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Abstract

In 2021, the second author of this paper pointed out that the method of applying some known

results to prove Theorem 1.6 in the paper, ’On certain old and new trigonometric and hyperbolic

inequalities’ by B. A. Bhayo and J. Sándor contains a mistake and corrected this mistake by providing

another simple proof. In this note, we aim to give an alternative simple proof by using series

expansions of hyperbolic sine and hyperbolic cosine functions. Moreover, we propose sharp lower

bounds for hyperbolic tangent function.
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1. Introduction

In 2015, Bhayo and Sándor [4] published a proof for the following double sided inequality.

Theorem 1.1 ([4]). If x > 0 then

exp
[

1
2

( x
tanh x

− 1
)]

<
sinh x

x
< exp

[ x
tanh x

− 1
]

. (1)

The inequalities (1) give very sharp bounds for the hyperbolic sinc function, viz. (sinh x)/x. Due to

the importance of hyperbolic sinc function in many branches of science and mathematics, it deserves

to study the bounds for approximation of this function. To prove the inequalities (1) the authors of [4]

used the following lemmas.

Lemma 1.2 ([1]). Let f , g : [a, b] → R be continuous. Moreover, let f , g be differentiable on (a, b) and

g′(x) ̸= 0, on (a, b). Let,

A(x) =
f (x)− f (a)
g(x)− g(a)

, B(x) =
f (x)− f (b)
g(x)− g(b)

, x ∈ (a, b).
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(i) A(x) and B(x) are increasing(strictly increasing) on (a, b) if f ′(·)/g′(·) is increasing(strictly increasing)

on (a, b).

(ii) A(x) and B(x) are decreasing(strictly decreasing) on (a, b) if f ′(·)/g′(·) is decreasing(strictly decreasing)

on (a, b).

The Lemma 1.2 is known in the literature as l’Hôpital’s rule of monotonicity. For Lemma 1.3 we refer

to [7].

Lemma 1.3. Let A(x) = ∑∞
n=0 anxn and B(x) = ∑∞

n=0 bnxn be convergent for |x| < R, where an and bn are

real numbers for n = 0, 1, 2, · · · such that bn > 0. If the sequence an/bn is strictly increasing(or decreasing),

then the function A(x)/B(x) is also strictly increasing(or decreasing) on (0, R).

The above lemmas are being widely used for ample number of applications. The second author [2]

pointed out that the method employed to obtain double inequality (1) in [4] is not correct and it

contains a flaw. Further, using l’Hôpital’s rule of monotonicity the new proof of inequality (1) is given

in [2]. In this note, we present an alternative simple proof by utilizing series expansions of hyperbolic

sine and hyperbolic cosine functions. In addition to this, we obtain sharp lower bound for hyperbolic

tangent by using the left inequality of (1) and one of the results of paper [5].

2. An Alternative Simple Proof

Consider the function

f (x) =
log

(
sinh x

x

)
x

tanh x − 1
=

f1(x)
f2(x)

where f1(x) = log((sinh x)/x) and f2(x) = x/ tanh x − 1 with f1(0+) = 0 = f2(0+). After

differentiating we get

f ′1(x)
f ′2(x)

=
x cosh x − sinh x

x sinh x
· tanh2 x

tanh x − x sech2 x

=
1 − x coth x( x

sinh x

)2 − x coth x

=
sinh2 x − x sinh x cosh x

x2 − x sinh x cosh x

=
cosh 2x − 1 − x sinh 2x

2x2 − x sinh 2x
=

A(x)
B(x)

.

Using series expansions [6]

cosh x =
∞

∑
n=0

x2n

(2n)!
and sinh x =

∞

∑
n=0

x2n+1

(2n + 1)!
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we write

A(x)
B(x)

=

∞
∑

n=0

22n

(2n)! x
2n − 1 − x

∞
∑

n=0

22n+1

(2n+1)! x
2n+1

2x2 − x
∞
∑

n=0

22n+1

(2n+1)! x
2n+1

=

∞
∑

n=1

22n

(2n)! x
2n −

∞
∑

n=0

22n+1

(2n+1)! x
2n+2

2x2 −
∞
∑

n=0

22n+1

(2n+1)! x
2n+2

=

∞
∑

n=2

[
22n−1

(2n−1)! −
22n

(2n)!

]
x2n

∞
∑

n=2

22n−1

(2n−1)! x
2n

=

∞
∑

n=2
anx2n

∞
∑

n=2
bnx2n

where

an =
22n−1

(2n − 1)!
− 22n

(2n)!
and bn =

22n−1

(2n − 1)!
.

Clearly both the series A(x) and B(x) are convergent in (0, R) by ratio test for any R > 0 and bn > 0

for n ⩾ 2. Moreover, an/bn = 1 − 1/n implies that the sequence {an/bn} is increasing. By Lemma 1.3,

A(x)/B(x) is increasing on (0, R) for every R > 0. Hence we conclude that A(x)/B(x) is increasing on

(0, ∞). Applying Lemma 1.2, f (x) is also increasing on (0, ∞). Consequently f (0+) < f (x) < f (∞−).

Lastly, the limits f (0+) = 1
2 and f (∞−) = 1 prove the result.

3. Sharp Lower Bound for tanh x

The inequality

tanh x <
2x√

4x2 + 9 − 1
, x > 0 (2)

is due to Bhayo et. al. [5]. This inequality (2) can be written as

√
4x2 + 9 − 1

2
<

x
tanh x

,

from which we obtain √
4x2 + 9 − 3

4
<

1
2

( x
tanh x

− 1
)

or

e(
√

4x2+9−3)/4 < e(x/ tanh x−1)/2. (3)

Now the inequalities (1) and (3) yield

e(
√

4x2+9−3)/4 <
sinh x

x
, x > 0.
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Due to the known result (sinh x)/x < cosh x, we write e(
√

4x2+9−3)/4 < cosh x, which is equivalent to

e(
√

4x2+9−3)/2 < cosh2 x, i.e., e(3−
√

4x2+9)/2 > sech2 x, or e(3−
√

4x2+9)/2 > 1 − tanh2 x. This gives us

√
1 − e

3−
√

4x2+9
2 < tanh x, x > 0. (4)

Motivated by the inequality (4), we propose the following:

Theorem 3.1. For x > 0, we have √
1 − e

3−
√

12x2+9
2 < tanh x. (5)

Proof. Let us suppose,

g(x) =
3 −

√
12x2 + 9
2

− ln(sech2 x), x > 0.

Differentiation with respect to x gives

g′(x) =
−6x√

12x2 + 9
+ 2 tanh x = 2x

 tanh x
x

− 1√
4
3 x2 + 1

 > 0,

due to 1√
4
3 x2+1

< 1√
x2+1

and the inequality [3, (3.4)]. Hence g(x) is strictly increasing for x > 0. This

yields g(x) > g(0) = 0 giving us the desired inequality (5).

Now by combining inequalities (2) and (4), we get a double inequality as follows:

√
1 − e

3−
√

12x2+9
2 < tanh x <

2x√
4x2 + 9 − 1

, x > 0.

The sharpness of the inequality (5) can be seen from the following graph of difference function

F(x) = tanh x −
√

1 − e
3−
√

12x2+9
2 .
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Figure 1: Graph of the curve F(x) for x ∈ (0, 20).

Since, limx→∞ F(x) = 0, it is obvious that the lower bound gets more closer to tanh x as x → ∞.
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Thus we provided an alternative simple proof of Theorem 1.1 and established a sharp lower bound for

hyperbolic tangent.

References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invarients, Inequalities and

Quasiconformal Maps, John Wiley and Sons, New York, (1997).

[2] Y. J. Bagul, On a result of Bhayo and Sándor, Analysis Mathematica, 47(1)(2021), 33-36.

[3] Y. J. Bagul, R. M. Dhaigude, C. Chesneau and M. Kostić, Tight exponential bounds for hyperbolic
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