD for each replication, we obtain a pqs × [ps − 1]snr
′

matrix, where r
′

is the number of replications

in the BIBD. Assign ith level of F1 to the rows from the (iq + 1)th to the (i + 1)th, where i = 0, 1, · · · , ps−

1.Identifying columns and symbols with blocks and the levels of F2, we get a ps × qs design with block

size pqs.

We shall show that all the main effects of the design constructed above are estimated with full

efficiency.Let λ
′

be the number of blocks in which two treatments occur together in the BIBD, then

(qs − 1)λ
′
= (q − 1)r

′
. Assume that r

′
= (qs − 1)m and λ

′
= (q − 1)m, where m need not be an integer.

Let λ01, λ10, λ11 denote the parameters and r denote the number of replications in the ps × qs design,

then through inspection we have

λ(x, y) = (ps − 1)x+1(qs − 1)y+1(p − 1)x(q − 1)ymn + (xy)(pq)(s − 1)xymn

x, y = 0 or 1 in mod 2
(24)

so 

λ01 = (ps − 1)(q − 1)mn

λ10 = (qs − 1)(p − 1)mn

λ11 = (p − 1)(q − 1)mn + pq(s − 1)mn

λ00 = r = (ps − 1)(qs − 1)mn


(25)

substituting the parameters of the equations (10), (11) and (12) in equations (25) and (9) we get

E[0, 1] = E[1, 0] = 1 and E[1, 1] = − s − 1
(ps − 1)(qs − 1)

+ 1

Given any q and s, there always exists a resolvable BIBD with qs treatments and block size q if the

number of replications is allowed to be large.

Example 5.2. The irreducible BIBD of qs treatments with block size q in which each of the

qs

q

 possible q−

element combinations form a block is resolvable with parameters

v = qs, b =

qs

q

 , r =

qs − 1

q − 1

 , k = q, λ =

qs − 2

q − 2

 (26)

Definition 5.3. Suppose (F ,A) is a (v, k, λ)-BIBD, a parallel class in (F ,A) is a subset of disjoint blocks from

A whose union is F . A partition of A into r parallel classes is called a resolution; and (F ,A) is said to be a

resolvable BIBD if A has at least one resolution. We say that F is a finite set of points called treatments, where
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F =
{

0, 1, 2, · · · , v − 1
}

.

Several methods of constructing a resolvable Resolvable Incomplete Block Designs which can be used

to construct s1 × s2 BAFD’s whose block designs are common multiples of s1 and s2 are illustrated

below. To construct a BIBD with block size k = 3 and a finite number of symbols V = v one can use

the methods of one step cycles, two step cycles or three steps cycles. The method of one step cycles is

applicable when

v = 2y + 1 = 24m + 3 or when

v = 2y + 1 = 24m + 9 (27)

we may denote the element 0 by k and the others by 1, 2, 3, · · · , 2y place k at the center of the circle

and the other elements 1, 2, 3, · · · , 2y at equidistant intervals on their circumference. The companions

of k are to be different on each parallel class. If we suppose that on the first parallel class they are

1 and y + 1 on the second 2 and 2 + y and so on, then the diameters through k will give for each

parallel class a triplet in which k appears. On each parallel class we have to find 2(y−1)
3 other triplets

satisfying the conditions of the problem. Every triplet formed from the remaining 2y − 2 elements

will be represented by an inscribed triangle joining the points representing these elements. The sides

of the triangles are the chords joining these 2y − 2 points. The sides of the triangles so represented

are denoted by the letters p, q, r. The term, triad or grouping denotes any of p, q, r which determines

the dimensions of an inscribed triangle. If p, q, r are proportional to the smaller arcs subtended then

p + q = r or p + q + r = 2y. If (y−1)
3 scalene triangles can be inscribed in the circle so that to each

triangle corresponds an equal complimentary triangle having its equal sides parallel to those of the

first and its vertices at free points then the system of 2(y−1)
3 triangles with the corresponding diameter

will give an arrangement for one parallel class. If the system is permuted cyclically(y − 1) times we

get arrangements for the other (y − 1) parallel classes.

The method of two step cycles is applicable when v = 12m + 3. When v is of this form and m is odd

we cannot get sets of complimentary triangles as required. Hence to apply a similar method we have

to find 2(y−1)
3 different dissimilar inscribed triangles having no vertex in common and satisfying the

conditions p + q = r or p + q + r = 2y. These solutions are also central. p, q, r are proportional to the

smaller arcs subtended. In the first part of this solution v
3 of these triangles must be selected to form

an arrangement of the first parallel class. By rotating this arrangement two steps at a time we obtain

triples for v
3 parallel classes in all. The method of three step cycles applies if

v = 18m + 3 or v = 18m + 9 or v = 18m + 15 (28)

It gives a solution for every value of v except v = 15. In this, method we may with equal propriety

represent all the elements by symbols placed at equidistant intervals round the circumference of
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a circle. Such solutions are termed as none central. The symbols may be 1, 2, 3, · · · , v, or letters

a1, b1, c1, a2, b2, c2, · · · any triplet will be represented by a circle whose sides are chords of a circle. The

arrangement of any parallel class is to include all the elements and therefore the triangles representing

the triplets for a given parallel class are v
3 in number, and so each element appears in only one triplet,

thus no two triangles can have a common vertex. The complete three steps solution will require the

determination of a system of (n−1)
2 inscribed triangles. In the first part of the solution, v

3 of these

triangles must be selected to form an arrangement for the first parallel class, so that by rotating this

arrangement three steps at a time we obtain triplets for v
3 parallel classes in all. If q = 4t − 1 is a prime

power, then there exists a resolvable balanced incomplete block design with block size k = 2t and

number of symbols v = 4t and λ = 2t − 1. As for the point set we take F = GF(q)
⋃{

∞
}

. Developing

the parallel classes.

H2
0 ∪

{
0
}

and H2
1 ∪

{
∞
}

(29)

over GF(q) produces the required blocks and resolution. The multiplicative cosets He
0, He

1, He
2, · · · , He

e−1

are defined by He
m =

{
xt : t ≡ m mod e

}
, where x denotes a primitive element of GF(q). If q = 4t + 1

is a prime power, then there exists a resolvable balanced incomplete block design with block size k =

2t + 1 and number of symbols v = 4t + 2 and λ = 4t. As for the point set we take F = GF(q) ∪
{

∞
}

.

Developing the parallel classes.

H2
0 ∪

{
0
}

H2
1 ∪

{
∞
}and

H2
0 ∪

{
∞
}

H2
1 ∪

{
0
} (30)

over GF(q) produces the required blocks and resolution. Let λ ≤ k − 1. Suppose there is a difference

family DFλ(k, v)
{

A0, A1, A2, A3, · · · , As−1

}
over a ring R whose base blocks are mutually disjoint. If

there is a set of k distinct units
{

u0, u1, u2, · · · , uk−1

}
whose differences are all units of R, then there

exists a Resolvable balanced incomplete block design with block size K = k and number of symbols

V = kv, where s represents the number of base blocks and that

Bj
j = Aj ×

{
i
}
=

{
(a1

j, i), (a2
j, i), · · · , (ak

j, i)
}

; i ∈ Ik, j ∈ Is (31)

In order to get further blocks we put

Cx =
{
(u0, 0), (u1, 1), (u2, 2), · · · , (uk−1, k − 1)

}
· x x ∈ R (32)

where (u, i) · x means (ux, i). We must partition the blocks into r = λ(kv−1)
(k−1) parallel classes. The first

parallel class P0 will take all the blocks uiBj
i where i ∈ Ik, j ∈ Is and the blocks Cx, where x is distinct

from all aj
i, i ∈ Ik, j ∈ Is. Other classes are given by Pg = TgP0, where Tg : (x, i) 7→ (x + g, i), g ∈ R,

that is

Pg =
{
Tg(B) : B ∈ P0

}
(33)
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We can still construct more parallel classes. Let Qx =
{
TgCx : g ∈ R

}
with

x ∈
⋃

Aj
0≤j≤s−1

and Rx =
{
TgCx : g ∈ R

}
with x ∈ R\ ∪Aj

o≤j≤s−1
(34)

Both Qx and Rx are parallel classes. We take each parallel class Qx λ times and each class Rx λ − 1

times. If v is even and v ≥ 4 a resolvable balanced incomplete block design with block size equal to

k = 2 and number of symbols V = v can be constructed as follows: We take the point set F to be

F = Zv−1 ∪
{

∞
}

. For j ∈ Zv−1, define

πj =
{{

∞, j
}}⋃{{

i + j mod(v − 1), j − i mod(v − 1)
}}

: 1 ≤ i ≤ v − 2
2

(35)

πj is a parallel class and each pair of points occurs in exactly one πj. To construct a resolvable

incomplete block design with block size k = q and number of symbols V = q2 where q is a prime

number, we can construct an affine plane of order q. This is done by defining P = Fq × Fq. For any

a, b ∈ Fq, we define a block

La,b =
{
(x, y) ∈ P : y = ax + b

}
(36)

and for any c ∈ Fq, we define

L∞,c =
{
(c, y) : y ∈ Fq

}
(37)

Finally we define

L =
{

La,b : a, b ∈ Fq

}⋃{
L∞,c : c ∈ Fq

}
(38)

Then (P, L) is the required affine plane order q and hence the required balanced incomplete block

design which resolvable.

Definition 5.4. For 0 ≤ d ≤ m, we define the Gaussian Coefficient

m

d


q

as follows

m

d


q

=


(qm−1)(qm−1−1)···(qm−d+1−1)

(qd−1)(qd−1−1)···(q−1) i f d ̸= 0

1 i f d = 0

 (39)

To construct a resolvable balanced incomplete block design (qm, b, r, qd, λ), where m ≥ 2, 1 ≤ d ≤ m − 1

b =

m

d

qm−d

q

, r =

m

d


q

, and λ =

m − 1

d − 1


q

(40)

we use equations (36) and equation (37) and (38). However, in some cases it might not be possible

to construct resolvable balanced incomplete block designs with the given properties in (40). Like

for example there exists (8, 4, 3)−BIBDs that are not resolvable. To construct a Resolvable balanced
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incomplete block design (qd, qd−1, λ), where q is a prime power and m ≥ 2 with λ = qd−1−1
q−1 . We first

construct a symmetrical BIBD (
qd+1−1

q−1 , qd−1
q−1 , qd−1−1

q−1

)
(41)

From which we obtain a quasiresidual BIBD from the symmetrical BIBD above. The quasiresidual

BIBD is an affine resolvable BIBD with parameters

v = qd, k = qd−1, λ =
qd−1 − 1

q − 1
(42)

Example 5.5. A 4 × 6 BAFD with block using 12 can be constructed using BA[10, 6, 2, 2] and a resolvable

BIBD with 4 treatments and block size 2 as shown below:

Consider the following BIBD with 4 treatments and block size 2 where X0, X1, Y0, Y1, Z0, Z1 represents the blocks.

X0 X1 Y0 Y1 Z0 Z1
0 2 0 1 0 1
1 3 2 3 3 2

Table 7: Table of BIBD[4,6,2]

Also consider the BA(T)(3, 2, 1) given below

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 1 1 0 0 0
0 1 1 0 1 0 1 1 0 0
1 1 1 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1 1 0

Table 8: Table of BA(T)[3,2,1]

By theorem 5.1 we can construct a 4× 6 BAFD with k = 12, r = λ00 = 15, b = 30, λ10 = 5, λ01 = 6, λ11 =

8 with E[1, 0] = 1, E[0, 1] = 1, E[1, 1] = 14
15 .
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Table 9: Table of a 4 × 6 BAFD

Example 5.6. A 6 × 8 BAFD with parameters k = 24, r = λ00 = 35, b = 70, λ01 = 15, λ10 = 14, λ11 = 18

and efficiencies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 34
35 can be constructed by using both the BA(T)(3, 2, 1)

given in example 5.5 and a resolvable BIBD with 8 treatments and block of size 4 given below that has been

constructed by developing parallel classes as in equation (29). The base blocks will be H0
2 ∪

{
0
}
=

{
1, 2, 4, 0

}
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and H1
2 ∪

{
∞
}
=

{
3, 5, 6, ∞

}
The resolvable BIBD will be given as follows after replacing ∞ with 7.

1 3 2 4 3 5 4 6 5 0 6 1 0 2
2 5 3 6 4 0 5 1 6 2 0 3 1 4
4 6 5 0 6 1 0 2 1 3 2 4 3 5
0 7 1 7 2 7 3 7 4 7 5 7 6 7

Table 10: Table of BIBD[8,14,4]

Example 5.7. A 6 × 9 BAFD with parameters k = 18, r = λ00 = 20, b = 60, λ01 = 5, λ10 = 4, λ11 = 7 and

efficiencies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 19
20 can be constructed by using both the BA(T)(2, 3, 1) and the

resolvable BIBD with 9 treatments and block size 3 given below. This has been constructed as in equations (36),

(37) and (38). That is, by constructing an affine plane of order 3.

0 1 2 0 1 2 0 1 2 0 3 6
3 4 5 4 5 3 5 3 4 1 4 7
6 7 8 8 6 7 7 8 6 2 5 8

Table 11: Table of a BIBD[9,12,3]

Example 5.8. A 10 × 15 BAFD with parameters k = 30, r = λ00 = 63, b = 315, λ01 = 9, λ10 = 7, λ11 = 13

and efficiencies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 61
63 can be constructed by using both the BA(T)[2, 5, 1] and a

resolvable BIBD with 15 treatments and block size 3 given below which was constructed by using the method of

two step cycles where the first parallel class gives a set of triplets

(k · 1 · 2), (3 · 7 · 10), (4 · 5 · 13), (6 · 9 · 11), (8, ·12, ·14).

From which by a cyclical two step permutation we get solution

0 3 4 6 8 0 5 6 8 10
1 7 5 9 12 3 9 7 11 14
2 10 13 11 14 4 12 1 13 2
0 7 8 10 12 0 9 10 12 14
5 11 9 13 2 7 13 11 1 4
6 14 3 1 4 8 2 5 3 6

0 13 14 2 4 0 1 2 4 6
11 3 1 5 8 13 5 3 7 10
12 6 9 7 10 14 8 11 9 12

0 11 12 14 2
9 1 13 3 6
10 4 7 5 8

Table 12: Table of BIBD[15,35,3]

Example 5.9. A 6 × 9 BAFD with parameters k = 27, r = λ00 = 20, b = 96, λ01 = 5, λ10 = 4, λ11 = 7

and efficiencies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 29
30 can be constructed by using both the BA(T)[3, 3, 1] and a
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resolvable BIBD with 9 treatments and block size 3 given below which was constructed by using the method of

one step cycles where the first parallel class gives a set of triplets

(k · 1 · 5), (3 · 4 · 6), (7 · 8 · 2)

from which by a one cyclical one step permutation we get the solution

0 3 7 0 4 8 0 5 1 0 6 2
1 4 8 2 5 1 3 6 2 4 7 3
5 6 2 6 7 3 7 8 4 8 1 5

Table 13: Table of BIBD[9,12,3]

Example 5.10. An 8 × 14 BAFD with parameters k = 28, r = λ00 = 91, b = 312, λ01 = 42, λ10 = 39,

λ11 = 46 and efficiencies E[1, 0] = 1.0, E[0, 1] = 1.0, E[1, 1] = 89
91 can be constructed by using both the

BA(T)[4, 2, 2] which can be constructed by using Theorem 2.17 and a resolvable BIBD with 14 treatments and

block size 7 given by developing parallel classes as in Example 5.10. The base blocks will be H0
2 ∪

{
0
}

={
1, 4, 3, 12, 9, 10, 0

}
, H1

2 ∪
{

∞
}

=
{

2, 8, 6, 11, 5, 7, ∞
}

and H0
2 ∪

{
∞
}

=
{

1, 4, 3, 12, 9, 10, ∞
}

, H1
2 ∪{

0
}
=

{
2, 8, 6, 11, 5, 7, 0

}
The resolvable BIBD is given as follows after replacing ∞ with 13.

1 2 2 3 3 4 4 5 5 6 6 7
4 8 5 9 6 10 7 11 8 12 9 0
3 6 4 7 5 8 6 9 7 10 8 11
12 11 0 12 1 0 2 1 3 2 4 3
9 5 10 6 11 7 12 8 0 9 1 10
10 7 11 8 12 9 0 10 1 11 2 12
0 13 1 13 2 13 3 13 4 13 5 13
7 8 8 9 9 10 10 11 11 12 12 0
10 1 11 2 12 3 0 4 1 5 2 6
9 12 10 0 11 1 12 2 0 3 1 4
5 4 6 5 7 6 8 7 9 8 10 9
2 11 3 12 4 0 5 1 6 2 7 3
3 0 4 1 5 2 6 3 7 4 8 5
6 13 7 13 8 13 9 13 10 13 11 13
0 1 1 2 2 3 3 4 4 5 5 6
3 7 4 8 5 9 6 10 7 11 8 12
2 5 3 6 4 7 5 8 6 9 7 10
11 10 12 11 0 12 1 0 2 1 3 2
8 4 9 5 10 6 11 7 12 8 0 9
9 6 10 7 11 8 12 9 0 10 1 11
12 13 13 0 13 1 13 2 13 3 13 4
6 7 7 8 8 9 9 10 10 11 11 12
9 0 10 1 11 2 12 3 0 4 1 5
8 11 9 12 10 0 11 1 12 2 0 3
4 3 5 4 6 5 7 6 8 7 9 8
1 10 2 11 3 12 4 0 5 1 6 2
2 12 3 0 4 1 5 2 6 3 7 4
13 5 13 6 13 7 13 8 13 9 13 10
12 0 0 1
2 6 3 7
1 4 2 5
10 9 11 10
7 3 8 4
8 5 9 6
13 11 13 12

Table 14: Table of a BIBD(14,52,7)

Example 5.11. A 22 × 55 BAFD with parameters k = 110, r = λ00 = 567, b = 6, 237 ,λ01 = 42, λ10 =

27, λ11 = 52 and efficiencies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 562
567 can be constructed by using both the

BA(T)[2, 11, 1] which can be constructed by using theorem 2.24 and a resolvable BIBD with 55 treatments and

block size 5 given below which was constructed by developing parallel classes as in equations (32), (33), (34). Thus

we develop parallel classes Pg, Qx, Rx. R =
{

0, 1, 2, · · · , 10
}

. To construct a resolvable balanced incomplete
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block design with block size 5 and number of treatments 55, k = 5, suppose λ = 2 ≤ k − 1 then s = λ(v−1)
k(k−1) = 1

base block hence Pg parallel classes: P0, P1, P2, · · · P10 [11 blocks]. Qx parallel classes: Q0, Q1, Q2, Q3, Q4 each of

which is taken λ = 2 times. Rx parallel classes: R0, R1, R2, R3, R4, R5 each of which is taken λ − 1 = 2 − 1 = 1

times. Thus total number of parallel classes = 11 + 2 × 5 + 6 × 1 = 27. As an example the parallel classes

P0, Q1, R0 are given by

P0

5 11 17 23 29 10 21 32 43 54 0
15 31 47 8 24 30 6 37 13 44 1
20 41 7 28 49 35 16 52 33 14 2
25 51 22 48 19 40 26 12 53 39 3
45 36 27 18 9 50 46 42 38 34 4

Q1

5 10 15 20 25 30 35 40 45 50 0
11 16 21 26 31 36 41 46 51 1 6
17 22 27 32 37 42 47 52 2 7 12
23 28 33 38 43 48 53 3 8 13 18
29 34 39 44 49 54 4 9 14 19 24

R0

0 5 10 15 20 25 30 35 40 45 50
1 6 11 16 21 26 31 36 41 46 51
2 7 12 17 22 27 32 37 42 47 52
3 8 13 18 23 28 33 38 43 48 53
4 9 14 19 24 29 34 39 44 49 54

Table 15: Table of Parallel classes Po, Q1, Ro

6. Conclusion

The results presented in this paper relate to connected factorial designs. The disconnected case poses

some special problems. As a matter of fact, the results in this paper, at least in their present forms do

not remain valid in the disconnected case. The following example illustrates the point.

Example 6.1. Consider a disconnected 23 design in two blocks as shown below.

BLOCKI : 000, 100, 010, 001

BLOCKII : 110, 101, 011, 111

Clearly, each interaction is represented by a single contrast.It may be seen from the elementary

considerations that the contrasts belonging to interactions F(1, 1, 0), F(1, 0, 1), F(0, 1, 1) are estimable

while those belonging to F(1, 0, 0),
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F(0, 1, 0), F(0, 0, 1), F(1, 1, 1) are not estimable. Moreover, the BLUE’s of the contrasts belonging to

F(1, 1, 0), F(1, 0, 1), F(0, 1, 1) may be seen to be mutually orthogonal, i.e Uncorrelated. Hence the

design has OFS. Also trivially, the design is balanced since each interaction is represented by a single

contrast. Thus the design is balanced and has OFS. However, the C-matrix is not of the form

C = ∑
y∈Ω

ρ(y)My (43)

note that if the C-matrix be of the form above, one must have MyC = CMy for every y ∈ Ω. For this

design, explicit computation shows that, in particular M(0, 0, 1) = M001 does not commute with C.

Thus the above example shows the form (43) does not hold. This calls for suitable modifications of

these results to make them applicable to the disconnected case.
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