Available Online: http://ijmaa.in

A Note on Standard Closed Ideals in Weighted Discrete Abelian Semigroup Algebras

K. R. Baleviya^{1,*}, H. V. Dedania¹

¹Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India

Abstract

Let S be an abelian semigroup and ω be a weight on S. If T is a semigroup ideal in S, then the closed linear subspace $\ell^1_T(S,\omega):=\{f\in\ell^1(S,\omega): \operatorname{supp} f\subseteq T\}$ is a closed ideal in $\ell^1(S,\omega)$. Such ideals including $\{0\}$ and $\ell^1(S,\omega)$ are standard closed ideals; while the others are non-standard closed ideals in $\ell^1(S,\omega)$. The weight ω on S is an unicellular weight if every closed ideal in $\ell^1(S,\omega)$ is a standard closed ideal. In the case where $S=\mathbb{Z}_+$, it has been extensively studied by several mathematicians. In this article, we intend to study the standard closed ideals in the case where $S=\mathbb{Z}_+^2$.

Keywords: Commutative Banach algebra; Standard closed ideals; Standard elements; Semigroup; Semigroup ideal; and Weight.

2020 Mathematics Subject Classification: Primary 46J05; Secondary 43A20.

1. Introduction

Throughout, S is a unital, abelian semigroup with the binary operation +. A weight ω on S is a function $\omega:S\longrightarrow (0,\infty)$ satisfying the submultiplicativity $\omega(s+t)\leq \omega(s)\omega(t)$ for all $s,t\in S$. The ω is called a radical weight on S if $\inf\{\omega(ns)^{\frac{1}{n}}:n\in\mathbb{N}\}=\lim_{n\to\infty}\omega(ns)^{\frac{1}{n}}=0$ for every non-unital element $s\in S$. Let $l^1(S,\omega)=\{f:S\longrightarrow\mathbb{C}:\|f\|_\omega:=\sum\{|f(s)|\omega(s):s\in S\}<\infty\}$. For $f,g\in l^1(S,\omega)$, the convolution product f*g is defined as

$$(f*g)(s) = \sum \{f(u)g(v) : u,v \in S \text{ and } u+v=s\} \quad (s \in S).$$

Then $l^1(S,\omega)$ is a unital, commutative Banach algebra with the convolution product * and the weighted norm $\|\cdot\|_{\omega}$; it is so-called a *weighted discrete semigroup algebra* [4, P.159]. For $s,t\in S$, define $\delta_s(t)=1$ for s=t and $\delta_s(t)=0$ for $s\neq t$. Then we can write $f\in l^1(S,\omega)$ as $f=\sum\{f(s)\delta_s:s\in S\}$.

Nikolskii has mentioned in [9, P.189] that Šilov asked the following question around 1940: Is every radical weight ω on \mathbb{Z}_+ unicellular? In the year 1973, Grabiner [7] gave a sufficient condition on a weight ω on \mathbb{Z}_+ such that ω is unicellular. Later on, several authors gave different sufficient conditions

^{*}Corresponding author (kamleshspu@gmail.com)

on ω to ensure the unicellularity of the weight ω on \mathbb{Z}_+ [2,5,8–10]. However, no one could find a non-unicellular weight ω on \mathbb{Z}_+ till 1984. Nikolskii *claimed* in his paper [9, Theorem-5, P.205] to have such a radical weight on \mathbb{Z}_+ . However, there was a gap in his proof. In 1984, Mark Thomas succeeded to construct a non-unicellular weight on \mathbb{Z}_+ [11]; its proof is quite difficult.

So it is quite natural to ask the following question: Does there exist a (necessarily, radical) unicellular weight on the semigroup \mathbb{Z}_+^2 ? In this article, we find some partial results. The methods used in the proofs are similar to the proofs for the case $S = \mathbb{Z}_+$.

2. Standard Closed Ideals in $\ell^1(S, \omega)$

In this section, we define standard closed ideals in $\ell^1(S, \omega)$ for any semigroup S. First we note the following elementary result without proof.

Lemma 2.1. Let ω be a weight on a semigroup S and let $T \subset S$. Define $\ell^1_T(S,\omega) = \{f \in \ell^1(S,\omega) : suppf \subset T\}$. Then

- 1. $\ell_T^1(S,\omega)$ is a closed linear subspace of $\ell^1(S,\omega)$.
- 2. *T* is a subsemigroup of *S* iff $\ell_T^1(S,\omega)$ is a closed subalgebra of $\ell^1(S,\omega)$.
- 3. *T* is a semigroup ideal in *S* iff $\ell_T^1(S,\omega)$ is a closed ideal in $\ell^1(S,\omega)$.

Definition 2.2. A closed ideal \mathcal{I} in $\ell^1(S,\omega)$ is a standard closed ideal if either $\mathcal{I}=\{0\}$ or there exists a semigroup ideal T in S such that $\mathcal{I}=\ell^1_T(S,\omega)$; otherwise, it is a non-standard closed ideal. An element $f \in \ell^1(S,\omega)$ is a standard element if $\mathcal{I}_f := \overline{f * \ell^1(S,\omega)}$ is a standard closed ideal in $\ell^1(S,\omega)$.

Definition 2.3. A weight ω on S is unicellular if $\ell^1(S,\omega)$ has only standard closed ideals.

Lemma 2.4. Let S be cancellative, ω be a weight on S, and \mathcal{I} be a non-zero closed ideal in $\ell^1(S,\omega)$. Then there exists a smallest semigroup ideal T in S such that $\mathcal{I} \subseteq \ell^1_T(S,\omega)$.

Proof. Let $T = \bigcup \{ \text{supp} f : f \in \mathcal{I} \}$. First, we prove that T is a semigroup ideal in S. Let $s \in S$ and $t \in T$. Then $t \in \text{supp} f$ for some $f \in \mathcal{I}$. Since \mathcal{I} is an ideal, $\delta_s * f \in \mathcal{I}$. Since S is cancellative, $(\delta_s * f)(s + t) = f(t) \neq 0$. Thus $s + t \in \text{supp}(\delta_s * f) \subseteq T$. So T is a semigroup ideal. Also it is clear that $\mathcal{I} \subseteq \ell^1_T(S, \omega)$. From the definition of T itself, it follows that T is the smallest semigroup ideal such that $\mathcal{I} \subseteq \ell^1_T(S, \omega)$.

Proposition 2.5. Let T be a semigroup ideal in S. Let $f \in \ell^1(S, \omega)$ be a non-zero element. Then $supp f + S \subseteq T$ iff $\mathcal{I}_f \subseteq \ell^1_T(S, \omega)$.

Proof. Assume that $\operatorname{supp} f + S \subseteq T$. Let $g \in \ell^1(S, \omega)$. Then $\operatorname{supp} (f * g) \subseteq \operatorname{supp} f + \operatorname{supp} g \subseteq \operatorname{supp} f + S \subseteq T$. Hence $f * g \in \ell^1_T(S, \omega)$. Since $\ell^1_T(S, \omega)$ is closed in $\ell^1(S, \omega)$, $\mathcal{I}_f \subseteq \ell^1_T(S, \omega)$. The converse is clear, because $f \in \mathcal{I}_f \subseteq \ell^1_T(S, \omega)$ implies $\operatorname{supp} f + S \subseteq T + S \subseteq T$ as T is a semigroup ideal. \square

The next result should be compared with [4, Proposition 4.6.19]. But it could not be considered as its generalization even though its proof is borrowed here.

Theorem 2.6. Let ω be a radical weight on S. Then following are equivalent.

- 1. ω is unicellular;
- 2. Each $f \in \ell^1(S, \omega)$ is a standard element;
- 3. If $f \in \ell^1(S, \omega)$ non-zero and $s \in supp f$, then $\delta_s \in \mathcal{I}_f$;
- 4. If \mathcal{I} is a non-zero closed ideal in $\ell^1(S,\omega)$ and $f \in \mathcal{I}$ is non-zero, then $\delta_s \in \mathcal{I}$ for all $s \in supp f$.

Proof. (1) \Rightarrow (2): This is clear.

- (2) \Rightarrow (3): Let $f \in \ell^1(S, \omega)$ be non-zero. Since f is a standard element, $\mathcal{I}_f = \ell^1_T(S, \omega)$ for some semigroup ideal T in S. Because $f \in \mathcal{I}_f = \ell^1_T(S, \omega)$, we have $\operatorname{supp} f \subseteq T$. Thus $\delta_s \in \ell^1_T(S, \omega) = \mathcal{I}_f$ for all $s \in \operatorname{supp} f$.
- (3) \Rightarrow (4): Let \mathcal{I} be a non-zero, closed ideal in $\ell^1(S,\omega)$. Let $f \in \mathcal{I}$ be non-zero and let $s \in \operatorname{supp} f$. It is clear that $\mathcal{I}_f \subseteq \mathcal{I}$ because \mathcal{I} is a closed ideal. By the assumption, $\delta_s \in \mathcal{I}_f \subseteq \mathcal{I}$.
- (4) \Rightarrow (1): Let \mathcal{I} be a non-zero closed ideal and $T = \bigcup \{ \text{supp} f : f \in \mathcal{I} \}$. As per the proof of Lemma 2.4, T is a semigroup ideal in S. Clearly, $\mathcal{I} \subseteq \ell^1_T(S,\omega)$. Now let $f \in \ell^1_T(S,\omega)$ and $s \in \text{supp} f$. Then $s \in T$. By the definition of T, there exists a non-zero element $g \in \mathcal{I}$ such that $s \in \text{supp} g$. By the assumption, $\delta_s \in \mathcal{I}$. Since $s \in \text{supp} f$ is arbitrary and \mathcal{I} is a closed ideal, $f \in \mathcal{I}$. Thus $\ell^1_T(S,\omega) \subseteq \mathcal{I}$ and so \mathcal{I} is a standard closed ideal. Hence ω is unicellular.

3. Standard Closed Ideals in $\ell^1(\mathbb{Z}^2_+,\omega)$

There are two famous theorems on standard closed ideals in $\ell^1(\mathbb{Z}_+,\omega)$; one is proved by Domar [4, Theorem 4.6.28] and another one is proved by Thomas [4, Theorem 4.6.29]. In this section, we have made an attempt to prove analogous results in $\ell^1(\mathbb{Z}_+^2,\omega)$. We start with the following notations.

Definition 3.1. Let $c, d \in \mathbb{Z}_+$ and ω be a weight on \mathbb{Z}_+^2 . Define

$$\begin{array}{rcl} U(c,d) & = & \{(m,n) \in \mathbb{Z}_+^2 : c \leq m \ and \ d \leq n\} \\ \\ V(c,d) & = & \{(m,n) \in \mathbb{Z}_+^2 : c \leq m \ or \ d \leq n\} \\ \\ U_{(c,d)}(\mathbb{Z}_+^2,\omega) & = & \{f \in \ell^1(\mathbb{Z}_+^2,\omega) : supp f \subset U(c.d)\} \\ \\ V_{(c,d)}(\mathbb{Z}_+^2,\omega) & = & \{f \in \ell^1(\mathbb{Z}_+^2,\omega) : supp f \subset V(c.d)\} \end{array}$$

Clearly, U(c,d) and V(c,d) are semigroup ideals in \mathbb{Z}_+^2 . Some basic properties of $U_{(c,d)}(\mathbb{Z}_+^2,\omega)$ and $V_{(c,d)}(\mathbb{Z}_+^2,\omega)$ are listed out in the following lemma.

Lemma 3.2. Let $c, d \in \mathbb{Z}_+$, and ω be a weight on \mathbb{Z}_+^2 . Then

- 1. $U_{(c,d)}(\mathbb{Z}_{+}^{2},\omega) \subseteq V_{(c,d)}(\mathbb{Z}_{+}^{2},\omega);$
- 2. $U_{(c,d)}(\mathbb{Z}_{+}^{2},\omega) = \ell_{T}^{1}(\mathbb{Z}_{+}^{2},\omega)$, where T = U(c,d);
- 3. $V_{(c,d)}(\mathbb{Z}_+^2,\omega) = \ell_T^1(\mathbb{Z}_+^2,\omega)$, where T = V(c,d);
- 4. $U_{(c,d)}(\mathbb{Z}^2_+,\omega)$ and $V_{(c,d)}(\mathbb{Z}^2_+,\omega)$ are standard closed ideals in $\ell^1(\mathbb{Z}^2_+,\omega)$.

Proof. The proofs follow immediately from Definition 3.1.

Proposition 3.3. Consider the totally ordered semigroup $(\mathbb{Z}_+^2, +, \leq)$ with respect to the dictionary order. Let T be a semigroup ideal in \mathbb{Z}_+^2 and ω be a weight on \mathbb{Z}_+^2 . Then

1. There exist a finite sequence $(c_1, d_1) < \cdots < (c_n, d_n)$ in \mathbb{Z}^2_+ such that

$$\ell^1_T(\mathbb{Z}^2_+,\omega) = U_{(c_1,d_1)}(\mathbb{Z}^2_+,\omega) + \cdots + U_{(c_n,d_n)}(\mathbb{Z}^2_+,\omega);$$

2. There exists a minimum element (c_0, d_0) in T such that

$$U_{(c_0,d_0)}(\mathbb{Z}_+^2,\omega) \subseteq \ell_T^1(\mathbb{Z}_+^2,\omega) \subseteq V_{(c_0,d_0)}(\mathbb{Z}_+^2,\omega).$$

Proof. (1) By [3, Theorem 2.3], there exists a finite sequence $(c_1,d_1) < \ldots < (c_n,d_n)$ in \mathbb{Z}_+^2 such that $T = \bigcup_{i=1}^n U(c_i,d_i)$. Clearly, $U_{(c_i,d_i)}(\mathbb{Z}_+^2,\omega) \subseteq \ell_T^1(\mathbb{Z}_+^2,\omega)$ for each $1 \le i \le n$ and so $U_{(c_1,d_1)}(\mathbb{Z}_+^2,\omega) + \ldots + U_{(c_n,d_n)}(\mathbb{Z}_+^2,\omega) \subseteq \ell_T^1(\mathbb{Z}_+^2,\omega)$. Conversely, let $f \in \ell_T^1(\mathbb{Z}_+^2,\omega)$. Then, there exist $f_1,\ldots,f_n \in \ell^1(\mathbb{Z}_+^2,\omega)$ such that $f = f_1 + \cdots + f_n$, supp $f_1 \subseteq U_{(c_1,d_1)}$ and supp $f_k \subseteq U_{(c_k,d_k)} \setminus \bigcup_{i=1}^{k-1} U(c_i,d_i)$ for each $1 \le k \le n$. So that $1 \le k \le k$ the proof of (1).

(2) Again, by [3, Theorem 2.3], there is a finite sequence $(c_1,d_1) < \ldots < (c_n,d_n)$ in \mathbb{Z}_+^2 such that $T = \bigcup_{i=1}^n U(c_i,d_i)$. Take $(c_0,d_0) = (c_1,d_1)$. Then (c_0,d_0) is the minimum element in T and $U(c_0,d_0) \subseteq T \subseteq V(c_0,d_0)$. Hence, by basic definitions, $U_{(c_0,d_0)}(\mathbb{Z}_+^2,\omega) \subseteq \ell_T^1(\mathbb{Z}_+^2,\omega) \subseteq V_{(c_0,d_0)}(\mathbb{Z}_+^2,\omega)$. This completes the proof of (2).

Proposition 3.4. Let ω be a radical weight on \mathbb{Z}^2_+ . Let $f \in \ell^1_T(\mathbb{Z}^2_+, \omega)$ have a finite support and (c,d) be the minimum element of supp f. Then $\mathcal{I}_f \subseteq \ell^1_T(S, \omega)$, where T = U(c,d).

Proof. By the hypothesis, there exists $g \in \ell^1(\mathbb{Z}_+^2, \omega)$ such that g has a finite support and $f = \delta_{(c,d)} * g$. Then $g(0) = f(c,d) \neq 0$. Since $\ell^1(\mathbb{Z}_+^2, \omega)$ is a local algebra, g is invertible in $\ell^1(\mathbb{Z}_+^2, \omega)$. Hence $\delta_{(c,d)} = f * g^{-1} \in \mathcal{I}_f$. This implies $\delta_{(c+m,d+n)} = \delta_{(c,d)} * \delta_{(m,n)} \in \mathcal{I}_f$ for any $(m,n) \in \mathbb{Z}_+^2$. So that $\ell^1_T(S,\omega) \subseteq \mathcal{I}_f$. The reverse inclusion is clear. Hence f is a standard element.

Conjecture 3.5. We believe that there is no unicellular weight on \mathbb{Z}_+^2 . More specifically, $f = \delta_{(1,0)} + \delta_{(0,1)}$ is not a standard element in $\ell^1(\mathbb{Z}_+^2, \omega)$ for any weight ω on \mathbb{Z}_+^2 .

References

- [1] W. G. Bade, Multipliers of weighted ℓ^1 -algebras, Conference Proceedings on Radical Banach Algebras and Automatic Continuity, Held at Long Beach in 1981, Lecture Notes in Mathematics 975, Springer-Verlag, New York, (1983), 227-247.
- [2] W. G. Bade, H. G. Dales and K. B. Laursen, *Multipliers of radical Banach algebras of power series*, Memoirs of the American Math. Soc., 49(303)(1984).
- [3] K. R. Baleviya and H. V. Dedania, *Existence of Non-standard Ideals in the Formal Power Series Algebra* $\mathfrak{F}(\mathbb{Z}^2_+;\mathbb{C})$, https://link.springer.com/article/10.1007/s13226-023-00416-z.
- [4] H. G. Dales, Banach algebras and automatic continuity, Oxford Science publ., New York, (2000).
- [5] Y. Domar, On the unicellularity of $\ell^p(\omega)$, Monatsh. Math., 103(1987), 103-113.
- [6] S. Grabiner, A formal power series operational calculus for quasi-nilpotent operators, Duke Math. J., 38(1971), 641-658.
- [7] S. Grabiner, A formal power series operational calculus for quasi-nilpotent operators-II, Jr. Math. Analysis and Appl., 43(1973), 170-192.
- [8] K. B. Laursen, Ideal structure in radical sequence algebras, Conference Proceedings on Radical Banach Algebras and Automatic Continuity, Held at Long Beach in 1981, Lecture Notes in Mathematics 975, Springer-Verlag, New York, (1983), 248-257.
- [9] N. K. Nikolskii, Selected problems of weighted approximation and spectral analysis, Trudy Mat. Inst. Steklov, 120(1974)1-270 = Proc. Steklov Inst. Math., 120(1974), 1-278 (A.M.S. Translation).
- [10] M. P. Thomas, Closed ideals of $\ell^1(\omega)$ when $\{\omega_n\}$ is star-shaped, Pacific J. Math., 105(1983), 237-255.
- [11] M. P. Thomas, A non-standard ideal of a radical Banach algebra of power series, Acta Mathematica, 152(1984), 199-217.