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Abstract

In 1962 Ore posed the problem, characterize graphs which are cover graphs; i.e., characterize those

graphs which are orientable as an ordered set. In 1985 O. Pretzel have studied the orientability of

graph in terms of girth and chromatic numbers of a graph. In 1995 Nešetřil and Rödl have studied

the graphs of arbitrary large girth that are not covering graphs. In 2021 Bhavale and Waphare

introduced the concept of a poset dismantlable by doubly irreducibles and proved that a graph is

orientable as a poset dismantlable by doubly irreducible if and only if it is (non-trivial) adjunct of

ears. In this paper, we survey an orientability of several classes of graphs in particular, covering

graphs of posets. We will also discuss in detail about the various types of orientability of graphs. In

the end, we provide a list of some open problems related to the orientability of graphs.

Keywords: Graph; Poset; Cover graph; Orientable graph.

2020 Mathematics Subject Classification: 18A10, 06A06, 05C60.

1. Introduction

In 1962 Ore [28] posed the problem, characterize graphs which are cover graphs; i.e., characterize

those graphs which are orientable as an ordered set. The problem is still open. In 1985 Pretzel [29]

have studied the orientability of a graph in terms of girth and chromatic number of graph. Pretzel

[29] has studied some equivalent and necessary conditions for a finite graph to be the covering graph

of a partially ordered set. For each k ≥ 1, Aigner and Prins [1] have introduced a notion of a vertex

colouring, here called k-good colouring, such that a 1-good colouring is the usual concept, and graphs

that have a 2-good colouring are precisely covering graphs. Aigner and Prins [1] presented some

inequalities for the corresponding chromatic numbers χk, especially for χ2. that is there exist graphs

that satisfy these inequalities for k = 2 but are not covering graphs. Aigner and Prins [1] also showed

that χ2 cannot be bounded by a function of χ = χ1. A construction of Nešetřil and Rödl [26] is used

to show that χ2 is not bounded by a function of the girth. In 2014 Bhavale and Waphare have given
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a partial solution to the open problem of orientability by characterizing covering graphs of posets

dismantlable by doubly irreducibles.

2. Preliminaries

A graph G = (V, E) is a mathematical structure consisting of two sets V and E. The elements of V are

called vertices, and the elements of E are called edges. Two graphs G1 and G2 are isomorphic, if there

is one-one correspondence between the vertices of G1 and those of G2 such that the number of edges

joining any two vertices of G1 equals the number of edges joining the corresponding vertices of G2.

The girth of a graph G with a cycle is the length of its shortest cycle. A graph with no cycle has infinite

girth. It is denoted by g(G). A planar graph is a graph that can be drawn without crossing. A directed

graph D = (V, A) consists of two finite sets V and A. The elements of V are called vertices, and the

elements of A are called arcs. A chromatic number of a graph G is the smallest number of colours χ(G)

needed to colour the vertices of G so that no two adjacent vertices have same colour. It is denoted by

χ(G). Orientability of graphs is already studied by Pretzel [29] in terms of girth and the chromatic

number of a graph. An ear of a loopless connected graph G is a subgraph of G such that it is a maximal

path in which all internal vertices are of degree two in G or it is a cycle in which all but one vertex have

degree two in G. If G is a cycle itself then that cycle is the only ear of G. A partially ordered set (in short,

a poset) is a set P of elements together with a binary relation ≤ on P which is reflexive, antisymmetric

and transitive. An element x ∈ P is an upper bound for a subset S ⊂ P if s ≤ x for all s ∈ S. An upper

cone of S denoted by Su is defined as Su = {x ∈ P | s ≤ x, ∀s ∈ S}. The least element of Su is called

join of S, denoted by ∨S. An lower cone of S denoted by Sl is defined as Sl = {x ∈ P | x ≤ s, ∀s ∈ S}.

The greatest element of Sl is called meet of S, denoted by ∧S. In particular, ∨{a, b} and ∧{a, b} are

respectively denoted by a ∨ b and a ∧ b. A lattice is a poset in which every pair of elements has the

meet and the join. An element x in a lattice L is called join-reducible (meet-reducible) in L, if there exist

y, z ∈ L both distinct from x such that y ∨ z = x(y ∧ z = x). A lattice L is called distributive lattice if for

any elements a, b and c of L, it satisfies following distributive properties:

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

2. a ∧ (b ∨ c) = (a ∨ b) ∧ (a ∨ c).

A lattice L is modular if for every x, y, z ∈ L with x ≤ z, x ∨ (y ∧ z) = (x ∨ y) ∧ z. An element x in a

lattice L is called join-irreducible (meet-irreducible) if it is not join-reducible (meet-reducible). An element

x in a lattice L is called doubly irreducible if it is both join-irreducible and meet-irreducible. An element

a of a poset P is called doubly irreducible in P if a has at most one upper cover and at most one lower

cover in P.

Definition 2.1 ([9]). A finite lattice L of order n is called dismantlable if there exists a chain L1 ⊂ L2 ⊂ · · · ⊂

Ln(= L) of sublattices of L such that |Li| = i for all i.
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Thus a dismantlable lattice is a lattice which can be completely dismantled by removing one element

at each stage. An element a of a poset P is called irreducible in P if a is an isolated element or a has

precisely one upper cover or precisely one lower cover in P.

Definition 2.2. An n-element poset P is called poset dismantlable by irreducibles if there exists a chain P1 ⊂

P2 ⊂ · · · ⊂ Pn(= P) of subposets of P such that P1 has one element and Pi−1 = Pi \ {x}, where x is an

irreducible element in Pi, for all i.

Bhavale and Waphare (see [4]) introduced the concept of poset dismantlable by doubly irreducibles.

Definition 2.3. An n-element poset P is called poset dismantlable by doubly irreducibles if there exists a chain

P1 ⊂ P2 ⊂ · · · ⊂ Pn(= P) of subposets of P such that P1 has one element and Pi−1 = Pi \ {x}, where x is a

doubly irreducible element in Pi, for all i.

Bhavale and Waphare [4] introduced the concept of an adjunct of ears in graphs as follows. Let G

be a directed graph and P be any directed path (ear) from c to d with V(G) ∩ V(P) = ϕ. Let a be a

vertex of G. Then the u-adjunct of P to G at a to be a directed graph, denoted by G]aP, having vertex

set V(G) ∪ V(P) and arc set A(G) ∪ A(P) ∪ {(a, c)}. And the d-adjunct of P to G at a to be a directed

graph, denoted by G]aP, having vertex set V(G) ∪ V(P) and arc set A(G) ∪ A(P) ∪ {(d, a)}. Also the

ud-adjunct of P to G at (a, b), where (a, b) is a pair of vertices in G such that there is a directed path from

a to b in G of length at least 2, to be a directed graph, denoted by G]baP having vertex set V(G) ∪ V(P)

and the arc set A(G) ∪ A(P) ∪ {(a, c), (d, b)}.

A directed graph G is adjunct of directed ears if it can be obtained by u-adjunction or d-adjunction or

ud-adjunction of directed ears starting with a directed path. An underlying graph of a directed graph

which is adjunct of directed ears is called adjunct of ears.

Definition 2.4 ([10]). For an ordered set P, a pair of elements {a, b} of P is an edge of the comparability graph

of P if a < b.

Definition 2.5 ([10]). For an ordered set P, a pair {a, b} is an edge of a covering graph of P if b covers a.

Covering graph of P is denoted by C(P).

Definition 2.6 ([5]). A graph G is said to be an orientable as an ordered set P if G and C(P) are isomorphic as

graphs.

The hypercube graph is the graph formed from the vertices and edges of an n-dimensional hypercube.

A retract of a hypercube is an induced subgraph of a hypercube that has an edge-preserving map from

the hypercube onto the subgraph. A connected graph in which each vertex is of degree 2 is called a

cycle graph. A connected graph that has no cycle is called a tree.

Tree Decomposition: A tree decomposition of a graph G is a pair (T, {Xt}t∈T), where T is a tree and

{Xt}t∈T is a collection of subsets of vertices of G, such that
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1. Every vertex of G is in at least one subset.

2. For each edge (u, v) there is at least one subset containing both u and v.

3. For each vertex v of G, the subset containing v form a connected subtree of T.

The tree width of a graph G is the minimum width over all possible tree decompositions of G.

Definition 2.7 ([11]). A Halin graph H is a plane graph obtained by drawing a tree T in the plane, where T has

no vertex of degree 2, and then drawing a cycle C through all leaves in the plane so H = T ∪ C.

For more details and the other definitions see [9–11,23,28,31].

3. Orientability

The conjuncture of Bollobas [29] was, there are graphs of arbitrarily large girth that are not covering

graphs, which was proved by Nešetřil and Rödl (see [26] and [27]) using probabilistic methods. Also

Nešetřil and Rödl proved that, the recognition of cover graphs of finite posets is an NP-hard problem.

In 1964 Gilmore and Hoffman [15] proved a characterization of those graphs, finite or infinite, which

are comparability graphs that is a graph is comparability graph if and only if each odd cycle has at

least one triangular chord. Another proof of the same characterization has been given in [14] and a

related question examined in [30]. Their proof of the sufficiency of the characterization yields a very

simple algorithm for directing all the edges of a comparability graph in such a way that the resulting

graph partially orders its vertices.

In 1983 Duffus and Rival [10] stated as there are two types of graphs commonly associated with finite

partially ordered sets: the comparability graph and the covering graph. While the first type has been

characterized, only partial descriptions of the second are known. Duffus and Rival [10] proved that

the covering graphs of distributive lattices are precisely those graphs which are retracts of hypercubes.

Many researchers have investigated connections between dimension for posets and planarity for

graphs. In 1993 Brightwell [6] extend this line of research to the structural graph theory parameter

tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the

tree-width of its cover graph. In contrast little is known about this question [28] when is a graph the

covering graph of an ordered set? Also it is an NP-complete to test whether a graph is a cover graph

(see [14] and [15]). This question is already solved for a finite distributive lattice. Similar type of

characterizations are obtained for modular lattices (see [21]) and geometric lattices (see [9]). In 1958

Grotzsch (see [16]) proved that triangle-free planar graphs are 3-chromatic; consequently they are

orientable. In 2014 Bhavale and Waphare [5] have given a partial solution to the open problem of

orientability by characterizing covering graphs of posets dismantlable by doubly irreducibles. Also

Bhavale and Waphare [5] gave the following results related to orientability.
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Theorem 3.1 ([5]). A graph is orientable as a poset dismantlable by doubly irreducible if and only if it is

(non-trivial) adjunct of ears.

Theorem 3.2 ([5]). A graph is orientable as a dismantlable lattice if and only if it is ud-adjunct of ears.

Theorem 3.3 ([5]). A graph G is orientable as a lattice in which all the reducible elements are comparable then

G is connected and contains a chordless path passing through all the higher degree (≥ 3) vertices.

However the converse is not true.

4. Types of Orientability

In this section, we are going to discuss three types of orientability.

4.1 Cyclic Orientability

Graph G is called cyclically orientable (CO) if it admits an orientation in which every simple chordless

cycle is cyclically oriented. This family of graphs was introduced by Barot et al. [3] in 2006 and use

it to devise a test for whether a cluster algebra is of finite type. Barot et al. [3] work leaves open

question of giving an efficient characterization of cyclically orientable graphs. Barot et al. [3] gave a

simple recursive description of cyclically orientable graphs, and use this to give an O(n) algorithm to

test whether a graph on n vertices is cyclically orientable.

In 2008 Gurvich [17] obtained several nice characterizations of CO-graphs, being motivated primarily

by their applications in cluster algebras. Gurvich [17] obtained several new characterizations that

provide algorithms for recognizing CO-graphs and obtaining their cyclic orientations in linear time.

Gurvich [17] showed that the edge maximal CO-graphs are 2-trees; that is, G = (V, E) is a 2-tree if and

only if G is CO and G′ = (V, E′) is not CO whenever E is a proper subset of E′.

4.2 Fully Orientability

An orientation D of a graph G assigns a direction to each edge of G [18] . If there does not exist

any directed cycle in D, then D is said to be acyclic orientation. Let D be an acyclic orientation of

a graph G. An arc of D is dependent if its reversal creates a directed cycle. Let dmin(G)(dmax(G))

denote the minimum (maximum) of the number of dependent arcs over all acyclic orientations of G.

A graph G is called fully orientable if G has an acyclic orientation with exactly d dependent arcs for

every d satisfying dmin(G) ≤ d ≤ dmax(G). In 2009 Lai et al. [19] studied the conditions under which

fully orientability of graph can be preserved when the graph is extended by attaching new paths or

cycles. Preservation theorems are applied to prove fully orientability of subdivisions of Halin graphs

and graphs of maximum degree at most three and gave interpretation to their dmin(G). Lai et al. [19]

showed that a connected graph G is fully orientable if dmin(G) ≤ 1.

In 1997 Fisher et al. [12] gave a formula to a find maximum of the number of dependent arcs over all
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acyclic orientations of G, that is, dmax(G) = |E(G)| − |V(G)|+ k, where E(G) is the edge set, V(G) is

the vertex set, and k is the number of component in G, which is nothing but the nullity of a graph. Also

Fisher et al. [12] proved that if G is a connected graph with χ(G) < g(G) then G is fully orientable and

dmin(G) = 0. In 1995 West [32] proved that complete bipartite graphs are fully orientable. In 2006 Lai

et al. [20] determine dmin(G) for an outerplanar graph G and proved that G is fully orientable. In 2008

Lai et al. [24] proved that every 2-degenerate graph is fully orientable also gave an interpretations to

their dmin.

Let Kr(n) be the complete r−partite graph each of whose partite sets has n vertices. In 2009 Chang et

al. [7] determined the fully orientability of Kr(n) and proved that Kr(n) is non-fully-orientable when

r ≥ 3 and n ≥ 2. Also Chang et al. [7] determined that these are the only non-fully-orintable graphs

known so far and they all have girth 3. An immediate consequence of this result is proved by Tong [25],

that is, when m is composite number, there exists m-degenerate graphs which are non-fully-orientable.

Moreover K3(2) is the smallest non-fully orientable and any acyclic orientation of K3(2) has 4, 6 or 7

vertices.

4.3 Semitransitive Orientability

In 2019 Choi et al. [8] investigated graph operations and graph products that preserve semitransitive

orientability of graphs. The main theme of the paper [8] is to determine which graph operations

satisfies the following statement: if a graph operation is possible on a semitransitively orientable

graph, then the same graph operation can be executed on the graph while preserving the

semi-transitive orientability. Choi et al. [8] were able to prove that this statement is true for

edge-deletions, edge-additions, and edge-liftings in graphs. Moreover, for all three graph operations,

Choi et al. [8] proved that the initial semi-transitive orientation can be extended to the new graph

obtained by the graph operation. Also, Kitaev and Lozin [23] explicitly asked if certain graph

products preserve the semitransitive orientability. Choi et al. [8] answer their question in the negative

for the tensor product, lexicographic product, and strong product. Choi et al. [8] also push the

investigation further and initiate the study of sufficient conditions that guarantee a certain graph

operation to preserve the semi-transitive orientability.

In 2012 Adrian Tanasa [2], Group Field Theories (GFT) are quantum field theories over group

manifolds; they can be seen as a generalization of matrix models. GFT Feynman graphs are tensor

graphs generalizing ribbon graphs (or combinatorial maps); these graphs are dual not only to

manifolds. In order to simplify the topological structure of these various singularities, colored GFT

was introduced and intensively studied in 2011. Adrian Tanasa [2] proposed a different simplification

of GFT, which he called multi-orientable GFT. Adrian Tanasa [2] studied the relation between

multi-orientable GFT Feynman graphs and colorable graphs. Adrian Tanasa [2] proved that tadfaces

and some generalized tadpoles are absent. Some Feynman amplitude computations are performed. A
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few remarks on the renormalizability of both multi-orientable and colorable GFT are made. A

generalization from three-dimensional to four-dimensional theories is also proposed.

A graph G = (V, E) is said to be word-representable (See [13] ) if a word w can be formed using the

letters of the alphabet V such that for every pair of vertices x and y, xy ∈ E if and only if x and y

alternate in w. A semi-transitive orientation is an acyclic directed graph where for any directed path

v0 → v1 → · · · → vm, m ≥ 2 either there is no arc between v0 and vm or for all 1 ≤ i < j ≤ m there is

an arc between vi and vj. An undirected graph is semi-transitive if it admits a semi-transitive

orientation. For a given positive integers n, a1, a2, · · · , ak, Srinivasan and Hariharasubramanian [13]

consider the undirected circulant graph with set of vertices {0, 1, 2, . . . , n − 1} and the set of edges

{ij | (i − j) (mod n) or (j − i) (mod n) ∈ {a1, a2, . . . , ak}}, where

0 < a1 < a2 < · · · < ak < (n + 1)/2. Recently, Kitaev and Pyatkin [22] have proved that every

4-regular circulant graph is semi-transitive. Further, [22] have posed an open problem regarding the

semi-transitive orientability of circulant graphs for which the elements of the set {a1, a2, . . . , ak} are

consecutive positive integers. Kitaev and Pyatkin [22] solved the problem mentioned above. In

addition, Kitaev and Pyatkin [22] proved that under certain assumptions, some k(≥ 5)-regular

circulant graphs are semi-transitive, and some are not. Moreover, since a semi-transitive orientation is

a characterisation of word-representability, Kitaev and Pyatkin [22] gave some upper bound for the

representation number of certain k-regular circulant graphs.

Open Problems

The following open problems are due to Li-Da Tong [25].

1. For a given odd prime p, does there exist a non-fully-orientable p−degenerate graph that is not

(p − 1)-degenerate?

2. For any given integer g ≥ 4, does there exist a non-fully-orientable graph G whose girth is g?

3. Does there exist a non-fully-orientable graph G whose dmin(G) is 2 or 3?

4. K3(2) shows that a maximal planar graph can be non-fully-orientable. How to characterize all

fully orientable planar graphs?

5. How to characterize those complete multipartite graphs that are fully orientable?

We raise the open problem, namely, whether the cover graph of a poset dismantlable by irreducibles is

orientable?
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